Carbonaceous Greenhouse Gases and Microbial Abundance in Paddy Soil under Combined Biochar and Rice Straw Amendment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Organic Materials and Soil
2.2. Experiments
2.2.1. Pot Experiment
2.2.2. Incubation Experiment
2.3. Data Collection
2.3.1. Rice Grain and Microbial Biomass C (MBC) in the Pot Experiment
2.3.2. Gas Sampling, CH4, and CO2 Analysis in the Pot and Incubation Experiments
2.4. DOC Analysis and Determination of Archaeal and Bacterial Abundance in the Incubation Experiment
2.5. DNA Extraction and Quantitative Polymerase Chain Reaction (qPCR)
2.6. Statistical Analysis
3. Results and Discussion
3.1. Carbonaceous Greenhouse Gases and Microbial Abundance in Paddy Soil as Affected by RS
3.2. Carbonaceous Greenhouse Gases and Microbial Abundance in Paddy Soil as Affected by BC
3.3. Carbonaceous Greenhouse Gases and Microbial Abundance in Paddy Soil as Affected by Combined BC and RS
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thammasom, N.; Vityakon, P.; Saenjan, P. Response of methane emissions, redox potential, and pH to eucalyptus biochar and rice straw addition in a paddy soil. Songklanakarin J. Sci. Technol. 2016, 38, 325–331. [Google Scholar]
- Chowdhury, T.R.; Dick, R.P. Ecology of aerobic methanotrophs in controlling methane fluxes from wetlands. Appl. Soil Ecol. 2013, 65, 8–22. [Google Scholar] [CrossRef]
- Thammasom, N.; Vityakon, P.; Lawongsa, P.; Saenjan, P. Biochar and rice straw have different effects on soil productivity, greenhouse gas emission and carbon sequestration in Northeast Thailand paddy soil. Agric. Nat. Resour. 2016, 50, 192–198. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Chang, Z.; Xue, X.; Yu, J.; Shi, X.; Ma, L.Q.; Li, H. Biochar decreases nitrogen oxide and enhances methane emissions via altering microbial community composition of anaerobic paddy soil. Sci. Total Environ. 2017, 689–696. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, M.; Wu, Y.; Wang, H.; Chen, Y.; Wu, W. Reducing CH4 and CO2 emissions from waterlogged paddy soil with biochar. J Soils Sediments. 2011, 11, 930–939. [Google Scholar] [CrossRef]
- Feng, Y.; Xu, Y.; Yu, Y.; Xie, Z.; Lin, X. Mechanisms of biochar decreasing methane emission from Chinese paddy soils. Soil Biol. Biochem. 2012, 46, 80–88. [Google Scholar] [CrossRef]
- Bremner, J.M. Total nitrogen. In Method of Soil Analysis. Part 2; Black, C.A., Ed.; American Society of Agronomy: Madison, WI, USA, 1965; pp. 1149–1178. [Google Scholar]
- Aravantinos-Zafiris, G.; Oreopoulou, V.; Tzia, C.; Thomopoulos, C.D. Fiber fraction from orange peel residues after pectin extraction. LWT-Food Sci. Technol. 1994, 27, 468–471. [Google Scholar] [CrossRef]
- American Standard Test Method International. Standard Test. Method for Chemical Analysis of Wood Charcoal; ASTM International Destination: Pennsylvania, PA, USA, 2007; pp. D1762–D1784. [Google Scholar]
- Coates, J. Interpretation of Infrared Spectra, A practical Approach. In Encyclopedia of Analytical Chemistry.; Meyers, R.A., Ed.; John Wiley & Sons Ltd: Chichester, UK, 2000; pp. 10815–10837. [Google Scholar]
- Daffalla, S.B.; Mukhtar, H. and Shaharun, M.S. Characterization of Adsorbent Developed from Rice Husk: Effect of Surface Functional Group on Phenol Adsorption. Appl. Sci. 2010, 10, 1060–1067. [Google Scholar]
- Bouyoucos, G.J. Directions for making mechanical analysis of soils by the hydrometer method. Soil Sci. 1936, 4, 225–228. [Google Scholar] [CrossRef]
- Walkley, A.; Black, J.A. An examination of the dichormate method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring microbial biomass C. Soil Biol. Biochem. 1987, 22, 703–707. [Google Scholar] [CrossRef]
- Saenjan, P.; Tulaphitak, D.; Tulaphitak, T.; Soupachai, T.; Suwat, J. Methane emission from Thai farmers’paddy fields as a basis for appropiate mitigation technologies. In Proceedings of the 17th World Congress of Soil Science, Bangkok, Thailand, 14–21 August 2002. [Google Scholar]
- Lane, D. 16S/23S rRNA sequencing. In Nucleic Acid Techniques Systematics; Stackebrandt, A., Goodfellow, M., Eds.; John Wiley: West Sussex, UK, 1991; pp. 115–175. [Google Scholar]
- Muyzer, G.; De Waal, E.C.; Uitterlinden, A.G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 1993, 59, 695–700. [Google Scholar] [PubMed]
- Lueders, T.; Friedrich, M. Archaeal population dynamics during sequential reduction processes in rice field soil. Appl. Environ. Microbiol. 2000, 66, 2732–2742. [Google Scholar] [CrossRef] [PubMed]
- Gonetl, S.S.; Debska, B. Dissolved organic carbon and dissolved nitrogen in soil under different fertilization treatments. Plant Soil Eviron. 2006, 52, 55–63. [Google Scholar] [CrossRef]
- Kunlanit, B. Decomposition of biochemistry contrasting organic residues regulating dissolved organic carbon dynamics and soil organic carbon composition in a sandy soil. Ph.D. Thesis, Khon Kaen University, Khon Kaen, Thailand, December 2014. [Google Scholar]
- Lehmann, J.; Rilling, M.C.; Thies, J.; Masiello, A.C.; Hockaday, C.W.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Yuan, Q.; Hernandez, M.; Dumont, M.G.; Rui, J.; Fernandez Scavino, A.; Conrad, R. Soil bacterial community mediates the effect of plant material on methanogenic decomposition of soil organic matter. Soil Biol. Biochem. 2018, 116, 99–109. [Google Scholar] [CrossRef]
- Butnan, S.; Deenik, J.L.; Toomsan, B.; Antal, M.J.; Vityakon, P. Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy. Geoderma. 2015, 105–116. [Google Scholar] [CrossRef]
- Aulakh, M.S.; Wassmann, R.; Bueno, C.; Kreuzwieser, J.; Rennenberg, H. Characterization of Root Exudates at Different Growth Stages of Ten Rice (Oryza sativa L.) Cultivars. Plant Biol. 2001, 3, 139–148. [Google Scholar] [CrossRef]
- Cao, M.; Gregson, K.; Marshall, S.; Dent, J.B.; Heal, O.W. Global methane emissions from rice paddies. Chemosphere 1996, 33, 879–897. [Google Scholar] [CrossRef]
Organic Materials 1 | pH | OC 2 | TN 3TN | C/N 4 Ratio | Cellulose | Hemicell 5 | Lignin | Fixed C | Ash | VM 6 |
---|---|---|---|---|---|---|---|---|---|---|
(1:5) | % | |||||||||
BC | 6.32 | 60.2 | 0.56 | 101 | 1.24 | 1.65 | 75.69 | 61.72 | 3.3 | 34.97 |
RS | 7.47 | 40.9 | 0.43 | 95 | 46.65 | 22.17 | 7.11 | - | - | - |
Primers | Sequences (5’ to 3’) | Annealing Temps (°C) | Targeted Groups | References |
---|---|---|---|---|
Eub338 | ACCTACGGGAGGCAGCAG | 55 | Bacteria | [16] |
Eub518 | ATTACCGCGGCTGCTGG | 55 | Bacteria | [17] |
Ar109f | ACKGCTCAGTAACACGT | 57.5 | Archaea | [18] |
Ar912r | CTCCCCCGCCAATTCCTTTA | 57.5 | Archaea | [18] |
Treatments 1 | CH4 | CO2 | Rice Grains | MBC 2 |
---|---|---|---|---|
mg m−2 | Season−1 | g pot−1 | mg kg−1 | |
Control | 0.0298 ab | 0.0018 b | 41.52 b | 79.81 c |
CF | 0.0263 b | 0.0012 c | 50.62 a | 93.66 bc |
BC 12.50 t ha−1 | 0.0233 b | 0.0013 c | 35.55 b | 224.08 a |
RS 12.50 t ha−1 | 0.0347 a | 0.0021 a | 35.43 b | 129.84 bc |
BC 6.25 t ha−1 + RS 6.25 t ha−1 + CF | 0.0235 b | 0.0012 c | 53.47 a | 167.94 ab |
F-test | * | ** | ** | * |
CV (%) | 15.87 | 2.99 | 7.00 | 33.26 |
Treatments 1 | Archaea | Bacteria | CH4 | CO2 | DOC 2 |
---|---|---|---|---|---|
Copies g−1 | Soil DW | mg kg−1 | mg kg−1 | mg kg−1 | |
Control | 1.21 × 108 b | 1.88 × 1010 b | 61.6 b | 3459.7 a | 98.00 b |
CF | 6.73 × 107 b | 2.24 × 1010 b | 32.6 b | 1730.4 b | 84.92 b |
BC 12.50 t ha−1 | 8.51 × 107 b | 1.76 × 1010 b | 45.7 b | 229.3 c | 78.88 b |
RS 12.50 t ha−1 | 5.81 × 108 a | 4.94 × 1010 a | 1379.3 a | 507.1 c | 202.69 a |
BC 6.25 t ha−1 + RS 6.25 t ha−1 + CF | 3.79 × 108 a | 5.82 × 1010 a | 4.5 b | 557.5 c | 186.63 a |
F-test | ** | * | ** | ** | ** |
CV (%) | 36.16 | 45.70 | 20.15 | 29.96 | 15.75 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumputa, S.; Vityakon, P.; Saenjan, P.; Lawongsa, P. Carbonaceous Greenhouse Gases and Microbial Abundance in Paddy Soil under Combined Biochar and Rice Straw Amendment. Agronomy 2019, 9, 228. https://doi.org/10.3390/agronomy9050228
Kumputa S, Vityakon P, Saenjan P, Lawongsa P. Carbonaceous Greenhouse Gases and Microbial Abundance in Paddy Soil under Combined Biochar and Rice Straw Amendment. Agronomy. 2019; 9(5):228. https://doi.org/10.3390/agronomy9050228
Chicago/Turabian StyleKumputa, Supitrada, Patma Vityakon, Patcharee Saenjan, and Phrueksa Lawongsa. 2019. "Carbonaceous Greenhouse Gases and Microbial Abundance in Paddy Soil under Combined Biochar and Rice Straw Amendment" Agronomy 9, no. 5: 228. https://doi.org/10.3390/agronomy9050228
APA StyleKumputa, S., Vityakon, P., Saenjan, P., & Lawongsa, P. (2019). Carbonaceous Greenhouse Gases and Microbial Abundance in Paddy Soil under Combined Biochar and Rice Straw Amendment. Agronomy, 9(5), 228. https://doi.org/10.3390/agronomy9050228