A Review of Soil-Improving Cropping Systems for Soil Salinization
Abstract
:1. Introduction
2. SICS Strategies for Soil Salinization
2.1. Preventing or Halting Secondary Salinization
2.1.1. Leaching
2.1.2. Drainage
2.1.3. Water Table Management
2.2. Coping with Salinization
2.2.1. Irrigation Management
2.2.2. Nutrient Management
2.2.3. Soil Management
2.2.4. Crop Rotation
2.2.5. Salinity Tolerant Crops and Rootstocks
2.3. Reversing Salinization: Removing Salt from the System
3. Synthesis
- Soil amendments (chemical) typically reduce salinity but have a great variability in yield increase (may also cause a decrease in yield).
- Mulching, alone or in combination with amendments, generally preserve productivity (but have also caused a decrease in certain applications) with very satisfactory results reducing salinity.
- Biological soil conditioners increase yield while reducing salinity and may act better in combination with other soil amendments.
- Drainage increases yield but its effect on soil salinity depends on location and procedure.
- Fertilization increases salinity and yield.
- Flushing is always advisable.
- Irrigation management measures are typically aiming at sustaining production while maintaining soil salinity in tolerable levels. Therefore, it is not really a SICS, but rather a last resort for water-saving.
- Phytoremediation increases yield (typically because of the additional biomass generated), but does not guarantee positive effects on soil salinity.
- Rotation systems are always advisable (rather than monocultivation).
- Reduced tillage decreases salinity and increases yield.
- Most promising for salinity is a combination of amendments, conditioners, and mulching, while performing flushing and maintaining cover crops or some sort of rotation.
- Most promising for yield is phytoremediation (but this depends on yield requirements) and biological conditioners while maintain cover crops or some sort of rotation.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerdà, A.; Montanarella, L.; Quinton, J.N.; Pachepsky, Y.; van der Putten, W.H.; et al. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. SOIL 2016, 2, 111–128. [Google Scholar] [CrossRef] [Green Version]
- United Nations General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations General Assembly: New York, NY, USA, 2015; p. 35. [Google Scholar]
- Nafziger, E. Cropping Systems. Dep. Crop Sci. 2010, 49–63. Available online: http://extension.cropsciences.illinois.edu/handbook/pdfs/chapter05.pdf (accessed on 5 June 2019).
- Reeves, D.W. The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Tillage Res. 1997, 43, 131–167. [Google Scholar] [CrossRef]
- Jones, A.; Panagos, P.; Barcelo, S.; Bouraoui, F.; Bosco, C.; Dewitte, O.; Gardi, C.; Hervás, J.; Hiederer, R.; Jeffery, S.; et al. The State of Soil in Europe-a Contribution of the JRC to the European Environment Agency’s Environment State and Outlook Report–SOER 2010. 2012. Available online: http://publications.jrc.ec.europa.eu/repository/bitstream/JRC68418/lbna25186enn.pdf (accessed on 5 June 2019).
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S., III; Lambin, E.; Lenton, T.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. Planetary boundaries: Exploring the safe operating space for humanity. Ecol. Soc. 2009, 14, 32. [Google Scholar] [CrossRef]
- Attard, E.; Recous, S.; Chabbi, A.; De Berranger, C.; Guillaumaud, N.; Labreuche, J.; Philippot, L.; Schmid, B.; Le Roux, X. Soil environmental conditions rather than denitrifier abundance and diversity drive potential denitrification after changes in land uses. Glob. Chang. Biol. 2011, 17, 1975–1989. [Google Scholar] [CrossRef]
- Cassman, K.G. Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proc. Natl. Acad. Sci. USA 1999, 96, 5952–5959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasso, V.; Sørensen, C.A.G.; Oudshoorn, F.W.; Green, O. Controlled traffic farming: A review of the environmental impacts. Eur. J. Agron. 2013, 48, 66–73. [Google Scholar] [CrossRef]
- Sapkota, T.B.; Mazzoncini, M.; Bàrberi, P.; Antichi, D.; Silvestri, N. Fifteen years of no till increase soil organic matter, microbial biomass and arthropod diversity in cover crop-based arable cropping systems. Agron. Sustain. Dev. 2012, 32, 853–863. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Liang, X.; Linquist, B.A.; van Groenigen, K.J.; Lee, J.; Lundy, M.E.; van Gestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. Productivity limits and potentials of the principles of conservation agriculture. Nature 2015, 517, 365–368. [Google Scholar] [CrossRef]
- Daliakopoulos, I.N.; Tsanis, I.K.; Koutroulis, A.G.; Kourgialas, N.; Varouchakis, E.A.; Karatzas, G.P.; Ritsema, C.J. The threat of soil salinity: A European scale review. Sci. Total Environ. 2016, 573, 727–739. [Google Scholar] [CrossRef]
- Van Beek, C.L.; Tóth, G. Risk Assessment Methodologies of Soil Threats in Europe. 2012. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.397.1303&rep=rep1&type=pdf (accessed on 5 June 2019).
- Wallender, W.W.; Tanji, K.K. Nature and extent of agricultural salinity and sodicity. In Agricultural Salinity Assessment and Management; Wallender, W.W., Tanji, K.K., Eds.; American Society of Civil Engineers: New York, NY, USA, 2011. [Google Scholar]
- Suarez, D.L. Sodic soil reclamation: Modelling and field study. Aust. J. Soil Res. 2001, 39, 1225–1246. [Google Scholar] [CrossRef]
- Pitman, M.G.; Läuchli, A. Global Impact of Salinity and Agricultural Ecosystems. In Salinity: Environment - Plants - Molecules; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; Volume 3, pp. 3–20. [Google Scholar]
- Qadir, M.; Noble, A.D.; Schubert, S.; Thomas, R.J.; Arslan, A. Sodicity-induced land degradation and its sustainable management: Problems and prospects. Land Degrad. Dev. 2006, 17, 661–676. [Google Scholar] [CrossRef]
- Rengasamy, P. World salinization with emphasis on Australia. J. Exp. Bot. 2006, 57, 1017–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aquastat. FAO’s Information System on Water and Agriculture; Food and Agriculture Organization (FAO) of the United Nation: Roma, Italy; Available online: http://www.fao.org/nr/water/aquastat (accessed on 1 June 2016).
- Ghassemi, F.; Jakeman, A.J.; Nix, H.A. Salinisation of Land and Water Resources: Human Causes, Extent, Management and Case Studies; CAB International: Wallingford, UK, 1995. [Google Scholar]
- Wichelns, D.; Qadir, M. Achieving sustainable irrigation requires effective management of salts, soil salinity, and shallow groundwater. Agric. Water Manag. 2014, 157, 31–38. [Google Scholar] [CrossRef]
- Bridges, E.M.; Oldeman, L.R. Global Assessment of Human-Induced Soil Degradation. Arid Soil Res. Rehabil. 1999, 13, 319–325. [Google Scholar] [CrossRef]
- Shabala, S.; Munns, R. Salinity Stress: Physiological Constraints and Adaptive Mechanisms. In Plant Stress Physiology; CABI: Boston, MA, USA, 2017; pp. 24–63. ISBN 9781780647296. [Google Scholar]
- Chesworth, W. Encyclopedia of Soil Science; Springer: Berlin, Germany, 2008; ISBN 1-4020-3994-8. [Google Scholar]
- Maas, E.V. Salt tolerance of plants. Appl. Agric. Res. 1986, 1, 12–26. [Google Scholar]
- Mateo-Sagasta, J.; Burke, J. Agriculture and Water Quality Interactions: A Global Overview. SOLAW Background Thematic Report-TR08. 2011, p. 46. Available online: http://www.fao.org/3/a-bl092e.pdf (accessed on 5 June 2019).
- Cocks, P.S. Ecology of herbaceous perennial legumes: A review of characteristics that may provide management options for the control of salinity and waterlogging in dryland cropping systems. Aust. J. Agric. Res. 2001, 52, 137–151. [Google Scholar] [CrossRef]
- Ritzema, H.P. Drain for Gain: Managing salinity in irrigated lands—A review. Agric. Water Manag. 2016, 176, 18–28. [Google Scholar] [CrossRef]
- Crescimanno, G.; Garofalo, P. Management of Irrigation with Saline Water in Cracking Clay Soils. Soil Sci. Soc. Am. J. 2006, 70, 1774–1787. [Google Scholar] [CrossRef]
- Bhutta, M.N.; Smedema, L.K. One hundred years of waterlogging and salinity control in the Indus Valley, Pakistan: A historical review. Irrig. Drain. 2007, 56, S81–S90. [Google Scholar] [CrossRef]
- Oron, G.; DeMalach, Y.; Gillerman, L.; David, I.; Lurie, S. SW—Soil and Water. Biosyst. Eng. 2002, 81, 237–247. [Google Scholar] [CrossRef]
- Pang, H.-C.; Li, Y.-Y.; Yang, J.-S.; Liang, Y.-S. Effect of brackish water irrigation and straw mulching on soil salinity and crop yields under monsoonal climatic conditions. Agric. Water Manag. 2010, 97, 1971–1977. [Google Scholar] [CrossRef]
- Sørensen, C.G.; Halberg, N.; Oudshoorn, F.W.; Petersen, B.M.; Dalgaard, R. Energy inputs and GHG emissions of tillage systems. Biosyst. Eng. 2014, 120, 2–14. [Google Scholar] [CrossRef]
- Lahmar, R. Adoption of conservation agriculture in Europe. Land Use Policy 2010, 27, 4–10. [Google Scholar] [CrossRef]
- Jensen, H.G.; Jacobsen, L.-B.; Pedersen, S.M.; Tavella, E. Socioeconomic impact of widespread adoption of precision farming and controlled traffic systems in Denmark. Precis. Agric. 2012, 13, 661–677. [Google Scholar] [CrossRef]
- Deike, S.; Pallutt, B.; Melander, B.; Strassemeyer, J.; Christen, O. Long-term productivity and environmental effects of arable farming as affected by crop rotation, soil tillage intensity and strategy of pesticide use: A case-study of two long-term field experiments in Germany and Denmark. Eur. J. Agron. 2008, 29, 191–199. [Google Scholar] [CrossRef]
- Devita, P.; Dipaolo, E.; Fecondo, G.; Difonzo, N.; Pisante, M. No-tillage and conventional tillage effects on durum wheat yield, grain quality and soil moisture content in southern Italy. Soil Tillage Res. 2007, 92, 69–78. [Google Scholar] [CrossRef]
- Darwish, T.; Atallah, T.; El Moujabber, M.; Khatib, N. Salinity evolution and crop response to secondary soil salinity in two agro-climatic zones in Lebanon. Agric. Water Manag. 2005, 78, 152–164. [Google Scholar] [CrossRef]
- Kitamura, Y.; Yano, T.; Honna, T.; Yamamoto, S.; Inosako, K. Causes of farmland salinization and remedial measures in the Aral Sea Basin-Research on water management to prevent secondary salinization in rice-based cropping system in arid land. Agric. Water Manag. 2006, 85, 1–14. [Google Scholar] [CrossRef]
- Finlayson, J.; Bathgate, A.; Nordblom, T.; Theiveyanathan, T.; Farquharson, B.; Crosbie, R.; Mitchell, D.; Hoque, Z. Balancing land use to manage river volume and salinity: Economic and hydrological consequences for the Little River catchment in Central West, New South Wales, Australia. Agric. Syst. 2010, 103, 161–170. [Google Scholar] [CrossRef]
- Qadir, M.; Schubert, S.; Noble, A.D.; Saqib, M.; Saifullah, M. Amelioration strategies for salinity-induced land degradation. CAB Reviews: Perspectives in Agriculture, Veterinary Science. Nutr. Nat. Resour. 2006, 1, 69. [Google Scholar]
- Kara, T.; Willardson, L. Leaching requirements to prevent soil salinization. J. Appl. Sci. 2006, 6, 1481–1489. [Google Scholar]
- Munns, R.; James, R.A.; Läuchli, A. Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot. 2006, 57, 1025–1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiconato, D.A.; da Silveira Sousa Junior, G.; dos Santos, D.M.M.; Munns, R. Adaptation of sugarcane plants to saline soil. Environ. Exp. Bot. 2019, 162, 201–211. [Google Scholar] [CrossRef]
- Mujeeb-Kazi, A.; Munns, R.; Rasheed, A.; Ogbonnaya, F.C.; Alí, N.; Hollington, P.; Dundas, I.; Saeed, N.; Wang, R.; Rengasamy, P.; et al. Chapter four-Breeding strategies for structuring salinity tolerance in wheat. Adv. Agron. 2019, 155, 121–187. [Google Scholar]
- Young, R. Determining the Economic Value of Water: Concepts and Methods; Resources for the Future: Washington, DC, USA, 2010. [Google Scholar]
- Li, J.; Pu, L.; Zhu, M.; Zhang, R. The present situation and hot issues in the salt-affected soil research. Acta Geogr. Sin. 2012, 67, 1233–1245. [Google Scholar]
- Gabriel, J.L.; Vanclooster, M.; Quemada, M. Integrating water, nitrogen, and salinity in sustainable irrigated systems: cover crops versus fallow. J. Irrig. Drain. Eng. 2014, 140, A4014002. [Google Scholar] [CrossRef]
- Wichelns, D.; Oster, J.D. Sustainable irrigation is necessary and achievable, but direct costs and environmental impacts can be substantial. Agric. Water Manag. 2006, 86, 114–127. [Google Scholar] [CrossRef]
- Castanheira, P.J.N.; Serralheiro, R.P. Impact of mole drains on salinity of a vertisoil under irrigation. Biosyst. Eng. 2010, 105, 25–33. [Google Scholar] [CrossRef]
- Diez, J.A.; Caballero, R.; Roman, R.; Tarquis, A.; Cartagena, M.C.; Vallejo, A. Integrated fertilizer and irrigation management to reduce nitrate leaching in Central Spain. J. Environ. Qual. 2000, 29, 1539. [Google Scholar] [CrossRef]
- Matthews, N.; Grové, B.; Barnard, J.H.; Van Rensburg, L.D. Modelling the economic tradeoffs between allocating water for crop production or leaching for salinity management. Water SA 2010, 36, 37–44. [Google Scholar] [CrossRef]
- Abliz, A.; Tiyip, T.; Ghulam, A.; Halik, Ü.; Ding, J.; Sawut, M.; Zhang, F.; Nurmemet, I.; Abliz, A. Effects of shallow groundwater table and salinity on soil salt dynamics in the Keriya Oasis, Northwestern China. Environ. Earth Sci. 2016, 75, 260. [Google Scholar] [CrossRef]
- Daliakopoulos, I.N.; Apostolakis, A.; Wagner, K.; Deligianni, A.; Koutskoudis, D.; Stamatakis, A.; Tsanis, I.K. Effectiveness of T. harzianum in soil and yield conservation of tomato crops under saline irrigation. Catena 2019, 175, 153. [Google Scholar] [CrossRef]
- Forkutsa, I.; Sommer, R.; Shirokova, Y.I.; Lamers, J.P.A.; Kienzler, K.; Tischbein, B.; Martius, C.; Vlek, P.L.G. Modeling irrigated cotton with shallow groundwater in the Aral Sea Basin of Uzbekistan: II. Soil salinity dynamics. Irrig. Sci. 2009, 27, 319–330. [Google Scholar] [CrossRef]
- Ashraf, M.; Saeed, M.M. Effect of improved cultural practices on crop yield and soil salinity under relatively saline groundwater applications. Irrig. Drain. Syst. 2006, 20, 111–124. [Google Scholar] [CrossRef]
- Panagea, I.S.; Daliakopoulos, I.N.; Tsanis, I.K.; Schwilch, G. Evaluation of promising technologies for soil salinity amelioration in Timpaki (Crete): A participatory approach. Solid Earth 2016, 7, 177–190. [Google Scholar] [CrossRef]
- Dandekar, C.B.; Chougule, B.A. Drainage of Irrigated Lands. In Proceedings of the 9th International Drainage Symposium Held Jointly with CIGR and CSBE/SCGAB Proceedings, Québec, QC, Canada, 13−16 June 2010; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2010; p. 1. [Google Scholar]
- Kotb, T.H.; Watanabe, T.; Ogino, Y.; Tanji, K.K. Soil salinization in the Nile Delta and related policy issues in Egypt. Agric. Water Manag. 2000, 43, 239–261. [Google Scholar] [CrossRef]
- Konukcu, F.; Gowing, J.W.; Rose, D.A. Dry drainage: A sustainable solution to waterlogging and salinity problems in irrigation areas? Agric. Water Manag. 2006, 83, 1–12. [Google Scholar] [CrossRef]
- Heuperman, A. Hydraulic gradient reversal by trees in shallow water table areas and repercussions for the sustainability of tree-growing systems. Agric. Water Manag. 1999, 39, 153–167. [Google Scholar] [CrossRef]
- Bhutta, M.N.; Chaudhary, M.R. Biological control of waterlogging. In Proceedings of the Eighth ICID International Drainage Workshop, New Delhi, India, 31 January–4 February 2000; pp. 33–45. [Google Scholar]
- Kapoor, A.S.; Denecke, H.W. L’experience du Rajasthan en matiere de biodrainage et de bioelimination. Grid 2001, 17, 3–4. [Google Scholar]
- Heuperman, A.F.; Kapoor, A.S.; Denecke, H.W. Biodrainage: Principles, Experiences and Applications; FAO: Rome, Italy, 2002. [Google Scholar]
- Akram, S.; Kashkouli, H.A.; Pazira, E. Sensitive variables controlling salinity and water table in a bio-drainage system. Irrig. Drain. Syst. 2008, 22, 271–285. [Google Scholar] [CrossRef]
- Morris, J.D.; Collopy, J.J. Water use and salt accumulation by Eucalyptus camaldulensis and Casuarina cunninghamiana on a site with shallow saline groundwater. Agric. Water Manag. 1999, 39, 205–227. [Google Scholar] [CrossRef]
- Slavich, P.G.; Smith, K.S.; Tyerman, S.D.; Walker, G.R. Water use of grazed salt bush plantations with saline water table. Agric. Water Manag. 1999, 39, 169–185. [Google Scholar] [CrossRef]
- Yamazaki, F. Farmland Engineering; Tokyo University Publication: Tokyo, Japan, 1976; Volume 1. [Google Scholar]
- Sharma, P.K.; Bhagat, R.M. Puddling and compaction effects on water permeability of texturally different soils. J. Indian Soc. Soil Sci. 1993, 41, 1–6. [Google Scholar]
- Barrett-Lennard, E.G. Restoration of saline land through revegetation. Agric. Water Manag. 2002, 53, 213–226. [Google Scholar] [CrossRef]
- Connor, D.J. Designing cropping systems for efficient use of limited water in southern Australia. Eur. J. Agron. 2004, 21, 419–431. [Google Scholar] [CrossRef]
- Jobbágy, E.B.; Jackson, R.B. Groundwater use and salinization with grassland afforestation. Glob. Chang. Biol. 2004, 10, 1299–1312. [Google Scholar] [CrossRef]
- Mendes, J.P.; Carvalho, M.C. Controlo da salinidade do solo com recurso à sementeira directa. Rev. Ciências Agrárias 2009, 32, 360–369. [Google Scholar]
- Zhou, Q.; Wu, F.; Zhang, Q. Is irrigation water price an effective leverage for water management? An empirical study in the middle reaches of the Heihe River basin. Phys. Chem. Earth Parts A/B/C 2015, 89–90, 25–32. [Google Scholar] [CrossRef]
- Alcon, F.; Tapsuwan, S.; Brouwer, R.; de Miguel, M.D. Adoption of irrigation water policies to guarantee water supply: A choice experiment. Environ. Sci. Policy 2014, 44, 226–236. [Google Scholar] [CrossRef]
- English, M.J.; Solomon, K.H.; Hoffman, G.J. A paradigm shift in irrigation management. J. Irrig. Drain. Eng. 2002, 128, 267–277. [Google Scholar] [CrossRef]
- Hoffman, G.J.; Shannon, M.C. 4. Salinity. Dev. Agric. Eng. 2007, 13, 131–160. [Google Scholar]
- Marchand, M.; Abd El Hadi, H. Long-term experiments comparing the impact on soils and field crops of potassium chloride vs. potassium sulfate. Acta Hortic. 2002, 573, 49–54. [Google Scholar] [CrossRef]
- Hanson, B.; Hopmans, J.W.; Šimůnek, J. Leaching with subsurface drip irrigation under saline, shallow groundwater conditions. Vadose Zone J. 2008, 7, 810. [Google Scholar] [CrossRef]
- Fereres, E.; Soriano, M.A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 2006, 58, 147–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuevas, J.; Cañete, M.L.; Pinillos, V.; Zapata, A.J.; Fernández, M.D.; González, M.; Hueso, J.J. Optimal dates for regulated deficit irrigation in “Algerie” loquat (Eriobotrya japonica Lindl.) cultivated in Southeast Spain. Agric. Water Manag. 2007, 89, 131–136. [Google Scholar] [CrossRef]
- Hueso, J.J.; Cuevas, J. Ten consecutive years of regulated deficit irrigation probe the sustainability and profitability of this water saving strategy in loquat. Agric. Water Manag. 2010, 97, 645–650. [Google Scholar] [CrossRef]
- Hueso, J.J.; Cuevas, J. Loquat as a crop model for successful deficit irrigation. Irrig. Sci. 2008, 26, 269–276. [Google Scholar] [CrossRef]
- Pinillos, V.; Chiamolera, F.M.; Ortiz, J.F.; Hueso, J.J.; Cuevas, J. Post-veraison regulated deficit irrigation in ‘Crimson Seedless’ table grape saves water and improves berry skin color. Agric. Water Manag. 2016, 165, 181–189. [Google Scholar] [CrossRef]
- Aragüés, R.; Medina, E.T.; Martínez-Cob, A.; Faci, J. Effects of deficit irrigation strategies on soil salinization and sodification in a semiarid drip-irrigated peach orchard. Agric. Water Manag. 2014, 142, 1–9. [Google Scholar] [CrossRef] [Green Version]
- El Mokh, F.; Nagaz, K. Impact of deficit irrigation with saline water on yield, soil salinization and water productivity of barley in arid regions of Tunisia. Rev. des Régions Arid. Pagination 2014, 35, 1217–1225. [Google Scholar]
- Aragüés, R.; Medina, E.T.; Clavería, I.; Martínez-Cob, A.; Faci, J. Regulated deficit irrigation, soil salinization and soil sodification in a table grape vineyard drip-irrigated with moderately saline waters. Agric. Water Manag. 2014, 134, 84–93. [Google Scholar] [CrossRef] [Green Version]
- Mousavi, S.F.; Mostafazadeh-Fard, B.; Farkhondeh, A.; Feizi, M. Effects of deficit irrigation with saline water on yield, fruit quality and water use efficiency of cantaloupe in an arid region. J. Agric. Sci. Technol. 2009, 11, 469–479. [Google Scholar]
- González Vázquez, J.C.; Grande, J.A.; Barragán, F.J.; Ocaña, J.A.; De La Torre, M.L. Nitrate accumulation and other components of the groundwater in relation to cropping system in an aquifer in Southwestern Spain. Water Resour. Manag. 2005, 19, 1–22. [Google Scholar] [CrossRef]
- Crisosto, C.H.; Johnson, R.S.; DeJong, T.; Day, K.R. Orchard factors affecting postharvest stone fruit quality. HortScience 1997, 32, 820–823. [Google Scholar] [CrossRef]
- Subbarao, G.V.; Johansen, C. Strategies and scope for improving salinity tolerance in crop plants. In Handbook of Plant and Crop Stress; Pessarakli, M., Ed.; MARCEL DEKKER AG: New York, NY, USA, 1999; pp. 1069–1088. [Google Scholar]
- Grattan, S.; Grieve, C. Mineral nutrient acquisition and response by plants grown in saline environments. In Handbook of Plant and Crop; Pessarakli, M., Ed.; CRC Press: Boca Raton, FL, USA, 1999; pp. 203–229. [Google Scholar]
- Canellas, L.P.; Olivares, F.L.; Aguiar, N.O.; Jones, D.L.; Nebbioso, A.; Mazzei, P.; Piccolo, A. Humic and fulvic acids as biostimulants in horticulture. Sci. Hortic. 2015, 196, 15–27. [Google Scholar] [CrossRef]
- Ashraf, M.; Akram, N.A.; Arteca, R.N.; Foolad, M.R. The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. CRC. Crit. Rev. Plant Sci. 2010, 29, 162–190. [Google Scholar] [CrossRef]
- Jayakannan, M.; Bose, J.; Babourina, O.; Rengel, Z.; Shabala, S. Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regul. 2015, 76, 25–40. [Google Scholar] [CrossRef]
- Ma, X.; Zheng, J.; Zhang, X.; Hu, Q.; Qian, R. Salicylic acid alleviates the adverse effects of salt stress on Dianthus superbus (Caryophyllaceae) by activating photosynthesis, protecting morphological structure, and enhancing the antioxidant system. Front. Plant Sci. 2017, 8, 600. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Ma, X.; Zhang, X.; Hu, Q.; Qian, R. Salicylic acid promotes plant growth and salt-related gene expression in Dianthus superbus L. (Caryophyllaceae) grown under different salt stress conditions. Physiol. Mol. Biol. Plants 2018, 24, 231–238. [Google Scholar] [CrossRef]
- Tian, K.; Lei, Y. Integrated effect of water, fertilize and salinity on the wheat yield in desalinized fluvo-aquic soil in Heilonggang Region. Res. Agric. Mod 1994, 15, 364–368. [Google Scholar]
- Pang, H.; Xu, F. Study on the tillage methods under straw mulching in Weibei Arid Area. Res. Agric. Mod 1998, 19, 249–251. [Google Scholar]
- Huang, Q.; Yin, Z.; Tian, C. Effect of two different straw mulching methods on soil solute salt concentration. Arid Land Geogr. 2001, 24, 52–56. [Google Scholar]
- Deng, L.; Chen, M.; Liu, Z.; Shen, Q.; Wang, H.; Wang, J. Effects of different ground covers on soil physical properties and crop growth on saline-alkaline soil. Chin. J. Soil Sci. 2003, 34, 93–97. [Google Scholar]
- Qiao, H.; Liu, X.; Li, W.; Huang, W.; Li, C.; Li, Z. Effect of deep straw mulching on soil water and salt movement and wheat growth. Chin. J. Soil Sci. 2006, 37, 885–889. [Google Scholar]
- Pang, H. The effect of straw mulching on the soil environment and wheat yield traits. Chin. J. Soil Sci. 1999, 30, 174–175. [Google Scholar]
- Li, X.; Zhang, Z. Effect of straw mulching on soil water and salt movement. Chin. J. Soil Sci. 1999, 30, 257–258. [Google Scholar]
- Li, X.; Zhang, Z.; Liu, X.; Li, Y. Effect of straw mulching on soil water and salt movement. J. Shandong Agric. Univ. 2000, 31, 38–40. [Google Scholar]
- Hira, G.S.; Thind, H.S. A plantation technique for salt-affected soils with shallow water table. Landsc. Urban Plan. 1987, 14, 445–446. [Google Scholar] [CrossRef]
- Greiner, R. Optimal farm management responses to emerging soil salinisation in a dryland catchment in eastern Australia. Land Degrad. Dev. 1997, 8, 281–303. [Google Scholar] [CrossRef]
- Weaver, T.B.; Hulugalle, N.R.; Ghadiri, H.; Harden, S. Quality of Drainage Water Under Irrigated Cotton In Vertisols of the Lower Namoi Valley, New South Wales, Australia. Irrig. Drain. 2013, 62, 107–114. [Google Scholar] [CrossRef]
- Cao, Z.H.; Huang, J.F.; Zhang, C.S.; Li, A.F. Soil Quality Evolution After Land Use Change from Paddy Soil to Vegetable Land. Environ. Geochem. Health 2004, 26, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; O’Connel, N.; Rana, T.; Xevi, E. Hydrologic–Economic model for managing irrigation intensity in irrigation areas under watertable and soil salinity targets. Environ. Model. Assess. 2008, 13, 115–120. [Google Scholar] [CrossRef]
- Lefroy, E.C.; Stirzaker, R.J. Agroforestry for water management in the cropping zone of southern Australia. Agrofor. Syst. 1999, 45, 277–302. [Google Scholar] [CrossRef] [Green Version]
- Yensen, N.P.; Biel, K.Y. Soil remediation via salt-conduction and the hypotheses of halosynthesis and photoprotection. In Ecophysiology of High Salinity Tolerant Plants; Springer: Berlin, Germany, 2008; pp. 313–344. [Google Scholar]
- Khan, M.A.; Ansari, R.; Ali, H.; Gul, B.; Nielsen, B.L. Panicum turgidum, a potentially sustainable cattle feed alternative to maize for saline areas. Agric. Ecosyst. Environ. 2009, 129, 542–546. [Google Scholar] [CrossRef]
- Tanji, K.K.; Kielen, N.C. Agricultural Drainage Water Management in Arid and Semi-arid Areas; FAO Irrigation and Drainage paper 61, Annex 1: Crop Salt Tolerance Data; United Nations Food Agric: Rome, Italy, 2003. [Google Scholar]
- Chartzoulakis, K.S. Salinity and olive: Growth, salt tolerance, photosynthesis and yield. Agric. Water Manag. 2005, 78, 108–121. [Google Scholar] [CrossRef]
- Paranychianakis, N.V.; Chartzoulakis, K.S. Irrigation of Mediterranean crops with saline water: From physiology to management practices. Agric. Ecosyst. Environ. 2005, 106, 171–187. [Google Scholar] [CrossRef]
- Zuazo, V.H.D.; Raya, A.M.; Ruiz, J.A. Impact of salinity on the fruit yield of mango (Mangifera indica L. cv. ‘Osteen’). Eur. J. Agron. 2004, 21, 323–334. [Google Scholar] [CrossRef]
- Wagner, K.; Apostolakis, A.; Daliakopoulos, I.N.; Tsanis, I. Can tomato inoculation with Trichoderma compensate yield and soil health deficiency due to soil salinity? EGU Gen. Assem. Conf. Abstr. 2016, 18, 1007. [Google Scholar]
- Apostolakis, A.; Daliakopoulos, I.; Tsanis, I. Effectiveness of T. harzianum and humate amendment in soil salinity restoration. Geophys. Res. Abstr. EGU Gen. Assem. 2017, 19, 15797. [Google Scholar]
- Cabot, C.; Sibole, J.V.; Barceló, J.; Poschenrieder, C. Lessons from crop plants struggling with salinity. Plant Sci. 2014, 226, 2–13. [Google Scholar] [CrossRef]
- Koubouris, G.C.; Tzortzakis, N.; Kourgialas, N.N.; Darioti, M.; Metzidakis, I. Growth, photosynthesis and pollen performance in saline water treated olive plants under high temperature. Int. J. Plant Biol. 2015, 6, 28–32. [Google Scholar] [CrossRef]
- Roy, S.J.; Negrao, S.; Tester, M. Salt resistant crop plants. Curr. Opin. Biotechnol. 2014, 26, 115–124. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Saline Agriculture: Salt-tolerant Plants for Developing Countries; The National Academies Press: Washington, DC, USA, 1990; pp. 11–16. [Google Scholar]
- Wang, X.; Yang, J.; Liu, G.; Yao, R.; Yu, S. Impact of irrigation volume and water salinity on winter wheat productivity and soil salinity distribution. Agric. Water Manag. 2015, 149, 44–54. [Google Scholar] [CrossRef]
- Qadir, M.; Tubeileh, A.; Akhtar, J.; Larbi, A.; Minhas, P.S.; Khan, M.A. Productivity enhancement of salt-affected environments through crop diversification. Land Degrad. Dev. 2008, 19, 429–453. [Google Scholar] [CrossRef]
- Sun, J.; Tian, Y.; Gao, L.; Peng, X.; Tong, E. Effects of straw biological reactor and microbial agents on physicochemical properties and microbial diversity of tomato soil in solar greenhouse. Trans. Chin. Soc. Agric. Eng. 2014, 30, 153–164. [Google Scholar]
- Mudge, K.; Janick, J.; Scofield, S.; Goldschmidt, E.E. A History of grafting. Hortic. Rev. 2009, 35, 437–493. [Google Scholar]
- Colla, G.; Rouphael, Y.; Leonardi, C.; Bie, Z. Role of grafting in vegetable crops grown under saline conditions. Sci. Hortic. 2010, 127, 147–155. [Google Scholar] [CrossRef]
- Vinod, K.K.; Krishnan, S.G.; Babu, N.N.; Nagarajan, M.; Singh, A.K. Improving salt tolerance in rice: Looking beyond the conventional. In Salt Stress in Plants; Springer: Berlin, Germany, 2013; pp. 219–260. [Google Scholar]
- Bacilio, M.; Moreno, M.; Bashan, Y. Mitigation of negative effects of progressive soil salinity gradients by application of humic acids and inoculation with Pseudomonas stutzeri in a salt-tolerant and a salt-susceptible pepper. Appl. Soil Ecol. 2016, 107, 394–404. [Google Scholar] [CrossRef]
- Mbarki, S.; Cerdà, A.; Brestic, M.; Mahendra, R.; Abdelly, C.; Pascual, J.A. Vineyard compost supplemented with Trichoderma harzianum T78 improve saline soil quality. Land Degrad. Dev. 2017, 28, 1028–1037. [Google Scholar] [CrossRef]
- Abebe, T.; Guenzi, A.C.; Martin, B.; Cushman, J.C. Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol. 2003, 131, 1748–1755. [Google Scholar] [CrossRef]
- Hu, L.; Lu, H.; Liu, Q.; Chen, X.; Jiang, X. Overexpression of mtl D gene in transgenic Populus tomentosa improves salt tolerance through accumulation of mannitol. Tree Physiol. 2005, 25, 1273–1281. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Si, H.-J.; Wen, G.; Du, H.-H.; Liu, B.-L.; Wang, D. Enhanced drought and salinity tolerance in transgenic potato plants with a BADH gene from spinach. Plant Biotechnol. Rep. 2011, 5, 71–77. [Google Scholar] [CrossRef]
- Colmer, T.D.; Flowers, T.J.; Munns, R. Use of wild relatives to improve salt tolerance in wheat. J. Exp. Bot. 2006, 57, 1059–1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nevo, E.; Chen, G. Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant. Cell Environ. 2010, 33, 670–685. [Google Scholar] [CrossRef] [PubMed]
- Brini, F.; Masmoudi, K. Biotechnology for drought and salinity tolerance of crops. In Physiological Mechanisms and Adaptation Strategies in Plants under Changing Environment; Springer: New York, NY, USA, 2014; pp. 97–113. [Google Scholar]
- Qureshi, A.S.; Qadir, M.; Heydari, N.; Turral, H.; Javadi, A. A Review of Management Strategies for Salt-prone Land and Water Resources in Iran; IWMI: Colombo, Sri Lanka, 2007; Volume 125. [Google Scholar]
- Rabhi, M.; Ferchichi, S.; Jouini, J.; Hamrouni, M.H.; Koyro, H.W.; Ranieri, A.; Abdelly, C.; Smaoui, A. Phytodesalination of a salt-affected soil with the halophyte Sesuvium portulacastrum L. to arrange in advance the requirements for the successful growth of a glycophytic crop. Bioresour. Technol. 2010, 101, 6822–6828. [Google Scholar] [CrossRef]
- Adolf, V.I.; Jacobsen, S.-E.; Shabala, S. Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.). Environ. Exp. Bot. 2013, 92, 43–54. [Google Scholar] [CrossRef]
- Kafi, M.; Asadi, H.; Ganjeali, A. Possible utilization of high-salinity waters and application of low amounts of water for production of the halophyte Kochia scoparia as alternative fodder in saline agroecosystems. Agric. Water Manag. 2010, 97, 139–147. [Google Scholar] [CrossRef]
- Baig, M.A.; Adamowski, J.; Prasher, S. Development and application of a decision support system for optimizing cropping patterns under saline agriculture conditions in Rechna Doab, Pakistan. In Proceedings of the 2015 ASABE International Meeting American Society of Agricultural and Biological Engineers, New Orleans, LA, USA, 26–29 July 2015; pp. 1–11. [Google Scholar]
- Qadir, M.; Qureshi, R.H.; Ahmad, N.; Ilyas, M. Salt-tolerant forage cultivation on a saline-sodic field for biomass production and soil reclamation. Land Degrad. Dev. 1996, 7, 11–18. [Google Scholar] [CrossRef]
- Ahmad, S.; Ghafoor, A.; Akhtar, M.E.; Khan, M.Z. Ionic displacement and reclamation of saline-sodic soils using chemical amendments and crop rotation. Land Degrad. Dev. 2013, 24, 170–178. [Google Scholar] [CrossRef]
- Mahdy, A.M. Comparative effects of different soil amendments on amelioration of saline-sodic soils. Soil Water Res. 2011, 6, 205–216. [Google Scholar] [CrossRef] [Green Version]
- Adnan, M.; Zia-ur-Rehman, M.; Yousaf, B.; Murtaza, G.; Yousaf, A.; Latif, M.A.; Khan, A.M. The evaluation of various soil conditioners effects on the amelioration of saline-sodic soil. J. Environ. Earth Sci. 2014, 4, 22–29. [Google Scholar]
- Ahmad, M.J.; Arif, M.; Iqbal, A.; Khalid, M.; Akhtar, N. Rice production in salt-affected soils of Pakistan using different reclamation techniques. In Developments in Soil Salinity Assessment and Reclamation; Springer: Dordrecht, The Netherlands, 2013; pp. 283–293. [Google Scholar]
- Pedreño, J.N.; Gómez, I.; Moral, R.; Mataix, J. Improving the agricultural value of a semi-arid soil by addition of sewage sludge and almond residue. Agric. Ecosyst. Environ. 1996, 58, 115–119. [Google Scholar] [CrossRef]
- Shaaban, M.; Abid, M.; Abou-Shanab, R. Amelioration of salt affected soils in rice paddy system by application of organic and inorganic amendments. Plant Soil Environ. 2013, 59, 227–233. [Google Scholar] [CrossRef]
- Sharma, D.P.; Gupta, S.K. Subsurface drainage for reversing degradation of waterlogged saline lands. Land Degrad. Dev. 2006, 17, 605–614. [Google Scholar] [CrossRef]
- Satyanarayana, T.V.; Lakshmi, G.V.; Hanumanthaiah, C.V.; Srinivasulu, A.; Ratnam, M. Feasible Subsurface Drainage Strategies to Combat Water Logging and Salinity in Irrigated Agricultural Lands in Andhra Pradesh; Technical Document; Indo-Dutch Network Project: Bapatla, India, 2003; p. 32. [Google Scholar]
- Ritzema, H.P.; Satyanarayana, T.V.; Raman, S.; Boonstra, J. Subsurface drainage to combat waterlogging and salinity in irrigated lands in India: Lessons learned in farmers’ fields. Agric. Water Manag. 2008, 95, 179–189. [Google Scholar] [CrossRef]
- Nayak, A.K.; Sharma, D.K.; Mishra, V.K.; Minhas, P.S.; Verma, C.L. Reclamation of saline-sodic soil under a rice-wheat system by horizontal surface flushing. Soil Use Manag. 2008, 24, 337–343. [Google Scholar] [CrossRef]
- Kaur, R.; Paul, M.; Malik, R. Impact assessment and recommendation of alternative conjunctive water use strategies for salt affected agricultural lands through a field scale decision support system—A case study. Environ. Monit. Assess. 2007, 129, 257–270. [Google Scholar] [CrossRef]
- Aragüés, R.; Medina, E.T.; Zribi, W.; Clavería, I.; Álvaro-Fuente, J.; Faci, J. Soil Salinization as a threat to the sustainability of deficit irrigation under present and expected climate change scenarios. Irrig. Sci. 2015, 33, 67–79. [Google Scholar] [CrossRef]
- Al-dhuhli, H.S.; Al-rawahy, S.A.; Prathapar, S. Effectiveness of mulches to control soil salinity in Sorghum fields irrigated with saline water. Manag. Salt-Affect. Soils Water Sustain. Agric. 2010, 46, 41–46. [Google Scholar]
- Bezborodov, G.A.; Shadmanov, D.K.; Mirhashimov, R.T.; Yuldashev, T.; Qureshi, A.S.; Noble, A.D.; Qadir, M. Mulching and water quality effects on soil salinity and sodicity dynamics and cotton productivity in Central Asia. Agric. Ecosyst. Environ. 2010, 138, 95–102. [Google Scholar] [CrossRef]
- Ahmad, N.; Qureshi, R.H.; Qadir, M. Amelioration of a calcareous saline-sodic soil by gypsum and forage plants. Land Degrad. Dev. 1990, 2, 277–284. [Google Scholar] [CrossRef]
- Ado, M.N.; Guero, Y.; Michot, D.; Soubeiga, B.; Senga Kiesse, T.; Walter, C. Phytodesalinization of irrigated saline Vertisols in the Niger Valley by Echinochloa stagnina. Agric. Water Manag. 2016, 177, 229–240. [Google Scholar] [CrossRef]
- Zuccarini, P. Ion uptake by halophytic plants to mitigate saline stress in Solarium lycopersicon L., and different effect of soil and water salinity. Soil Water Res. 2008, 3, 62–73. [Google Scholar] [CrossRef]
- Li, Q.; Ma, L.-Y.; Wang, X.-F.; Wei, M.; Shi, Q.-H.; Yang, F.-J. Effects of short-term summer fallow and rotations on soil quality under plastic greenhouse cultivation. J. Food Agric. Environ. 2012, 10, 1106–1110. [Google Scholar]
- Young, R.; Huth, N.; Harden, S.; McLeod, R. Impact of rain-fed cropping on the hydrology and fertility of alluvial clays in the more arid areas of the upper Darling Basin, eastern Australia. Soil Res. 2014, 52, 388–408. [Google Scholar] [CrossRef]
- Pulatov, A.; Egamberdiev, O.; Karimov, A.; Tursunov, M.; Kienzler, S.; Sayre, K.; Tursunov, L.; Lamers, J.P.A.; Martius, C. Introducing conservation agriculture on irrigated meadow alluvial soils (Arenosols) in Khorezm, Uzbekistan. In Cotton, Water, Salts and Soums; Springer: Berlin, Germany, 2012; pp. 195–217. [Google Scholar]
- Lozano-García, B.; Parras-Alcántara, L.; Muriel-Fernández, J.L. Soil tillage effects on monovalent cations (Na+ and K+) in vertisols soil solution. Catena 2011, 84, 61–69. [Google Scholar] [CrossRef]
SICS | Details [Reference] |
---|---|
A | Gypsum [143,144]; FeSO4.7H2O [145]; Gypsum, H2SO4, citric acid, and polyvinyl alcohol [146]; Gypsum and H2SO4 [144] |
A + M | Gypsum in combination with various straw types [147] |
C | Combinations of compost, anthracite coal powder, and water treatment residuals [145]; sewage sludge, epicarp-mesocarp of almonds [148]; combined application of manure and humic acid [149] |
C + A | Combined application of gypsum, manure, and humic acid [149]; combination of compost, anthracite coal powder, water treatment residuals, and FeSO4.7H2O [145] |
D | Improved drainage (modeled) [55]; Subsurface drainage [150,151]; Different types of subsurface drainage systems [152] |
Fe | Application of Potash fertilizers [77] |
Fl | Horizontal surface flushing [153] |
I | Conjunctive use of saline/no saline irrigation [154]; Different types of deficit irrigation [85,87,155]; Alternate furrows and bed and furrow [56]; |
M | Residue layer [55]; Palm leaves or plastic [156]; Straw mulching at different rates [32]; Polyethylene, pine bark or jute fibers [155]; Winter wheat straw [157] |
M + I + D | Residue layer, improved drainage and optimized irrigation [55] |
P | Forage cultivation [143,158]; Various crops during the fallow period [159]; Tomato in consociation with halophytes [160]; Phytodesalinized soil [139] |
R | Conversion to continuous vegetable cropping [109]; Various crops during the fallow period [48,161] |
T | Zero tillage [162]; Intermediate tillage or permanent bed planting [163]; Minimum tillage [32]; Direct drilling [164] |
SICS Category | SICS | ΔY | ΔS |
---|---|---|---|
Nutrient management | Amendment | 51% | −26% |
Conditioner | 48% | −4% | |
Fertilization | 2% | 50% | |
Water management | Irrigation scheduling | 9% | 44% |
Flushing | 24% | −39% | |
Drainage | −18% | −46% | |
Soil management | Reduced tillage | 17% | −29% |
Mulching | 10% | −7% | |
Crop management | Phytoremediation | 66% | −20% |
Rotation vs monocultivation | 0% | −25% | |
Combinations | Amendment and mulch | 80% | −53% |
Conditioner and amendment | 84% | −37% | |
Mulching, irrigation and drainage | 0% | −49% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuevas, J.; Daliakopoulos, I.N.; del Moral, F.; Hueso, J.J.; Tsanis, I.K. A Review of Soil-Improving Cropping Systems for Soil Salinization. Agronomy 2019, 9, 295. https://doi.org/10.3390/agronomy9060295
Cuevas J, Daliakopoulos IN, del Moral F, Hueso JJ, Tsanis IK. A Review of Soil-Improving Cropping Systems for Soil Salinization. Agronomy. 2019; 9(6):295. https://doi.org/10.3390/agronomy9060295
Chicago/Turabian StyleCuevas, Julián, Ioannis N. Daliakopoulos, Fernando del Moral, Juan J. Hueso, and Ioannis K. Tsanis. 2019. "A Review of Soil-Improving Cropping Systems for Soil Salinization" Agronomy 9, no. 6: 295. https://doi.org/10.3390/agronomy9060295
APA StyleCuevas, J., Daliakopoulos, I. N., del Moral, F., Hueso, J. J., & Tsanis, I. K. (2019). A Review of Soil-Improving Cropping Systems for Soil Salinization. Agronomy, 9(6), 295. https://doi.org/10.3390/agronomy9060295