Integrated Rice-Duck Farming Decreases Soil Seed Bank and Weed Density in a Paddy Field
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Descriptions
2.2. Experimental Design
2.3. Seed Identification and Field Weed Investigation
2.4. Statistical Analysis
3. Results
3.1. Effects on Composition and Density of Soil Seed Bank
3.2. Effects on Vertical Distribution of Soil Seed Bank
3.3. Effects on Weed Density and Correlations between Weed and Seed Density
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sun, F.; Dai, Y.; Yu, X. Air pollution, food production and food security: A review from the perspective of food system. J. Integr. Agric. 2017, 16, 60345–60347. [Google Scholar] [CrossRef]
- Melts, I.; Lanno, K.; Sammul, M.; Uchida, K.; Heinsoo, K.; Kull, T.; Laanisto, L.; Niu, K. Fertilising semi-natural grasslands may cause long-term negative effects on both biodiversity and ecosystem stability. J. Appl. Ecol. 2018, 55, 1951–1955. [Google Scholar] [CrossRef]
- Barmentlo, S.H.; Schrama, M.; Hunting, E.R.; Heutink, R.; van Bodegom, P.M.; de Snoo, G.R.; Vijver, M.G. Assessing combined impacts of agrochemicals: Aquatic macroinvertebrate population responses in outdoor mesocosms. Sci. Total Environ. 2018, 631, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Li, H.; Yu, H.; Li, W.; Ye, Y.; Biswas, A. Drivers of spatio-temporal changes in paddy soil pH in Jiangxi Province, China from 1980 to 2010. Sci. Rep. 2018, 8, 2702. [Google Scholar] [CrossRef]
- Carvalho, F.P. Agriculture, pesticides, food security and food safety. Environ. Sci. Policy 2006, 9, 685–692. [Google Scholar] [CrossRef]
- Carvalho, F.P. Pesticides, environment, and food safety. Food Energy Secur. 2017, 6, 48–60. [Google Scholar] [CrossRef]
- Zhang, J.E.; Ouyang, Y.; Huang, Z.X. Characterization of nitrous oxide emission from a rice-duck farming system in South China. Arch. Environ. Contam. Toxicol. 2008, 54, 167–172. [Google Scholar] [CrossRef]
- Pernollet, C.A.; Simpson, D.; Gauthier-Clerc, M.; Guillemain, M. Rice and duck, a good combination? Identifying the incentives and triggers for joint rice farming and wild duck conservation. Agric. Ecosyst. Environ. 2015, 214, 118–132. [Google Scholar] [CrossRef]
- Mueller, M.H.; van der Valk, A.G. The potential role of ducks in wetland seed dispersal. Wetlands 2002, 22, 170–178. [Google Scholar] [CrossRef]
- Suh, J. Theory and reality of integrated rice–duck farming in Asian developing countries: A systematic review and SWOT analysis. Agric. Syst. 2014, 125, 74–81. [Google Scholar] [CrossRef]
- Li, M.; Zhou, N.; Zhang, J.; Xiang, H.; Liang, K. Effect of rice varieties mixed-cropping with duck raising on nutrient dynamics in paddy soils. Chin. J. Eco-Agric. 2017, 25, 211–220. [Google Scholar] [CrossRef]
- Teng, Q.; Hu, X.-F.; Cheng, C.; Luo, Z.; Luo, F.; Xue, Y.; Jiang, Y.; Mu, Z.; Liu, L.; Yang, M. Ecological effects of rice-duck integrated farming on soil fertility and weed and pest control. J. Soil Sediments 2016, 16, 2395–2407. [Google Scholar] [CrossRef]
- Zhang, J.E.; Xu, R.B.; Chen, X.; Quan, G.M. Effects of duck activities on a weed community under a transplanted rice-duck farming system in southern China. Weed Biol. Manag. 2009, 9, 250–257. [Google Scholar] [CrossRef]
- Xu, G.; Liu, X.; Wang, Q.; Yu, X.; Hang, Y. Integrated rice-duck farming mitigates the global warming potential in rice season. Sci. Total Environ. 2017, 575, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Zhan, M.; Cao, C.; Wang, J.; Jiang, Y.; Cai, M.; Yue, L.; Shahrear, A. Dynamics of methane emission, active soil organic carbon and their relationships in wetland integrated rice-duck systems in Southern China. Nutr. Cycl. Agroecosyst. 2010, 89, 1–13. [Google Scholar] [CrossRef]
- Zhao, B.; Wen, T.; Zhang, J.; Tang, W.; Wang, M. Duck trampling in rice-duck farming alters rice growth and soil CH4 emissions. Int. J. Agric. Biol. 2019, 21, 345–350. [Google Scholar] [CrossRef]
- Liang, K.; Zhang, J.; Song, C.; Luo, M.; Zhao, B.; Quan, G.; An, M. Integrated Management to Control Golden Apple Snails (Pomacea canaliculata) in Direct Seeding Rice Fields: An Approach Combining Water Management and Rice-Duck Farming. Agroecol. Sustain. Food Syst. 2014, 38, 264–282. [Google Scholar] [CrossRef]
- Huang, S.; Wang, L.; Liu, L.; Fu, Q.; Zhu, D. Nonchemical pest control in China rice: A review. Agron. Sustain. Dev. 2013, 34, 275–291. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, J.; Zhang, G.; Luo, S. Study on the function and benefit of rice-duck agroecosystem. Ecol. Sci. 2002, 21, 6–10. [Google Scholar]
- Wang, Q.; Huang, P.; Zhen, R.; Jing, L.; Tang, H.; Zhang, C. Effect of rice-duck mutualism on nutrition ecology of paddy field and rice quality. Chin. J. Appl. Ecol. 2004, 15, 639–645. [Google Scholar] [CrossRef]
- Yu, S.; Ouyang, Y.; Zhang, Q.; Peng, G.; Xu, D.; Jin, Q. Effects of rice-duck farming system on oryza sativa growth and its yield. Chin. J. Appl. Ecol. 2005, 16, 1252–1256. [Google Scholar] [CrossRef]
- Wang, H.; Huang, H.; Yang, Z.; Liao, X. Integrated benefits of paddy rice-duck complex ecosystem. Rural Eco-Environ. 2003, 19, 23–26. [Google Scholar]
- Wei, S.; Qiang, S.; Ma, B.; Wei, J.; Chen, J.; Wu, J.; Xie, T.; Shen, X. Control effects of rice-duck farming and other weed management strategies on weed communities in paddy fields. Chin. J. Appl. Ecol. 2005, 16, 1067–1071. [Google Scholar] [CrossRef]
- Li, S.-S.; Wei, S.-H.; Zuo, R.-L.; Wei, J.-G.; Qiang, S. Changes in the weed seed bank over 9 consecutive years of rice–duck farming. Crop Prot. 2012, 37, 42–50. [Google Scholar] [CrossRef]
- Liu, X.; Yang, Z.; Huang, H.; Hu, L.; Chen, Y.; Wen, Z. Developing rules of field weeds in wetland rice-duck compounded system. J. Hunan Agric. Univ. (Nat. Sci.) 2004, 30, 292–294. [Google Scholar] [CrossRef]
- Yu, S.; Jin, Q.; Ouyang, Y.; Xu, D. Efficiency of controlling weeds, insect pests and diseases by raising ducks in the paddy fields. Chin. J. Biol. Control 2004, 20, 99–102. [Google Scholar] [CrossRef]
- Wei, S.; Qiang, S.; Ma, B.; Wei, J.; Chen, J.; Wu, J.; Xie, T.; Shen, X. Influence of long-term rice-duck farming systems on the composition and diversity of weed communities in paddy fields. J. Plant Ecol. 2006, 30, 9–16. [Google Scholar] [CrossRef]
- Cavers, P.B.; Benoit, D.L. CHAPTER 14-Seed Banks in Arable Land. In Ecology of Soil Seed Banks; Parker, V.T., Simpson, R.L., Eds.; Academic Press: Cambridge, MA, USA, 1989; pp. 309–328. [Google Scholar] [CrossRef]
- Mesquita, M.L.R. Weed Seedbank in Rice Fields. In Advances in Interanational Rice Research; Li, J., Ed.; InTechOpen: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Dai, W.; Li, S.; Wei, S.; Wei, J.; Zhang, C.; Qiang, S. Change in weed seed bank diversity over 13 consecutive years of rice-duck and straw returning farming system in the rice-wheat rotated wheat fields. Biodivers. Sci. 2014, 22, 366–374. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Z.; Tang, P.; Li, Z.; Wu, W.; Yang, P.; You, L.; Tang, H. Spatial-temporal changes of rice area and production in China during 1980−2010. Acta Geogr. Sin. 2013, 68, 680–693. [Google Scholar]
- Monthly Average Air Temperature and the Amount of Precipitation in Guangzhou in Year 2006. Available online: https://rp5.ru (accessed on 13 May 2019).
- Tang, H. Illustrated Handbook of Farmland Weeds in China; Shanghai Scientific & Technical Publishers: Shanghai, China, 1989. [Google Scholar]
- Bello, I.A.; Owen, M.D.K.; Hatterman-Valenti, H.M. Effect of Shade on Velvetleaf (Abutilon theophrasti) Growth, Seed Production, and Dormancy. Weed Technol. 1995, 9, 452–455. [Google Scholar] [CrossRef]
- Gray, S.M.; Sabbah, S.; Hawryshyn, C.W. Experimentally increased turbidity causes behavioural shifts in Lake Malawi cichlids. Ecol. Freshw. Fish 2011, 20, 529–536. [Google Scholar] [CrossRef]
- Kruk, B.; Insausti, P.; Razul, A.; Benech-Arnold, R. Light and thermal environments as modified by a wheat crop: Effects on weed seed germination. J. Appl. Ecol. 2006, 43, 227–236. [Google Scholar] [CrossRef]
- Dass, A.; Shekhawat, K.; Choudhary, A.K.; Sepat, S.; Rathore, S.S.; Mahajan, G.; Chauhan, B.S. Weed management in rice using crop competition—A review. Crop Prot. 2017, 95, 45–52. [Google Scholar] [CrossRef]
- Wang, H.; Han, X. The actuality and expectation of weeds sustainable management in China. J. Shanxi Agric. Univ. (Nat. Sci. Ed.) 2002, 3, 274–277. [Google Scholar] [CrossRef]
- Qiang, S.; Shen, J.; Zhang, C.; Shao, G.; Hu, J.; Wang, F. The influence of cropping systems on weed communities in the cotton fields of Jiangsu Province. Acta Phytoecol. Sin. 2003, 27, 278–282. [Google Scholar]
- Liu, X.; Xu, G.; Wang, Q.; Hang, Y. Effects of Insect-Proof Net Cultivation, Rice-Duck Farming, and Organic Matter Return on Rice Dry Matter Accumulation and Nitrogen Utilization. Front. Plant Sci. 2017, 8, 47. [Google Scholar] [CrossRef] [PubMed]
Species | Control | Conventional Planting | Turbid Water Treatment | Rice-Duck System |
---|---|---|---|---|
Gramineae | ||||
Echinochloa crusgalli (L.) P. Beauv. | 12 ± 12 | 18 ± 11 | 0 | 0 |
Echinochloa crusgalli var. mitis | 36 ± 18 | 24 ± 14 | 6 ± 6 | 18 ± 18 |
Leptochloa chinensis (L.) Nees | 133 ± 42 | 103 ± 6 | 91 ± 38 | 42 ± 16 |
Cyperaceae | ||||
Cyperus difformis L. | 1953 ± 167 | 2020 ± 246 | 1638 ± 66 | 904 ± 98 |
Fimbristylis miliacea (L.) Vahl | 867 ± 105 | 874 ± 110 | 728 ± 64 | 491 ± 63 |
Scrophulariaceae | ||||
Lindernia procumbens (Krock.) Philcox | 328 ± 79 | 419 ± 46 | 315 ± 16 | 176 ± 26 |
Lythraceae | ||||
Rotala indica (Willd.) Koehne | 473 ± 48 | 485 ± 84 | 388 ± 68 | 224 ± 44 |
Amnunnia arenaria Willdenow | 0 | 30 ± 22 | 12 ± 6 | 0 |
Onagraceae | ||||
Ludwigia hyssopifolia (G. Don) Exell | 61 ± 12 | 85 ± 22 | 24 ± 6 | 61 ± 16 |
Portulacaceae | ||||
Portulaca oleracea L. | 91 ± 18 | 79 ± 16 | 55 ± 21 | 36 ± 18 |
Plantaginaceae | ||||
Sphenoclea zeylanica Gaertn. | 73 ± 46 | 36 ± 36 | 36 ± 21 | 61 ± 44 |
Species | Control | Conventional Planting | Turbid Water Treatment | Rice-Duck System |
---|---|---|---|---|
Gramineae | ||||
Alopecurus japonicus Steud. | 1335 ± 119 | 1583 ± 155 | 831 ± 42 | 613 ± 40 |
Echinochloa crusgalli (L.) P. Beauv. | 297 ± 37 | 309 ± 28 | 255 ± 11 | 206 ± 6 |
Leptochloa chinensis (L.) Nees | 146 ± 18 | 164 ± 32 | 91 ± 18 | 127 ± 11 |
Cyperaceae | ||||
Cyperus difformis L. | 1098 ± 42 | 1256 ± 121 | 770 ± 54 | 655 ± 111 |
Scrophulariaceae | ||||
Lindernia procumbens (Krock.) Philcox | 437 ± 38 | 473 ± 46 | 340 ± 6 | 388 ± 47 |
Lythraceae | ||||
Rotala indica (Willd.) Koehne | 42 ± 6 | 30 ± 16 | 49 ± 6 | 18 ± 11 |
Ammannia baccifera L. | 24 ± 24 | 30 ± 12 | 6 ± 6 | 0 |
Onagraceae | ||||
Ludwigia hyssopifolia (G. Don) Exell | 42 ± 16 | 61 ± 12 | 30 ± 22 | 18 ± 11 |
Pontederiaceae | ||||
Monochoria vaginalis (N. L. Burman) C. Presl ex Kunth | 24 ± 12 | 36 ± 28 | 24 ± 6 | 18 ± 11 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, H.; Bai, W.; Zhang, J.; Chen, R.; Xiang, H.; Quan, G. Integrated Rice-Duck Farming Decreases Soil Seed Bank and Weed Density in a Paddy Field. Agronomy 2019, 9, 259. https://doi.org/10.3390/agronomy9050259
Wei H, Bai W, Zhang J, Chen R, Xiang H, Quan G. Integrated Rice-Duck Farming Decreases Soil Seed Bank and Weed Density in a Paddy Field. Agronomy. 2019; 9(5):259. https://doi.org/10.3390/agronomy9050259
Chicago/Turabian StyleWei, Hui, Wenjuan Bai, Jiaen Zhang, Rui Chen, Huimin Xiang, and Guoming Quan. 2019. "Integrated Rice-Duck Farming Decreases Soil Seed Bank and Weed Density in a Paddy Field" Agronomy 9, no. 5: 259. https://doi.org/10.3390/agronomy9050259
APA StyleWei, H., Bai, W., Zhang, J., Chen, R., Xiang, H., & Quan, G. (2019). Integrated Rice-Duck Farming Decreases Soil Seed Bank and Weed Density in a Paddy Field. Agronomy, 9(5), 259. https://doi.org/10.3390/agronomy9050259