Effects of Cooling Systems on Greenhouse Microclimate and Cucumber Growth under Mediterranean Climatic Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Greenhouse and Experiments
2.2. Plant Material and Irrigation Regimes
2.3. Data Recorded, Sampling and Measurements
2.4. Statistical Analysis
3. Results
3.1. Greenhouse and Crop Microclimate
3.2. Plant Growth Parameters and Yield
3.3. Transpiration and Irrigation Water Use Efficiency
3.4. Water Status of Plant and Root Zone Environment
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Villarreal-Guerrero, F.; Kacira, M.; Fitz-Rodríguez, E.; Linker, R.; Kubota, C.; Giacomelli, G.A.; Arbel, A. Simulated performance of a greenhouse cooling control strategy with natural ventilation and fog cooling. Biosyst. Eng. 2012, 111, 217–228. [Google Scholar] [CrossRef]
- Ishii, M.; Sase, S.; Moriyama, H.; Okushima, L.; Ikeguchi, A.; Hayashi, M.; Kurata, K.; Kubota, C.; Kacira, M.; Giacomelli, G.A. Controlled Environment Agriculture for Effective Plant Production Systems in a Semiarid Greenhouse. Jpn. Agric. Res. Q. JARQ 2016, 50, 101–113. [Google Scholar] [CrossRef] [Green Version]
- Davies, P.A.; Zaragoza, G. Ideal performance of a self-cooling greenhouse. Appl. Therm. Eng. 2019, 149, 502–511. [Google Scholar] [CrossRef]
- Xu, J.; Li, Y.; Wang, R.; Liu, W.; Zhou, P. Experimental performance of evaporative cooling pad systems in greenhouses in humid subtropical climates. Appl. Energy 2015, 138, 291–301. [Google Scholar] [CrossRef]
- Chauhan, P.M.; Kim, W.S.; Lieth, J.H. Combined Effect of Whitening and Ventilation Methods on Microclimate and Transpiration in Rose Greenhouse. In Proceedings of the International Conference on Thermal Energy Storage Technologies and Systems, Indore, India, 22–24 March 2003. [Google Scholar]
- García, M.; Medrano, E.; Sánchez-Guerrero, M.; Lorenzo, P. Climatic effects of two cooling systems in greenhouses in the Mediterranean area: External mobile shading and fog system. Biosyst. Eng. 2011, 108, 133–143. [Google Scholar] [CrossRef]
- Sethi, V.; Sharma, S. Survey of cooling technologies for worldwide agricultural greenhouse applications. Sol. Energy 2007, 81, 1447–1459. [Google Scholar] [CrossRef]
- McCartney, L.; Orsat, V.; Lefsrud, M.G. An experimental study of the cooling performance and airflow patterns in a model Natural Ventilation Augmented Cooling (NVAC) greenhouse. Biosyst. Eng. 2018, 174, 173–189. [Google Scholar] [CrossRef]
- Aroca-Delgado, R.; Pérez-Alonso, J.; Callejón-Ferre, Á..J.; Velázquez-Martí, B. Compatibility between Crops and Solar Panels: An Overview from Shading Systems. Sustainability 2018, 10, 743. [Google Scholar] [CrossRef]
- McCartney, L.; Lefsrud, M.G. Field trials of the Natural Ventilation Augmented Cooling (NVAC) greenhouse. Biosyst. Eng. 2018, 174, 159–172. [Google Scholar] [CrossRef]
- Vox, G.; Teitel, M.; Pardossi, A.; Minuto, A.; Tinivella, F.; Schettini, E. Sustainable greenhouse systems. In Sustainable Agriculture: Technology, Planning and Management; Salazar, A., Rios, I., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2010; pp. 1–78. ISBN 978-1-60876-269-9. [Google Scholar]
- Giacomelli, G.; Sase, S.; Cramer, R.; Hoogeboom, J.; MacKenzie, A.; Parbst, K.; Scarascia-Mugnozza, G.; Selina, P.; Sharp, D.; Voogt, J.; et al. Greenhouse Production Systems for People. Acta Hortic. 2012, 927, 23–38. [Google Scholar] [CrossRef]
- Romantchik, E.; Ríos, E.; Sánchez, E.; López, I.; Sánchez, J.R. Determination of energy to be supplied by photovoltaic systems for fan-pad systems in cooling process of greenhouses. Appl. Therm. Eng. 2017, 114, 1161–1168. [Google Scholar] [CrossRef]
- Ganguly, A.; Ghosh, S. A Review of Venti-lation and Cooling Technologies in Agricultural Greenhouse Application. Iran. J. Energy Environ. 2011, 2, 32–46. [Google Scholar]
- Kittas, C.; Katsoulas, N.; Bartzanas, T. Structures: Design, technology and climate control. In Good Agricultural Practices for Greenhouse Vegetables Production in the South East European Countries; Plant Production and Protection Paper 230; FAO: Rome, Italy, 2017; pp. 29–53. [Google Scholar]
- Nikolaou, G.; Neocleous, D.; Katsoulas, N.; Kittas, C. Dynamic Assessment of Whitewash Shading and Evaporative Cooling on the Greenhouse Microclimate and Cucumber Growth in a Mediterranean Climate. Ital. J. Agrometeorol. 2018, 2, 15–26. [Google Scholar]
- Leonardi, C.M.; Guichard, S.; Bertin, N. High vapour pressure deficit influences growth, transpiration and quality of tomato fruits. Sci. Hortic. 2000, 84, 285–296. [Google Scholar] [CrossRef]
- Willits, D. Cooling Fan-ventilated Greenhouses: A Modelling Study. Biosyst. Eng. 2003, 84, 315–329. [Google Scholar] [CrossRef]
- Alsadon, A.; Al-Helal, I.; Ibrahim, A.; Abdel-Ghany, A.; Al-Zaharani, S.; Ashour, T. The effects of plastic greenhouse covering on cucumber (Cucumis sativus L.) growth. Ecol. Eng. 2016, 87, 305–312. [Google Scholar] [CrossRef]
- Ghani, S.; Bakochristou, F.; ElBialy, E.M.A.A.; Gamaledin, S.M.A.; Rashwan, M.M.; Abdelhalim, A.M.; Ismail, S.M.; Ayman, M.A.; Salman, M.I. Design challenges of agricultural greenhouses in hot and arid environments—A review. Eng. Agric. Environ. Food 2019, 12, 48–70. [Google Scholar] [CrossRef]
- Adeyemi, O.; Grove, I.; Peets, S.; Domun, Y.; Norton, T. Dynamic modelling of lettuce transpiration for water status monitoring. Comput. Electron. Agric. 2018, 155, 50–57. [Google Scholar] [CrossRef]
- Nikolaou, G.; Neocleous, D.; Constantinos Kittas, N.K. Modelling Transpiration of Soilless Greenhouse Cucumber and Its Relationship with Leaf Temperature in a Mediterranean Climate. Emirates J. Food Agric. 2017, 29, 911–920. [Google Scholar] [CrossRef]
- Li, J.; Liu, H.; Wang, H.; Luo, J.; Zhang, X.; Liu, Z.; Zhang, Y.; Zhai, L.; Lei, Q.; Ren, T.; et al. Managing irrigation and fertilization for the sustainable cultivation of greenhouse vegetables. Agric. Water Manag. 2018, 210, 354–363. [Google Scholar] [CrossRef]
- Garcia-Caparros, P.; Contreras, J.I.; Baeza, R.; Segura, M.L.; Lao, M.T. Integral Management of Irrigation Water in Intensive Horticultural Systems of Almería. Sustainability 2017, 9, 2271. [Google Scholar] [CrossRef]
- Kläring, H.-P. Strategies to control water and nutrient supplies to greenhouse crops. A review. Agronomy 2001, 21, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Nikolaou, G.; Neocleous, D.; Katsoulas, N.; Kittas, C. Irrigation of Greenhouse Crops. Horticulturae 2019, 5, 7. [Google Scholar] [CrossRef]
- Rahil, M.; Qanadillo, A. Effects of different irrigation regimes on yield and water use efficiency of cucumber crop. Agric. Water Manag. 2015, 148, 10–15. [Google Scholar] [CrossRef]
- Sánchez-Guerrero, M.; Lorenzo, P.; Medrano, E.; Baille, A.; Castilla, N. Effects of EC-based irrigation scheduling and CO2 enrichment on water use efficiency of a greenhouse cucumber crop. Agric. Water Manag. 2009, 96, 429–436. [Google Scholar] [CrossRef]
- Nikolaou, G.; Neocleous, D.; Katsoulas, N.; Kittas, C. Effect of irrigation frequency on growth and production of a cucumber crop under soilless culture. Emir. J. Food Agric. 2017, 29, 863. [Google Scholar] [CrossRef]
- Sanchez-Molina, J.A.; Rodriguez, F.; Guzman, J.L.; Ramírez-Arias, J. Water content virtual sensor for tomatoes in coconut coir substrate for irrigation control design. Agric. Water Manag. 2015, 151, 114–125. [Google Scholar] [CrossRef]
- Pérez-Castro, A.; Sánchez-Molina, J.A.; Castilla, M.; Sánchez-Moreno, J.; Moreno-Úbeda, J.C.; Magán, J.J. CFertigUAL: A Fertigation Management App for Greenhouse Vegetable Crops. Agric. Water Manag. 2017, 183, 186–193. [Google Scholar] [CrossRef]
- Katsoulas, N.; Kittas, C.; Dimokas, G.; Lykas, C. Effect of Irrigation Frequency on Rose Flower Production and Quality. Biosyst. Eng. 2006, 93, 237–244. [Google Scholar] [CrossRef]
- Savvas, D.; Gianquinto, G.P.; Tuzel, Y.; Gruda, N. Soilless Culture. In Good Agricultural Practices for Greenhouse Vegetable Crops. Principles for Mediterranean Climate Areas; FAO, Ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; pp. 303–354. [Google Scholar]
- Beeson, R. Weighing lysimeter systems for quantifying water use and studies of controlled water stress for crops grown in low bulk density substrates. Agric. Water Manag. 2011, 98, 967–976. [Google Scholar] [CrossRef]
- Vera-Repullo, J.A.; Ruiz-Peñalver, L.; Jiménez-Buendía, M.; Rosillo, J.J.; Molina-Martínez, J.M. Software for the Automatic Control of Irrigation Using Weighing-Drainage Lysimeters. Agric. Water Manag. 2015, 151, 4–12. [Google Scholar] [CrossRef]
- Tsirogiannis, I.; Katsoulas, N.; Kittas, C. Effect of Irrigation Scheduling on Gerbera Flower Yield and Quality. HortScience 2010, 45, 265–270. [Google Scholar] [CrossRef] [Green Version]
- Schiattone, M.; Viggiani, R.; Di Venere, D.; Sergio, L.; Cantore, V.; Todorovic, M.; Perniola, M.; Candido, V. Impact of irrigation regime and nitrogen rate on yield, quality and water use efficiency of wild rocket under greenhouse conditions. Sci. Hortic. 2018, 229, 182–192. [Google Scholar] [CrossRef]
- Liu, H.; Duan, A.-W.; Li, F.-S.; Sun, J.-S.; Wang, Y.-C.; Sun, C.-T. Drip Irrigation Scheduling for Tomato Grown in Solar Greenhouse Based on Pan Evaporation in North China Plain. J. Integr. Agric. 2013, 12, 520–531. [Google Scholar] [CrossRef]
- Varma, V.; Osuri, M.A. Black Spot: A platform for automated and rapid estimation of leaf area from scanned images. Plant Ecol. 2013, 214, 1529–1534. [Google Scholar] [CrossRef]
- Katsoulas, N.; Savvas, D.; Tsirogiannis, I.; Merkouris, O.; Kittas, C. Response of an eggplant crop grown under Mediterranean summer conditions to greenhouse fog cooling. Sci. Hortic. 2009, 123, 90–98. [Google Scholar] [CrossRef]
- Singh, M.C.; Singh, J.; Singh, K. Development of a microclimate model for prediction of temperatures inside a naturally ventilated greenhouse under cucumber crop in soilless media. Comput. Electron. Agric. 2018, 154, 227–238. [Google Scholar] [CrossRef]
- Singh, M.C.; Singh, J.P.; Singh, K.G. Optimal Operating Microclimatic Conditions for Drip Fertigated Cucumbers in Soilless Media under a Naturally Ventilated Greenhouse. India J. Ecology 2017, 44, 821–826. [Google Scholar]
- Körner, O.; Challa, H. Process-based humidity control regime for greenhouse crops. Comput. Electron. Agric. 2003, 39, 173–192. [Google Scholar] [CrossRef]
- Ahemd, H.A.; Al-Faraj, A.A.; Abdel-Ghany, A.M. Shading greenhouses to improve the microclimate, energy and water saving in hot regions: A review. Sci. Hortic. 2016, 201, 36–45. [Google Scholar] [CrossRef]
- Sase, S.; Ishii, M.; Moriyama, H.; Kubota, C.; Kurata, K.; Hayashi, M.; Sabeh, N.; Romero, P.; Giacomelli, G. Effect of Natural Ventilation Rate on Relative Humidity and Water Use for Fog Cooling in A Semiarid Greenhouse. Acta Hortic. 2006, 719, 385–392. [Google Scholar] [CrossRef]
- Yang, X.; Short, T.H.; Fox, R.D.; Bauerle, W.L. The Microclimate and Transpiration of a Greenhouse Cucumber Crop. Trans. ASAE 1989, 32, 2143–2150. [Google Scholar] [CrossRef]
- Zhang, Z.-K.; Liu, S.-Q.; Liu, S.-H.; Huang, Z.-J. Estimation of Cucumber Evapotranspiration in Solar Greenhouse in Northeast China. Agric. Sci. China 2010, 9, 512–518. [Google Scholar] [CrossRef]
- Kittas, C. Solar radiation of a greenhouse as a tool to its irrigation control. Int. J. Energy Res. 1990, 14, 881–892. [Google Scholar] [CrossRef]
- Melo, E.F.R.; Dos Santos, O.S. Growth and production of nasturtium flowers in three hydroponic solutions. Hortic. Bras. 2011, 29, 584–589. [Google Scholar] [CrossRef] [Green Version]
- Gosselin, A.; Trudel, M.-J. Influence of root-zone temperature on growth, development and yield of cucumber plants cv. Toska. Plant Soil 1985, 85, 327–336. [Google Scholar] [CrossRef]
- Yoshida, S.; Eguchi, H. Root temperature effect on root hydraulic resistance in cucumber (cucumis sativus L.) and figleaf gourd (cucurbita ficifolia B.) plants. Biotronics 1990, 19, 121–127. [Google Scholar]
- Gallardo, M.; Thompson, R.B.; Valdez, L.C.; Fernández, M.D.; Thompson, R. Use of stem diameter variations to detect plant water stress in tomato. Irrig. Sci. 2006, 24, 241–255. [Google Scholar] [CrossRef]
- De Swaef, T.; Steppe, K. Linking stem diameter variations to sap flow, turgor and water potential in tomato. Funct. Plant Boil. 2010, 37, 429–438. [Google Scholar] [CrossRef]
- Lee, B.W.; Shin, J.H. Optimal irrigation management system of greenhouse tomato based on stem diameter and transpiration monitoring. Agric. Inf. Tech. Asia Oceania. 1998, 23, 87–90. [Google Scholar]
External Climate | CA | CB | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
DAT | RGO (W m−2) | RGI (W m−2) | TO (°C) | RHO (%) | TI (°C) | RHI (%) | VPDI (kPa) | TI (°C) | RHI (%) | VPDI (kPa) | |
Exp. 1 | 10-20 | 520 (258) | 330 (165) | 28.2 (3.8) | 55.2 (10.6) | 27.2 (5.0) | 57.4 (12.9) | 1.7 (0.8) | 23.2 (4.3) | 62.7 (9.5) | 1.1 (0.4) |
21-31 | 505 (224) | 322 (150) | 27.3 (3.2) | 56.4 (10.5) | 28.3 (5.1) | 66.7 (12.3) | 1.4 (0.7) | 22.7 (3.5) | 68.4 (10.9) | 0.9 (0.4) | |
32-42 | 418 (256) | 247 (168) | 23.3 (4.1) | 59.9 (16.7) | 24.7 (5.4) | 74.7 (12.9) | 0.9 (0.7) | 20.2 (3.6) | 71.5 (14.5) | 0.7 (0.5) | |
43-53 | 411 (203) | 240 (136) | 24.5 (3.4) | 55.2 (14.5) | 25.3 (5.6) | 73.9 (10.2) | 1.0 (0.6) | 20.5 (3.7) | 71.7 (13.9) | 0.7 (0.4) | |
54-64 | 388 (214) | 227 (134) | 20.4 (3.7) | 59.2 (13.4) | 21.9 (6.5) | 75.4 (11.5) | 0.8 (0.5) | 18.0 (4.9) | 75.3 (12.1) | 0.6 (0.4) | |
65-75 | 378 (193) | 222 (121) | 21.4 (3.4) | 62.9 (12.6) | 23.9 (5.7) | 75.2 (11.8) | 0.8 (0.5) | 19.7 (4.1) | 74.5 (12.5) | 0.6 (0.4) | |
Exp. 2 | 10-20 | 609 (311) | 424 (217) | 21.7 (3.6) | 62.5 (13.1) | 27.9 (6.4) | 52.6 (15.1) | 2.1 (1.1) | 21.7 (4.1) | 55.3 (12.6) | 1.2 (0.5) |
21-31 | 632 (311) | 440 (216) | 20.9 (3.7) | 55.4 (12.1) | 28.4 (6.3) | 57.3 (15.3) | 1.9 (1.1) | 21.4 (4.2) | 53.9 (15.8) | 1.2 (0.5) | |
32-42 | 679 (307) | 473 (214) | 22.7 (4.2) | 54.9 (11.1) | 29.1 (6.2) | 60.8 (13.9) | 1.8 (0.9) | 22.0 (4.3) | 56.9 (15.1) | 1.2 (0.5) | |
43-53 | 747 (292) | 520 (203) | 25.7 (3.6) | 52.2 (15) | 31.1 (4.7) | 54.8 (15.8) | 2.2 (0.9) | 23.7 (3.4) | 55.9 (13.7) | 1.3 (0.5) | |
54-64 | 707 (314) | 492 (219) | 27.3 (2.8) | 61.1 (18.3) | 31.3 (4.0) | 56.6 (13.4) | 2.1 (0.8) | 24.9 (3.2) | 59.9 (13.3) | 1.3 (0.5) | |
65-75 | 735 (318) | 512 (221) | 29.7 (4.2) | 49.2 (14.1) | 32.7 (4.0) | 50.2 (14.2) | 2.6 (1.1) | 26.5 (3.5) | 56.8 (11.7) | 1.6 (0.6) |
Exp. 1 | Exp. 2 | |||||||
---|---|---|---|---|---|---|---|---|
CA, T1 | CA, T2 | CB, T1 | CB, T2 | CA, T1 | CA, T2 | CB, T1 | CB, T2 | |
Leaves (no pl−1) | 21.4 (3.4)c | 19.7 (2.3)b | 18.6 (2.9)ab | 17.7 (1.9)a | 21.2 (4.4)c | 19.4 (3.9)bc | 17.2 (3.9)ab | 16.1 (3.5)a |
Height (cm pl−1) | 226.2 (58.8)c | 208.5 (45.7)bc | 187.5(48.6)ab | 176.8 (41.6)a | 165.9 (7.3)b | 150.2(45.2)ab | 137.3(60.9)ab | 127.1 (55.6)a |
LAI (m2 leaf m−2 ground) | 1.6 (0.3)b | 1.5 (0.2)b | 1.4 (0.3)b | 1.2 (0.2)a | 0.9 (0.2)ab | 0.9 (0.3)b | 0.8 (0.2)a | 0.8 (0.2)a |
Leaf fresh weight (gr pl−1) | 407.1 (198.9) | 351.6 (184.3) | 371.2 (195.1) | 330.5 (167.3) | 300.4 (222.1) | 272.2 (206) | 292.4 (226.8) | 245.2 (194.4) |
Leaf dry weight (gr pl−1) | 35.9 (15.1) | 35.1 (17.1) | 38.2 (19.8) | 33.6 (16.9) | 32.3 (21) | 30.6 (21) | 33.8 (25.1) | 28.2 (20.9) |
Stem fresh weight (gr pl−1) | 196.6 (98.3) | 171.1 (77.5) | 180.4 (94.6) | 172.2 (86.1) | 143.2 (98.3) | 140.2 (104.5) | 172.4 (138.9) | 159.2 (132.8) |
Stem dry weight (gr pl−1) | 13.5 (7.8) | 13.3 (6.8) | 12.9 (7.4) | 13.4 (8.3) | 11.8 (9.1) | 12.2 (10.6) | 14.2 (12.9) | 13.7 (13) |
Fruit fresh weight (gr pl−1) | 371.1 (281.1) | 260.1 (223.3) | 305.2 (271.6) | 216.8 (172.1) | 390.5 (404) | 652.4 (372) | 441 (229) | 430.1 (298.3) |
Fruit dry weight (gr pl−1) | 19.1 (13.3) | 15.4 (13.4) | 17.4 (14.5) | 14.6 (12.6) | 18.2 (17.3) | 30.6 (17.3) | 20.86 (11.5) | 21.6 (14.6) |
Fruits (no pl−1) | 3.0 (1.4) | 3.1 (1.4) | 2.9 (1.4) | 3.0 (1.4) | 4.9 (2.2) | 4.9 (2.3) | 4.4 (2.3) | 4.1 (2.3) |
Fruits (gr pl−1) | 367.8 (191.2) | 364.3 (222.9) | 351.8 (170.4) | 342.5 (175.1) | 656.3 (321.1) | 670.4 (350.9) | 541.1 (297.2) | 525.0 (283.0) |
DAT | CA, T1 | CA, T2 | CB, T1 | CB, T2 | ||
---|---|---|---|---|---|---|
Exp. 1 | Transpiration (W m−2) | 15–60 | 104.0 (60.8)b | - | 84.7 (47.1)a | - |
50–55 | 86.8 (51.1)b | - | 64.9 (45.7)a | - | ||
Water uptake (mL pl−1 irrig−1) | 45–50 | 122 (46.8)d | 116.4 (33.2)c | 111.3 (40.1)b | 93.6 (28.2)a | |
Drainage (% irrig−1) | 44–53 | 35.3 (22.6)d | 21.9 (11.5)a | 34.3 (20.7)c | 28.4 (20.1)b | |
Exp. 2 | Transpiration (W m−2) | 15–60 | 130.5 (62.5)b | - | 80.1 (50.1)a | - |
50–55 | 171.3 (88.1)b | - | 110.2 (50.2)a | - | ||
Water uptake (mL pl−1 irrig−1) | 45–50 | 130.5 (57.5)d | 126.2 (32.2)c | 111.8 (83.2)b | 101 (53.8)a | |
Drainage (% irrig−1) | 44–53 | 30.9 (26.3)b | 21.9 (12.8)a | 45.5 (37.1)d | 42.5 (28.5)c |
Treatment | Production (kg m−2) | Irrigation (L m−2) | IWUE (kg m−3) | |
---|---|---|---|---|
Exp. 1 | CA, T1 | 8.83 | 122 | 72 |
CA, T2 | 8.74 | 102 | 86 | |
CB, T1 | 8.44 | 122 | 69 | |
CB, T2 | 8.22 | 102 | 80 | |
Exp. 2 | CA, T1 | 15.17 | 238 | 64 |
CA, T2 | 15.37 | 198 | 78 | |
CB, T1 | 11.99 | 238 | 50 | |
CB, T2 | 10.49 | 198 | 53 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikolaou, G.; Neocleous, D.; Katsoulas, N.; Kittas, C. Effects of Cooling Systems on Greenhouse Microclimate and Cucumber Growth under Mediterranean Climatic Conditions. Agronomy 2019, 9, 300. https://doi.org/10.3390/agronomy9060300
Nikolaou G, Neocleous D, Katsoulas N, Kittas C. Effects of Cooling Systems on Greenhouse Microclimate and Cucumber Growth under Mediterranean Climatic Conditions. Agronomy. 2019; 9(6):300. https://doi.org/10.3390/agronomy9060300
Chicago/Turabian StyleNikolaou, Georgios, Damianos Neocleous, Nikolaos Katsoulas, and Constantinos Kittas. 2019. "Effects of Cooling Systems on Greenhouse Microclimate and Cucumber Growth under Mediterranean Climatic Conditions" Agronomy 9, no. 6: 300. https://doi.org/10.3390/agronomy9060300
APA StyleNikolaou, G., Neocleous, D., Katsoulas, N., & Kittas, C. (2019). Effects of Cooling Systems on Greenhouse Microclimate and Cucumber Growth under Mediterranean Climatic Conditions. Agronomy, 9(6), 300. https://doi.org/10.3390/agronomy9060300