Post-Harvest Regulated Deficit Irrigation in Chardonnay Did Not Reduce Yield but at Long-Term, It Could Affect Berry Composition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Plant Material
2.2. Experimental Conditions
2.3. Irrigation Treatments
2.4. Experimental Design
2.5. Measurements
2.5.1. Water Applied and Vine Water Status
2.5.2. Leaf Net CO2 Assimilation Rate, Stomatal Conductance, and Transpiration Measurements
2.5.3. Vine Measurements
2.5.4. Starch Concentration
2.5.5. Fruit Growth
2.5.6. Harvest
2.6. Analysis of Statistical Data
3. Results
3.1. Water Applied and Vine Water Status
3.2. Physiological Measurements
3.3. Vegetative Growth, Yield Parameters, and Starch Concentration
3.4. Must and Base Wine Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2013: The Physical Science Basis; Stocker, T.F.D., Qin, G.-K., Plattner, M., Tignor, S.K., Allen, J., Boschung, A., Nauels, Y., Xia, B.V., Midgley, P.M., Eds.; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535.
- Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet Chang. 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Chaves, M.M.; Santos, T.P.; Souza, C.R.; Ortuño, M.F.; Rodrigues, M.L.; Lopes, C.M.; Pereira, J.S. Deficit irrigation in grapevine improves water-use efficiency while controlling vigour and production quality. Ann. Appl. Biol. 2007, 150, 237–252. [Google Scholar] [CrossRef]
- Costa, J.M.; Vaz, M.; Escalona, J.; Egipto, R.; Lopes, C.; Medrano, H.; Chaves, M.M. Modern viticulture in southern Europe: Vulnerabilities and strategies for adaptation to water scarcity. Agric. Water Manag. 2016, 164, 5–18. [Google Scholar] [CrossRef]
- OIV. Distribution of the World’s Grapevine Varieties. Focus OIV 2017. Available online: http://www.oiv.int/public/medias/5888/en-distribution-of-the-worlds-grapevine-varieties.pdf (accessed on 24 November 2018).
- FAO. AQUASTAT website. Food and Agriculture Organization of the United Nations (FAO). Available online: http://www.fao.org/nr/water/aquastat/irrigationmap (accessed on 22 November 2018).
- Cancela, J.J.; Trigo-Córdoba, E.; Martínez, E.M.; Rey, B.J.; Bouzas-Cid, Y.; Fandiño, M.; Mirás-Avalos, J.M. Effects of climate variability on irrigation scheduling in white varieties of Vitis vinifera (L.) of NW Spain. Agric. Water Manag. 2016, 170, 99–109. [Google Scholar] [CrossRef]
- Williams, L.E.; Matthews, M.A. Grapevine. In Irrigation of Agricultural Crops; Steward, B.A., Nielsen, D.R., Eds.; Agronomy Monograph No. 30; ASA-CSSA-SSSA: Madison, WI, USA, 1990; pp. 1019–1055. [Google Scholar]
- Bravdo, B.; Hepner, Y.; Loinger, C.; Cohen, S.; Tabacman, H. Effect of irrigation and crop level on growth, yield and wine quality of Cabernet Sauvignon. Am. J. Enol. Vitic. 1985, 36, 132–139. [Google Scholar]
- Cooley, N.M.; Clingeleffer, P.R.; Walker, R.R. Effect of water deficits and season on berry development and composition of Cabernet Sauvignon (Vitis vinifera L.) grown in a hot climate. Aust. J. Grape Wine Res. 2017, 23, 260–272. [Google Scholar] [CrossRef]
- Ojeda, H.; Andary, C.; Kraeva, E.; Carbonneau, A.; Deloire, A. Influence of pre- and postveraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera cv. Shiraz. Am. J. Enol. Vitic. 2002, 53, 261–267. [Google Scholar]
- Girona, J.; Marsal, J.; Mata, M.; Del Campo, J.; Basile, B. Phenological sensitivity of berry growth and composition of Tempranillo grapevines (Vitis Vinifera L.) to water stress. Aust. J. Grape Wine Res. 2009, 15, 268–277. [Google Scholar] [CrossRef]
- Reynolds, A.G.; Lowrey, W.D.; Tomek, L.; Hakimi, J.; De Savigny, C. Influence of irrigation on vine performance, fruit composition, and wine quality of chardonnay in a cool, humid climate. Am. J. Enol. Vitic. 2007, 58, 217–228. [Google Scholar]
- Basile, B.; Girona, J.; Behboudian, M.H.; Mata, M.; Rosello, J.; Ferré, M.; Marsal, J. Responses of “Chardonnay” to deficit irrigation applied at different phenological stages: Vine growth, must composition, and wine quality. Irrig. Sci. 2012, 30, 397–406. [Google Scholar] [CrossRef]
- Andrés-Lacueva, C.; Gallart, M.; López-Tamames, E.; Lamuela-Raventós, R.M. Influence of Variety and Aging on Foaming Properties of Sparkling Wine (Cava). J. Agric. Food Chem. 1996, 44, 3826–3829. [Google Scholar] [CrossRef]
- Jones, J.E.; Kerslake, F.L.; Close, D.C.; Dambergs, R.G. Viticulture for sparkling wine production: A review. Am. J. Enol. Vitic. 2014, 65, 407–416. [Google Scholar] [CrossRef]
- Bellvert, J.; Marsal, J.; Mata, M.; Girona, J. Yield, Must Composition, and Wine Quality Responses to Preveraison Water Deficits in Sparkling Base Wines of Chardonnay. Am. J. Enol. Vitic. 2016, 67, 1–12. [Google Scholar] [CrossRef]
- Ramos, M.C.; Martínez-Casasnovas, J.A. Effects of precipitation patterns and temperature trends on soil water available for vineyards in a Mediterranean climate area. Agric. Water Manag. 2010, 97, 1495–1505. [Google Scholar] [CrossRef]
- Webb, L.; Whetton, P.; Barlow, E.W.R. Modelled impact of future climate change on phenology of wine grapes in Australia. Aust. J. Grape Wine Res. 2007, 13, 165–175. [Google Scholar] [CrossRef]
- Petrie, P.R.; Sadras, V.O. Advancement of grapevine maturity in Australia between 1993 and 2006: Putative causes, magnitude of trends and viticultural consequences. Aust. J. Grape Wine Res. 2008, 14, 33–45. [Google Scholar] [CrossRef]
- Ramos, M.C.; Jones, G.V.; Yuste, J. Phenology of Tempranillo and Cabernet-Sauvignon varieties cultivated in the Ribera del Duero DO: Observed variability and predictions under climate change scenarios. Oeno One 2018, 52, 31–44. [Google Scholar] [CrossRef]
- Zapata, C.; Deléens, E.; Chaillou, S.; Magné, C. Partitioning and mobilization of starch and N reserves in grapevine (Vitis vinifera L.). J. Plant Physiol. 2004, 161, 031–1040. [Google Scholar] [CrossRef]
- Holzapfel, B.P.; Smith, J.P.; Mandel, R.M.; Keller, M. Manipulating the postharvest period and its impact on vine productivity of Semillon grapevines. Am. J. Enol. Vitic. 2006, 57, 148–157. [Google Scholar]
- Bennett, J.; Jarvis, P.; Creasy, G.L.; Trought, M.C.T. Influence of Defoliation on Overwintering Carbohydrate Reserves, Return Bloom, and Yield of Mature Chardonnay Grapevines. Am. J. Enol. Vitic. 2005, 56, 386–393. [Google Scholar]
- Vaillant-Gaveau, N.; Wojnarowiez, G.; Petit, A.; Jacquens, L.; Panigai, L.; Clément, C.; Fontaine, F. Relationships between carbohydrates and reproductive development in Chardonnay grapevine: Impact of defoliation and fruit removal treatments during four successive growing seasons. J. Int. Sci. Vigne Vin 2014, 48, 219–229. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; Irrigation and Drainage 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Shackel, K.A.; Ahmadi, H.; Biasi, W.; Buchner, R.; Goldhamer, D.; Yeager, J. Plant water status as an index of irrigation need in deciduous fruit trees. HortTechnology 1997, 7, 23–29. [Google Scholar] [CrossRef]
- Basile, B.; Marsal, J.; Mata, M.; Vallverdú, X.; Bellvert, J.; Girona, J. Phenological Sensitivity of Cabernet Sauvignon to Water Stress: Vine Physiology and Berry Composition. Am. J. Enol. Vitic. 2011, 62, 453–461. [Google Scholar] [CrossRef]
- Lorenz, D.H.; Eichhorn, K.W.; Bleiholder, H.; Klose, R.; Meier, U.; Weber, E. Phenological growth stages of the grapevine, Vitis vinifera L. ssp. vinifera. Codes and 515 descriptions according to the extended BBCH scale. Aust. J. Grape Wine Res. 1995, 1, 100–103. [Google Scholar] [CrossRef]
- Oyarzun, R.A.; Stöckle, C.O.; Whiting, M.D. A simple approach to modeling radiation interception by fruit-tree orchards. Agric. Meteorol. 2007, 142, 12–24. [Google Scholar] [CrossRef]
- Smart, R.E. Principles of Grapevine Canopy Microclimate Manipulation with Implications for Yield and Quality. A Review. Am. J. Bot. 1985, 36, 230–239. [Google Scholar]
- Sauter, J.J.; van Cleve, B. Storage, mobilization and interrelations of starch, sugars, protein and fat in the ray storage tissue of poplar trees. Trees 1994, 8, 297–304. [Google Scholar] [CrossRef]
- Boehringer, M. UV Method for the Determination of Native Starch and Partially Hydrolized Starch in Foodstuffs and Other Materials; Enzymatic Bioanalysis/Food analysis R-Biopharm; GmbH: Darmstadt, Germany, 1984; p. 5. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017; Available online: https://www.R-project.org/ (accessed on September 2016).
- Williams, L.E.; Neja, R.A.; Meyer, J.L.; Yates, L.A.; Walker, E.L. Post harvest irrigation influences budbreak of “Perlette” grapevines. Hortscience 1991, 26, 1081. [Google Scholar] [CrossRef]
- Ndung’u, C.K.; Okamoto, G.; Hirano, K. Use of water stress in forcing Kyoho grapevines to produce two crops per year. Am. J. Enol. Vitic. 1996, 47, 157–162. [Google Scholar]
- Ndung’u, C.K.; Shimizu, M.; Okamoto, G.; Hirano, K. Abscisic acid, carbohydrates, and nitrogen contents of Kyoho grapevines in relation to budbreak induction by water stress. Am. J. Enol. Vitic. 1997, 48, 115–120. [Google Scholar]
- Mullins, M.G.; Bouquet, A.; Williams, L.E. Biology of the Grapevine; Mullins, M.G., Ed.; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Tomasi, D. Grape quality starts at the roots. Acta Hortic. 2016, 1136, 1–10. [Google Scholar] [CrossRef]
- Candolfi-Vasconcelos, M.C.; Koblet, W. Yield, fruit quality, bud fertility and starch reserves of the wood as a function of leaf removal in Vitis vinifera: Evidence of compensation and stress recovering. Vitis 1990, 29, 199–221. [Google Scholar]
- Sommer, K.J.; Islam, M.T.; Clingeleffer, P.R. Light and temperature effects on shoot fruitfulness in Vitis vinifera L. cv. Sultana: Influence of trellis type and grafting. Aust. J. Grape Wine Res. 2000, 6, 99–108. [Google Scholar] [CrossRef]
- Greven, M.M.; Neal, S.M.; Tustin, D.S.; Boldingh, H.; Bennett, J.; Vasconcelos, M.C. The Effect of Postharvest Defoliation on Carbon and Nitrogen Resources of High Yielding Sauvignon blanc Grapevines. Am. J. Enol. Vitic. 2016, 67, 315–326. [Google Scholar] [CrossRef] [Green Version]
- Prats-Llinàs, M.T.; García-Tejera, O.; Marsal, J.; Girona, J. Water stress during the post-harvest period affects new root formation but not starch concentration and content in Chardonnay grapevine (Vitis vinifera L.) perennial organs. Sci. Hortic. 2019, 249, 461–470. [Google Scholar] [CrossRef]
- Samperio, A.; Prieto, M.H.; Blanco-Cipollone, F.; Vivas, A.; Moñino, M.J. Effects of post-harvest deficit irrigation in “Red Beaut” Japanese plum: Tree water status, vegetative growth, fruit yield, quality and economic return. Agric. Water Manag. 2015, 150, 92–102. [Google Scholar] [CrossRef]
- Johnson, R.S.; Handley, D.F.; DeJong, T.M. Long-term response of early maturing peach trees to postharvest water stress. J. Am. Soc. Hortic. Sci. 1992, 117, 881–886. [Google Scholar] [CrossRef]
- Dichio, B.; Xiloyannis, C.; Sofo, A.; Montanaro, G. Effects of post-harvest regulated deficit irrigation on carbohydrate and nitrogen partitioning, yield quality and vegetative growth of peach trees. Plant Soil 2007, 290, 127–137. [Google Scholar] [CrossRef]
- Vasconcelos, M.C.; Greven, M.; Winefield, C.S.; Trought, M.C.T.; Raw, V. The Flowering Process of Vitis vinifera: A Review. Am. J. Enol. Vitic. 2009, 60, 411–434. [Google Scholar]
- Escalona, J.M.; Flexas, J.; Bota, J.; Medrano, H. Distribution of leaf photosynthesis and transpiration within grapevine canopies under different drought conditions. Vitis 2003, 42, 57–64. [Google Scholar]
- Reynolds, A.G.; Price, S.F.; Wardle, D.A.; Watson, B.T. Fruit Environment and Crop Level Effects on Pinot-Noir.1. Vine Performance and Fruit Composition in British-Columbia. Am. J. Enol. Vitic. 1994, 45, 452–459. [Google Scholar]
- Uriarte, D.; Intrigliolo, D.S.; Mancha, L.A.; Valdés, E.; Gamero, E.; Prieto, M.H. Combined effects of irrigation regimes and crop load on “Tempranillo” grape composition. Agric. Water Manag. 2016, 165, 97–107. [Google Scholar] [CrossRef]
- De Souza, C.R.; Maroco, J.P.; dos Santos, T.P.; Rodrigues, M.L.; Lopes, C.M.; Pereira, J.S.; Chaves, M.M. Grape berry metabolism in field-grown grapevines exposed to different irrigation strategies. Vitis 2005, 44, 103–109. [Google Scholar]
- Gu, S.; Jacobs, S.D.; McCarthy, B.S.; Gohil, H.L. Forcing vine regrowth and shifting fruit ripening in a warm region to enhance fruit quality in “Cabernet Sauvignon” grapevine (Vitis vinifera L.). J. Hortic. Sci. Biotechnol. 2012, 87, 287–292. [Google Scholar] [CrossRef]
Year/Weather Variables | Phenological Stage Period | |||||
---|---|---|---|---|---|---|
Budbreak to Harvest | Post-Harvest | |||||
Ta (°C) | ETo (mm) | Rainfall (mm) | Ta (°C) | ETo (mm) | Rainfall (mm) | |
2013 | - | - | - | 18.7 | 175.7 | 12.5 |
2014 | 17.9 | 615.9 | 102.3 | 20.6 | 274.5 | 172.8 |
2015 | 20.1 | 664.0 | 89.7 | 19.6 | 200.1 | 26.6 |
2016 | 17.4 | 670.8 | 138.2 | - | - | - |
P > F | |||||||||
---|---|---|---|---|---|---|---|---|---|
Vegetative growth | Yield parameters | Root reserves | |||||||
Source | DF | Shoots | Inflorescence | Kg/vine | Clusters/vine | Berries/cluster | Berry dry weight (g) | DF | Starch concentration (%) |
Treatment (T) | 3 | 0.3530 X | 0.6195 | 0.6536 | 0.0659 | 0.2899 | 0.9266 | 3 | *** |
Block (B) | 3 | 0.7590 | 0.2258 | 0.9575 | 0.4810 | 0.2992 | 0.9760 | 3 | *** |
Year (Y) | 1 | *** | 0.0063 ** | *** | *** | *** | 0.00901 ** | - | - |
C | 44.7 Y | 46.0 | 9.1 | 35 | 166 | 0.33 | C | 13.21a | |
RDIL SP | 45.0 | 46.7 | 8.9 | 35 | 168 | 0.33 | RDIL SP | 10.13b | |
RDIM SP | 43.6 | 45.7 | 8.8 | 33 | 168 | 0.34 | RDIM SP | 9.23b | |
RDIM W | 42.8 | 44.7 | 8.7 | 33 | 161 | 0.34 | RDIM W | 10.07b |
Berry composition | ||||||
---|---|---|---|---|---|---|
Year | 2014 | 2015 | 2016 | |||
Irrigation treatments | SSC (°Brix) | TA (g/L tartaric acid) | SSC (°Brix) | TA (g/L tartaric acid) | SSC (°Brix) | TA (g/L tartaric acid) |
C | 17.6 | 9.7 | 17.7 | 11.8a | 15.9b | 10.9a |
RDIL SP | 18.4 | 9.5 | 17.6 | 11.3ab | 15.9b | 10.8ab |
RDIM SP | 17.2 | 9.3 | 17.9 | 11.1b | 16.4ab | 10.4ab |
RDIM W | 21.4 | 6.7 | 21.1 | 8.5 | 17.0a | 9.9b |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prats-Llinàs, M.T.; Bellvert, J.; Mata, M.; Marsal, J.; Girona, J. Post-Harvest Regulated Deficit Irrigation in Chardonnay Did Not Reduce Yield but at Long-Term, It Could Affect Berry Composition. Agronomy 2019, 9, 328. https://doi.org/10.3390/agronomy9060328
Prats-Llinàs MT, Bellvert J, Mata M, Marsal J, Girona J. Post-Harvest Regulated Deficit Irrigation in Chardonnay Did Not Reduce Yield but at Long-Term, It Could Affect Berry Composition. Agronomy. 2019; 9(6):328. https://doi.org/10.3390/agronomy9060328
Chicago/Turabian StylePrats-Llinàs, Maria Teresa, Joaquim Bellvert, Mercè Mata, Jordi Marsal, and Joan Girona. 2019. "Post-Harvest Regulated Deficit Irrigation in Chardonnay Did Not Reduce Yield but at Long-Term, It Could Affect Berry Composition" Agronomy 9, no. 6: 328. https://doi.org/10.3390/agronomy9060328
APA StylePrats-Llinàs, M. T., Bellvert, J., Mata, M., Marsal, J., & Girona, J. (2019). Post-Harvest Regulated Deficit Irrigation in Chardonnay Did Not Reduce Yield but at Long-Term, It Could Affect Berry Composition. Agronomy, 9(6), 328. https://doi.org/10.3390/agronomy9060328