Contrasting Impacts of Long-Term Application of Biofertilizers and Organic Manure on Grain Yield of Winter Wheat in North China Plain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Status of Agrometeorology and Soil Profile
2.2. Long-Term Fertilization Strategies
2.3. Crop Management and Sampling Analysis
3. Results
3.1. Soil Profile and Grain Yield
3.2. Assessment of Biofertilizer and Manure Effects on Growth and Seed Yield
3.3. Effects of Biofertilizer on Yield Components
3.4. Correlations among Grain Yield and Other Components
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Treatment | Soil Total N (g kg−1) | NH4+-N (mg kg−1) | NO3−-N (mg kg−1) | Soil pH | ||||||
---|---|---|---|---|---|---|---|---|---|---|
10 cm | 20 cm | 40 cm | 10 cm | 20 cm | 40 cm | 10cm | (1:2.5 H2O) | (1:2.5 KCl) | (1:5CaCl2) | |
CK | 0.47 ± 0.01d | 0.73 ± 0.01e | 1.20 ± 0.01e | 0.23 ± 0.00g | 0.32 ± 0.00f | 0.19 ± 0.01f | 0.32 ± 0.00g | 7.4 ± 0.14a | 6.8 ± 0.17a | 6.9 ± 0.22a |
CL0 | 0.84 ± 0.03ab | 1.35 ± 0.00bc | 2.48 ± 0.02ab | 1.01 ± 0.00e | 1.12 ± 0.00d | 0.67 ± 0.01a | 6.12 ± 0.08e | 6.9 ± 0.07a | 6.3 ± 0.12b | 6.4 ± 0.23b |
CL1 | 0.87 ± 0.06ab | 1.39 ± 0.02ab | 2.65 ± 0.02a | 1.53 ± 0.01b | 1.56 ± 0.03b | 0.50 ± 0.01b | 9.02 ± 0.03b | 6.8 ± 0.08a | 6.4 ± 0.13b | 6.3 ± 0.22b |
CL2 | 0.85 ± 0.01ab | 1.37 ± 0.02abc | 2.35 ± 0.01bc | 1.44 ± 0.01c | 1.31 ± 0.02c | 0.45 ± 0.00c | 7.76 ± 0.12c | 7.1 ± 0.15a | 6.8 ± 0.23a | 6.9 ± 0.12a |
CL3 | 0.77 ± 0.01bc | 1.33 ± 0.02c | 2.25 ± 0.01c | 1.34 ± 0.01d | 1.10 ± 0.02d | 0.39 ± 0.00d | 7.18 ± 0.06d | 7.5 ± 0.14a | 6.9 ± 0.23a | 7.1 ± 0.11a |
CL4 | 0.70 ± 0.00c | 1.23 ± 0.00d | 1.70 ± 0.14d | 0.67 ± 0.01f | 0.76 ± 0.02e | 0.29 ± 0.01e | 5.09 ± 0.05f | 7.7 ± 0.18a | 7.1 ± 0.12a | 7 ± 0.12a |
C+O+B | 0.88 ± 0.03a | 1.41 ± 0.01a | 2.64 ± 0.03a | 1.82 ± 0.02a | 2.02 ± 0.02a | 0.68 ± 0.00a | 9.99 ± 0.02a | 7.4 ± 0.07a | 7 ± 0.12a | 7.2 ± 0.12a |
References
- Reynolds, M.; Bonnett, D.; Chapman, S.C.; Furbank, R.T.; Manés, Y.; Mather, D.E.; Parry, M.A.J. Raising yield potential of wheat. I. Overview of a consortium approach and breeding strategies. J. Exp. Bot. 2011, 62, 439–452. [Google Scholar] [CrossRef] [PubMed]
- Goriewa-Duba, K.; Duba, A.; Wachowska, U.; Wiwart, M. An Evaluation of the Variation in the Morphometric Parameters of Grain of Six Triticum Species with the Use of Digital Image Analysis. Agronomy 2018, 8, 296. [Google Scholar] [CrossRef]
- Xiao, G.; Zhao, Z.; Liang, L.; Meng, F.; Wu, W.; Guo, Y. Improving nitrogen and water use efficiency in a wheat-maize rotation system in the North China Plain using optimized farming practices. Agric. Water Manag. 2019, 212, 172–180. [Google Scholar] [CrossRef]
- Gumma, M.K.; Thenkabail, P.S.; Teluguntla, P.; Oliphant, A.; Xiong, J.; Congalton, R.G.; Yadav, K.; Smith, C. NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-Support Analysis Data (GFSAD) Cropland Extent 2015 Validation Global 30 m V001; NASA EOSDIS Land Process DAAC: Sioux Falls, SD, USA, 2017.
- Ju, X.-T.; Xing, G.-X.; Chen, X.-P.; Zhang, S.-L.; Zhang, L.-J.; Liu, X.-J.; Cui, Z.-L.; Yin, B.; Christie, P.; Zhu, Z.-L.; et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl. Acad. Sci. USA 2009, 106, 3041–3046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, F.; Yan, G.; Zhou, Z.; Zheng, X.; Deng, J. Annual emissions of nitrous oxide and nitric oxide from a wheat-maize cropping system on a silt loam calcareous soil in the North China Plain. Soil Biol. Biochem. 2012, 48, 10–19. [Google Scholar] [CrossRef]
- Niu, J.; Zhang, W.; Ru, S.; Chen, X.; Xiao, K.; Zhang, X.; Assaraf, M.; Imas, P.; Magen, H.; Zhang, F.; et al. Effects of potassium fertilization on winter wheat under different production practices in the North China Plain. Field Crops Res. 2013, 140, 69–76. [Google Scholar] [CrossRef]
- Hartmann, T.E.; Yue, S.; Schulz, R.; He, X.; Chen, X.; Zhang, F.; Müller, T. Yield and N use efficiency of a maize-wheat cropping system as affected by different fertilizer management strategies in a farmer’s field of the North China Plain. Field Crops Res. 2015, 174, 30–39. [Google Scholar] [CrossRef]
- Oroian, C.F.; Safirescu, C.O.; Harun, R.; Chiciudean, G.O.; Arion, F.H.; Muresan, I.C.; Bordeanu, B.M. Consumers’ attitudes towards organic products and sustainable development: A case study of Romania. Sustainability 2017, 9, 1559. [Google Scholar] [CrossRef]
- Susha, V.S.; Das, T.K.; Nath, C.P.; Pandey, R.; Paul, S.; Ghosh, S. Impacts of tillage and herbicide mixture on weed interference, agronomic productivity and profitability of a maize—Wheat system in the North-western Indo-Gangetic Plains. Field Crops Res. 2018, 219, 180–191. [Google Scholar] [CrossRef]
- Broberg, M.; Högy, P.; Pleijel, H. CO2-Induced Changes in Wheat Grain Composition: Meta-Analysis and Response Functions. Agronomy 2017, 7, 32. [Google Scholar] [CrossRef]
- Mon, J.; Bronson, K.F.; Hunsaker, D.J.; Thorp, K.R.; White, J.W.; French, A.N. Interactive effects of nitrogen fertilization and irrigation on grain yield, canopy temperature, and nitrogen use efficiency in overhead sprinkler-irrigated durum wheat. Field Crops Res. 2016, 191, 54–65. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, Y.; Li, T.; Sun, W.; Huang, Y. Net greenhouse gas balance in China’s croplands over the last three decades and its mitigation potential. Environ. Sci. Technol. 2014, 48, 2589–2597. [Google Scholar] [CrossRef] [PubMed]
- Gai, X.; Liu, H.; Liu, J.; Zhai, L.; Wang, H.; Yang, B.; Ren, T.; Wu, S.; Lei, Q. Contrasting impacts of long-term application of manure and crop straw on residual nitrate-N along the soil profile in the North China Plain. Sci. Total Environ. 2019, 650, 2251–2259. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, F.; Zhao, L.; Zhang, E.; Shi, S.; Zhao, W.; Song, W.; Vance, M.M. Effects of irrigation and nitrogen application rates on nitrate nitrogen distribution and fertilizer nitrogen loss, wheat yield and nitrogen uptake on a recently reclaimed sandy farmland. Plant Soil 2010, 337, 325–339. [Google Scholar] [CrossRef]
- Ashraf, A.; Ristina, S.S.; Asad, M.; Hasan, M.; Qamar, H.; Mudassar, M.; Raza, M.; Anum, W.; Abbasi, W.; Arshad, A.; et al. Variability and Correlation Study of Different Newly Developed Sunflower Hybrids in Pakistan. Int. J. Biosci. 2019, 14, 398–408. [Google Scholar]
- Tan, Y.; Xu, C.; Liu, D.; Wu, W.; Lal, R.; Meng, F. Effects of optimized N fertilization on greenhouse gas emission and crop production in the North China Plain. Field Crops Res. 2017, 205, 135–146. [Google Scholar] [CrossRef]
- Liu, E.; Yan, C.; Mei, X.; He, W.; Bing, S.H.; Ding, L.; Liu, Q.; Liu, S.; Fan, T. Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China. Geoderma 2010, 158, 173–180. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, F.; Ma, C.; Rui, Y.; Rui, M.; Adeel, M.; Cao, W.; Xing, B. Alteration of Crop Yield and Quality of Wheat upon Exposure to Silver Nanoparticles in a Life Cycle Study. J. Agric. Food Chem. 2018, 66, 2589–2597. [Google Scholar] [CrossRef]
- Uribe, D.; Sánchez-Nieves, J.; Vanegas, J. Role of Microbial Biofertilizers in the Development of a Sustainable Agriculture in the Tropics. In Soil Biology and Agriculture in the Tropics; Springer: Berlin, Germany, 2010. [Google Scholar]
- Liang, Q.; Chen, H.; Gong, Y.; Yang, H.; Fan, M.; Kuzyakov, Y. Effects of 15 years of manure and mineral fertilizers on enzyme activities in particle-size fractions in a North China Plain soil. Eur. J. Soil Biol. 2014, 60, 112–119. [Google Scholar] [CrossRef]
- Asad, M.; Mahmood, Z.; Rasheed, M.R.A.M. Efficacy of some selective herbicides against broad leaved weeds of wheat crop grown under moisture deficit conditions of Pakistan. Turk. J. Weed Sci. 2017, 20, 38–45. [Google Scholar]
- Majumder, B.; Mandal, B.; Bandyopadhyay, P.K.; Gangopadhyay, A.; Mani, P.K.; Kundu, A.L.; Mazumdar, D. Organic Amendments Influence Soil Organic Carbon Pools and Rice–Wheat Productivity. Soil Sci. Soc. Am. J. 2008, 72, 775–785. [Google Scholar] [CrossRef]
- Umesha, S.; Divya, M.; Prasanna, K.; Lakshmipathi, R.; Sreeramulu, K. Comparative Effect of or ganics and Biofertilizers on Growth and Yield of Maize (Zea mays. L). Curr. Agric. Res. J. 2014. [Google Scholar] [CrossRef]
- Arif, M.; Ilyas, M.; Riaz, M.; Ali, K.; Shah, K.; Haq, I.U.; Fahad, S. Biochar improves phosphorus use efficiency of organic-inorganic fertilizers, maize-wheat productivity and soil quality in a low fertility alkaline soil. Field Crops Res. 2017, 214, 25–37. [Google Scholar] [CrossRef]
- Abbasi, M.K.; Yousra, M. Synergistic effects of biofertilizer with organic and chemical N sources in improving soil nutrient status and increasing growth and yield of wheat grown under greenhouse conditions. Plant Biosyst. 2012, 146, 181–189. [Google Scholar] [CrossRef]
- Htwe, A.Z.; Moh, S.M.; Soe, K.M.; Moe, K.; Yamakawa, T. Effects of Biofertilizer Produced from Bradyrhizobium and Streptomyces griseoflavus on Plant Growth, Nodulation, Nitrogen Fixation, Nutrient Uptake, and Seed Yield of Mung Bean, Cowpea, and Soybean. Agronomy 2019, 9, 77. [Google Scholar] [CrossRef]
- Tejada, M.; Rodríguez-Morgado, B.; Gómez, I.; Franco-Andreu, L.; Benítez, C.; Parrado, J. Use of biofertilizers obtained from sewage sludges on maize yield. Eur. J. Agron. 2016, 78, 13–19. [Google Scholar] [CrossRef]
- Gupta, T.C.; Aggarwal, S.K. Performance of wheat (Triticum aestivum) to incorporation of organic manure and bioinoculants. Arch. Agron. Soil Sci. 2008, 54, 615–627. [Google Scholar] [CrossRef]
- Sharma, S.; Padbhushan, R.; Kumar, U. Integrated Nutrient Management in Rice–Wheat Cropping System: An Evidence on Sustainability in the Indian Subcontinent through Meta-Analysis. Agronomy 2019, 9, 71. [Google Scholar] [CrossRef]
- Santillano-Cázares, J.; Núñez-Ramírez, F.; Ruíz-Alvarado, C.; Cárdenas-Castañeda, M.E.; Ortiz-Monasterio, I. Assessment of Fertilizer Management Strategies Aiming to Increase Nitrogen Use Efficiency of Wheat. Agronomy 2018, 8, 304. [Google Scholar] [CrossRef]
- Simansky, V.; Horak, J.; Juriga, M.; Srank, D. Soil structure and soil organic matter in water-stable aggregates under different application rates of biochar. Vietnam J. Earth Sci. 2018, 59. [Google Scholar] [CrossRef]
- Arshad, A.; Lizhen, L.; Yue, Z.; Hong, J.; Tina, R.; Asad, M.; Ran, W. Significance of Pak-China Weather Forecasting and Climate Modeling to Sustainable Agriculture. In Proceedings of the HIWeather Chinese Academy of Meteorological Sciences, Beijing, China, 20–22 November 2018. [Google Scholar]
- Zhao, X.; Yuan, G.; Wang, H.; Lu, D.; Chen, X.; Zhou, J. Effects of Full Straw Incorporation on Soil Fertility and Crop Yield in Rice-Wheat Rotation for Silty Clay Loamy Cropland. Agronomy 2019, 9, 133. [Google Scholar] [CrossRef]
- Asad, M.; Zahid, M.; Mudassar, M.; Arshad, A.; Raza, W.A.U. Bio-economic assessment of non-chemical weed management strategies in minor crops: A review on Weed research issues, challenges, and opportunities in Pakistan. J. Res. Weed Sci. 2019, 2, 127–140. [Google Scholar]
- Haefele, S.M.; Jabbar, S.M.A.; Siopongco, J.D.L.C.; Tirol-Padre, A.; Amarante, S.T.; Sta Cruz, P.C.; Cosico, W.C. Nitrogen use efficiency in selected rice (Oryza sativa L.) genotypes under different water regimes and nitrogen levels. Field Crops Res. 2008, 107, 137–146. [Google Scholar] [CrossRef]
- Hawes, C.; Alexander, C.; Begg, G.; Iannetta, P.; Karley, A.; Squire, G.; Young, M. Plant Responses to an Integrated Cropping System Designed to Maintain Yield Whilst Enhancing Soil Properties and Biodiversity. Agronomy 2018, 8, 229. [Google Scholar] [CrossRef]
- Akhtar, M.F.U.Z.; Jamil, M.; Ahamd, M.; Abbasi, G.H. Evaluation of biofertilizer in combination with organic amendments and rock phosphate enriched compost for improving productivity of chickpea and maize. Soil Environ. 2017, 36, 59–69. [Google Scholar]
- Arshad, M.; Khalid, A.; Mahmood, M.H.; Zahir, Z.A. Potential of Nitrogen and L-tryptophan Enriched Compost for Improving Growth and Yield of Hybrid Maize. Pak. J. Agric. Sci. 2004, 41, 16–24. [Google Scholar]
- Ahmad, R.; Shahzad, S.M.; Khalid, A.; Arshad, M.; Mahmood, M.H. Growth and yield response of wheat (Triticum aestivum L.) and maize (Zea mays L.) to nitrogen and L-tryptophan enriched compost. Pak. J. Bot. 2007, 39, 541–549. [Google Scholar]
- Pennacchi, J.; Carmo-Silva, E.; Andralojc, P.; Feuerhelm, D.; Powers, S.; Parry, M. Dissecting Wheat Grain Yield Drivers in a Mapping Population in the UK. Agronomy 2018, 8, 15. [Google Scholar] [CrossRef]
- Naveed, M.; Khalid, M.; Jones, D.L.; Ahmad, R.; Zahir, Z.A. Relative efficacy of pseudomonas spp., containing acc-deaminase for improving growth and yield of maize (zea mays l.) in the presence of organic fertilizer. Pak. J. Bot. 2008, 40, 1243–1251. [Google Scholar]
- Yang, X.; Asseng, S.; Wong, M.T.F.; Yu, Q.; Li, J.; Liu, E. Quantifying the interactive impacts of global dimming and warming on wheat yield and water use in China. Agric. For. Meteorol. 2013, 182–183, 342–351. [Google Scholar] [CrossRef]
- Yu, Q.; Li, L.; Luo, Q.; Eamus, D.; Xu, S.; Chen, C.; Wang, E.; Liu, J.; Nielsen, D.C. Year patterns of climate impact on wheat yields. Int. J. Climatol. 2014, 34, 518–552. [Google Scholar] [CrossRef]
- Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N.; Foley, J.A. Closing yield gaps through nutrient and water management. Nature 2012, 490, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Chen, Z.; Zhou, Q.; Tang, H. Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 403–413. [Google Scholar] [CrossRef]
- Stockmann, F.; Weber, E.; Mast, B.; Schreiter, P.; Merkt, N.; Claupein, W.; Graeff-Hönninger, S. Evaluation of Asparagine Concentration as an Indicator of the Acrylamide Formation in Cereals Grown under Organic Farming Conditions. Agronomy 2018, 8, 294. [Google Scholar] [CrossRef]
- Arshad, A.; Yousaf, K.; Hua, Q.; Ming, L.; Zhang, W.; Mateen, A.M.-U.-H. Impact of climate change on apple and mango production in China and Pakistan. In Proceedings of the Technical Session Proceedings’ of International Horticulture Conference, Paris, France, 4–5 November 2019; p. 121. [Google Scholar]
- García Del Moral, L.F.; Rharrabti, Y.; Villegas, D.; Royo, C. Evaluation of grain yield and its components in durum wheat under Mediterranean conditions: An ontogenic approach. Agron. J. 2003, 95, 266–274. [Google Scholar] [CrossRef]
- Weiler, C.; Merkt, N.; Hartung, J.; Graeff-Hönninger, S. Variability among Young Table Grape Cultivars in Response to Water Deficit and Water Use Efficiency. Agronomy 2019, 9, 135. [Google Scholar] [CrossRef]
- Arshad, A.; Hua, Q.; Ristina, S.S.; Zubair, M.; Asad, M. Impact Assessment and Model Simulation to Urban Extreme Weather Vulnerabilities to Advance Climate Adaptation; EGU General Assembly Vienna-Austria: Vienna, Austria, 2019; Volume 21. [Google Scholar]
- Khan, T.A.; Nadeem, F.; Chen, L.; Wang, X.; Zeng, Z.; Hu, Y. Enhancing naked oat (Avena nuda L.) productivity with minimal indirect nitrogen loss and maximum nitrogen use efficiency through integrated use of different nitrogen sources. PloS ONE 2019, 14, e0213808. [Google Scholar] [CrossRef] [PubMed]
Sand a (%) | Silt a (%) | Clay a (%) | pH | SOM (g kg−1) | Total N (g kg−1) | Olsen P (mg kg−1) | Available K (mg kg−1) |
---|---|---|---|---|---|---|---|
88.39 | 11.46 | 0.76 | 8.05 | 2.29 | 1.02 | 20.31 | 87.49 |
Treatment (~) | Synthetic Fertilizers | Organic Manure | Biofertilizer | ||||
---|---|---|---|---|---|---|---|
N | P2O5 | K2O | N | P2O5 | K2O | ||
CK | - | - | - | - | - | - | - |
CL0 | 205.5 | 172.5 | 112.5 | - | - | - | - |
CL1 | 154.1 | 129.4 | 84.4 | 226.2 | 903.8 | 125.1 | 20 |
CL2 | 102.8 | 86.3 | 56.3 | 226.2 | 903.8 | 125.1 | 20 |
CL3 | 51.4 | 43.1 | 28.1 | 226.2 | 903.8 | 125.1 | 20 |
CL4 | - | - | - | 226.2 | 903.8 | 125.1 | 20 |
C+O+B | 205.5 | 172.5 | 112.5 | 226.2 | 903.8 | 125.1 | 20 |
Treatment | Effective Spike (10 thousands ha−1) | Grain Number (per Spike) | 1000-Grain Weight (g) | Grain Yield (103 kg ha−1) |
---|---|---|---|---|
2013/2014 | ||||
CK | 574.67 ± 1.53 f | 24.00 ± 3.60 d | 46.77 ± 0.25 a | 4.80 ± 0.60 c |
CL0 | 623.67 ± 1.15c | 36.00 ± 1.73 a | 44.93 ± 2.53 a | 6.48 ± 0.51 b |
CL1 | 724.67 ± 1.15 b | 35.33 ± 2.08 a | 45.90 ± 1.22 a | 7.39 ± 0.33 a |
CL2 | 614.67 ± 0.58 d | 33.67 ± 1.15 ab | 45.33 ± 1.53 a | 7.31 ± 0.22 a |
CL3 | 581.33 ± 0.58 e | 30.33 ± 3.05 bc | 44.53 ± 2.63 a | 7.40 ± 0.16 a |
CL4 | 565.67 ± 1.53 g | 27.00 ± 0.00 cd | 43.70 ± 0.65 a | 6.14 ± 0.06 b |
C+O+B | 732.67 ± 2.08 a | 36.00 ± 1.00 a | 43.40 ± 2.26 a | 7.37 ± 0.11 a |
2014/2015 | ||||
CK | 479.67 ± 3.05 g | 22.67 ± 0.6 f | 41.47 ± 0.47 a | 3.21 ± 0.04 f |
CL0 | 634.67 ± 1.53 d | 40.63 ± 0.58 a | 43.97 ± 2.00 a | 7.57 ± 0.48 a |
CL1 | 695.33 ± 1.53 b | 37.00 ± 1.73 b | 38.50 ± 1.32 b | 6.33 ± 0.13 c |
CL2 | 707.67 ± 0.58 a | 35.00 ± 1.00 c | 41.17 ± 0.29 a | 7.05 ± 0.05 b |
CL3 | 578.67 ± 1.53 e | 32.00 ± 1.00 d | 42.50 ± 1.32 a | 5.40 ± 0.21 d |
CL4 | 533.67 ± 1.53f | 27.00 ± 0.00 e | 41.7 ± 2.31 a | 4.04 ± 0.34e |
C+O+B | 647.00 ± 1.00 c | 41.37 ± 1.53 a | 38.33 ± 1.53 b | 6.93 ± 0.09 b |
2015/2016 | ||||
CK | 485.00 ± 1.00 f | 27.63 ± 1.53 d | 36.70 ± 2.52 c | 5.05 ± 0.58 e |
CL0 | 609.70 ± 2.00 c | 36.67 ± 1.15 b | 39.46 ± 0.23 bc | 6.77 ± 0.38 cde |
CL1 | 660.00 ± 3.00 b | 37.37 ± 1.15 ab | 38.57 ± 0.81 c | 8.49 ± 0.08 abc |
CL2 | 661.03 ± 2.52 b | 39.67 ± 0.58 a | 39.00 ± 0.00 bc | 9.65 ± 0.10 a |
CL3 | 499.07 ± 1.53 e | 36.37 ± 0.58 b | 42.60 ± 0.87 a | 7.07 ± 0.47 bcd |
CL4 | 533.37 ± 3.78 d | 32.30 ± 1.00 c | 41.62 ± 3.61 ab | 6.26 ± 0.74 de |
C+O+B | 763.70 ± 2.64 a | 38.67 ± 4.04 ab | 39.30 ± 0.26 bc | 8.80 ± 0.66 ab |
2016/2017 | ||||
CK | 460.00 ± 1.00 g | 23.33 ± 1.52 d | 36.20 ± 2.52 c | 2.86 ± 0.58 e |
CL0 | 637.00 ± 2.00 d | 33.67 ± 1.15 b | 43.87 ± 0.23 ab | 7.57 ± 0.39 bc |
CL1 | 726.00 ± 3.00 b | 37.67 ± 1.15 a | 45.87 ± 0.81 a | 8.04 ± 0.08 ab |
CL2 | 694.33 ± 2.52 c | 37.67 ± 0.58 a | 44.00 ± 0.00 ab | 7.30 ± 0.10 bc |
CL3 | 580.67 ± 1.53 e | 32.67 ± 0.58 b | 43.50 ± 0.87 ab | 6.78 ± 0.47c |
CL4 | 537.67 ± 3.78 f | 27.00 ± 1.00 c | 41.20 ± 3.60 b | 4.30 ± 0.74 d |
C+O+B | 762.00 ± 5.03 a | 38.67 ± 4.04 a | 46.20 ± 0.26 a | 8.76 ± 0.67 a |
2017/2018 | ||||
CK | 502.33 ± 3.21 g | 23.67 ± 2.52 d | 35.00 ± 0.00 d | 3.22 ± 0.29 f |
CL0 | 616.33 ± 2.52 d | 32.33 ± 2.52 b | 39.77 ± 0.64 c | 6.48 ± 0.21 c |
CL1 | 723.67 ± 1.15 b | 38.67 ± 0.58 a | 45.70 ± 2.04 a | 7.00 ± 0.03 b |
CL2 | 625.67 ± 1.53 c | 35.00 ± 0.00 b | 42.83 ± 1.75 b | 6.46 ± 0.45 c |
CL3 | 588.33 ± 2.52 e | 33.67 ± 1.53 b | 42.17 ± 1.04 b | 5.91 ± 0.30 d |
CL4 | 539.67 ± 1.15 f | 28.33 ± 0.58 c | 38.43 ± 1.29 c | 4.54 ± 0.21 e |
C+O+B | 789.00 ± 8.71 a | 40.00 ± 3.00 a | 45.87 ± 0.15 a | 7.47 ± 0.10 a |
Significance of | ||||
Year (Y) | *** | *** | *** | ** |
Fertilization (F) | *** | *** | *** | *** |
Y × F | *** | *** | *** | *** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cisse, A.; Arshad, A.; Wang, X.; Yattara, F.; Hu, Y. Contrasting Impacts of Long-Term Application of Biofertilizers and Organic Manure on Grain Yield of Winter Wheat in North China Plain. Agronomy 2019, 9, 312. https://doi.org/10.3390/agronomy9060312
Cisse A, Arshad A, Wang X, Yattara F, Hu Y. Contrasting Impacts of Long-Term Application of Biofertilizers and Organic Manure on Grain Yield of Winter Wheat in North China Plain. Agronomy. 2019; 9(6):312. https://doi.org/10.3390/agronomy9060312
Chicago/Turabian StyleCisse, Amara, Adnan Arshad, Xiaofen Wang, Fanta Yattara, and Yuegao Hu. 2019. "Contrasting Impacts of Long-Term Application of Biofertilizers and Organic Manure on Grain Yield of Winter Wheat in North China Plain" Agronomy 9, no. 6: 312. https://doi.org/10.3390/agronomy9060312
APA StyleCisse, A., Arshad, A., Wang, X., Yattara, F., & Hu, Y. (2019). Contrasting Impacts of Long-Term Application of Biofertilizers and Organic Manure on Grain Yield of Winter Wheat in North China Plain. Agronomy, 9(6), 312. https://doi.org/10.3390/agronomy9060312