Soil Quality of Abandoned Agricultural Terraces Managed with Prescribed Fires and Livestock in the Municipality of Capafonts, Catalonia, Spain (2000–2017)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. pH
4.2. Organic Carbon and Total Nitrogen
4.3. Cations
4.4. Phosphorous
4.5. Calcium Carbonates
4.6. Multivariable Analysis and Soil Quality in 2017
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Doerr, S.H.; Santín, C. Global trends in wildfire and its impacts: Perceptions versus realities in a changing world. Philos. Trans. R. Soc. B: Biol. Sci. 2016, 371, 20150345. [Google Scholar] [CrossRef] [PubMed]
- Pausas, J.G.; Llovet, J.; Rodrigo, A.; Vallejo, R. Are wildfires a disaster in the Mediterranean basin?—A review. Int. J. Wildland Fire 2009, 17, 713–723. [Google Scholar] [CrossRef]
- Vélez, R. La Defensa Contra Incendios Forestales: Fundamentos y Experiencias; McGraw Hill Interamericana De España S.A.U: Madrid, Spain, 2000. [Google Scholar]
- Moreira, F.; Rego, F.C.; Ferreira, P.G. Temporal (1958–1995) pattern of change in a cultural landscape of northwestern Portugal: Implications for fire occurrence. Landsc. Ecol. 2001, 16, 557–567. [Google Scholar] [CrossRef]
- Pausas, J.G.; Fernández-Muñoz, S. Fire regime changes in the Western Mediterranean Basin: From fuel-limited to drought-driven fire regime. Clim. Chang. 2012, 110, 215–226. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Davies, G.M.; Ascoli, D.; Fernández, C.; Moreira, F.; Rigolot, E.; Molina, D. Prescribed burning in southern Europe: Developing fire management in a dynamic landscape. Front. Ecol. Environ. 2013, 11, e4–e14. [Google Scholar] [CrossRef]
- Verkerk, P.J.; de Arano, I.M.; Palahí, M. The bio-economy as an opportunity to tackle wildfires in Mediterranean forest ecosystems. For. Policy Econ. 2018, 86, 1–3. [Google Scholar] [CrossRef]
- Galán, M.; Lleonart, S. Plans de gestió de grans incendis forestals. In Incendis Forestals, Dimensió Sociambiental, Gestió Del Risc i Ecologia Del Foc; Plana, E., Ed.; XCT2001-00061; Xarxa ALINFO: Solsona, Spain, 2004; pp. 50–55. [Google Scholar]
- Francos, M.; Pereira, P.; Alcañiz, M.; Mataix-Solera, J.; Úbeda, X. Impact of an intense rainfall evento on soil properties following a wildfire in a Mediterranean environment (North-East Spain). Sci. Total Environ. 2016, 572, 1353–1362. [Google Scholar] [CrossRef] [PubMed]
- Úbeda, X.; Lorca, M.; Outeiro, L.; Bernia, S.; Castellnou, M. Effects of prescribed fire on soil quality in Mediterranean grassland (Prades Mountains, northeast Spain). Int. J. Wildland Fire 2005, 14, 379–384. [Google Scholar] [CrossRef]
- Available online: http://ramatsalbosc.org/ (accessed on 15 May 2019).
- Alcañiz, M.; Outeiro, L.; Francos, M.; Úbeda, X. Effects of prescribed fires on soil properties: A review. Sci. Total Environ. 2018, 613, 944–957. [Google Scholar] [CrossRef]
- Outerio, L.; Asperó, F.; Úbeda, X. Geostatistical methods to study spatial variability of soil cations after a prescribed fire and rainfall. Catena 2008, 74, 310–320. [Google Scholar] [CrossRef]
- Pereira, P.; Úbeda, X.; Martin, D. Fire severity effects on ash chemical composition and water-extractable elements. Geoderma 2012, 141, 105–114. [Google Scholar] [CrossRef]
- Alcañiz, A.; Outeiro, L.; Francos, M.; Farguell, F.; Úbeda, X. Long-term dynamics of soil chemical properties after a prescribed fire in a Mediterranean forest (Montgri Massif, Catalonia, Spain). Sci. Total Environ. 2016, 572, 1329–1335. [Google Scholar] [CrossRef]
- Lovreglio, R.; Meddour-Sahar, O.; Leone, V. Goat grazing as a wildfire prevention tool: A basic review. iFor. Biogeosci. For. 2014, 7, 260–268. [Google Scholar] [CrossRef]
- Pulido, M.; Schnabel, S.; Lavado Contador, J.F.; Lozano-Parra, J.; González, F. The impact of heavy grazing on soil quality and pasture production in rangelands of SW Spain. Land Degrad. Dev. 2018, 29, 219–230. [Google Scholar] [CrossRef]
- Institut d’Estadística de Catalunya. Available online: www.idescat.cat (accessed on 29 June 2018).
- Capafonts Local Council. Butlletí d’informació Municipal (2011–2015); Capafonts Local Council: Capafonts, Spain, 2015; 32p. [Google Scholar]
- FAO. State of the World’s Forests; FAO: Rome, Italy, 2011; p. 179. [Google Scholar]
- Badia, A.; Valldeperas, N. El valor histórico y estético del paisaje: Claves para entender la vulnerabilidad de la interfaz urbano-forestal frente a los incendios. Scr. Nova 2015, 19, 1–26. [Google Scholar]
- USDA. Claves para la Taxonomía de Suelos; United States Department of Agriculture: Washington, DC, USA, 1999; p. 410.
- MAPA (Ministerio de Agricultura Pesca y Alimentación). Métodos Oficiales de Análisis Vol III; Secretaría Técnica General: Madrid, Spain, 1996. [Google Scholar]
- Heiri, O.; Lotter, A.F.; Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. J. Paleolomnol. 2001, 5, 101–110. [Google Scholar] [CrossRef]
- Olsen, S.R.; Cole, C.V.; Frank, S.W.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; USDA Circular No 939; US Government Printing Office: Washington, DC, USA, 1954.
- Knudsen, D.; Petersen, G.A. Lithium Sodium and potassium. In Methods of Soil Analysis; Soil Science Society of America: Madison, WI, USA, 1986; Volume 2, pp. 225–246. [Google Scholar]
- Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Brye, K.R. Soil physicochemical changes following 12 years of annual burning in a humid-subtropical tallgrass prairie: A hypothesis. Acta Oecol. 2006, 30, 407–413. [Google Scholar] [CrossRef]
- Valkó, O.; Deak, B.; Magura, T.; Torok, P.; Kelemen, A.; Tóth, K.; Horvarth, R.; Nagy, D.D.; Debnar, Z.; Zsigrai, G.; et al. Supporting biodiversity by prescribed burning in grasslands-A multi-taxa approach. Sci. Total Environ. 2016, 572, 1377–1384. [Google Scholar] [CrossRef]
- Switzer, J.M.; Hope, G.D.; Grayston, S.J.; Prescott, C.E. Changes in soil chemical and biological properties after thinning and prescribed fire for ecosystem restoration in a Rocky Mountain Douglas-fir forest. For. Ecol. Manag. 2012, 275, 1–13. [Google Scholar] [CrossRef]
- Arocena, J.M.; Opio, C. Prescribed fire-induced changes in properties of sub-boreal forest soils. Geoderma 2003, 113, 1–16. [Google Scholar] [CrossRef]
- Lavoie, M.; Starr, G.; Mack, M.C.; Martin, T.; Gholz, H.L. Effects of a prescribed fire on understory vegetation, carbon pools, and soil nutrients in a longleaf pine-slash pine forest in Florida. Nat. Area J. 2010, 30, 82–94. [Google Scholar] [CrossRef]
- Muqaddas, B.; Zhou, X.; Lewis, T.; Wild, C.; Chen, C. Long-term frequent prescribed fire decreases surface soil carbon and nitrogen pools in wet sclerophyll forest of Southeast Queensland, Australia. Sci. Total Environ. 2015, 536, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Teague, W.R.; Dowhower, S.L.; Baker, S.A.; Haile, N.; DeLaune, P.B.; Conover, D.M. Grazing management impacts on vegetation, soil biota and soil chemical, physical and hydrological properties in tall grass prairie. Agric. Ecosyst. Environ. 2011, 141, 310–322. [Google Scholar] [CrossRef]
- Gónzalez-Pérez, J.A.; González-Vila, F.J.; Almendros, G.; Knicker, H. The effects of fire on soil organic matter—A review. Environ. Int. 2004, 30, 855–870. [Google Scholar] [CrossRef] [PubMed]
- Soto, B.; Díaz-Fierros, F. Interactions between plant ash leachates and soil. Int. J. Wildland Fire 1993, 3, 207–216. [Google Scholar] [CrossRef]
- Scharenbroch, B.C.; Nix, B.; Jacobs, K.A.; Bowles, M.L. Two decades of low-severity prescribed fire increases soil nutrient availability in Midwestern, USA oak (Quercus) forest. Geoderma 2012, 183, 89–91. [Google Scholar] [CrossRef]
- Qasim, S.; Gul, S.; Shah, M.H.; Hussain, F.; Ahmad, S.; Islam, M.; Rehman, G.; Yaqoob, M.; Shah, S.Q. Influence of grazing exclosure on vegetation biomass and soil quality. Int. Soil Water Conserv. Res. 2017, 5, 62–68. [Google Scholar] [CrossRef]
- Shakesby, R.A.; Bento, C.P.M.; Ferreira, C.S.S.; Ferreira, A.J.D.; Stoof, C.R.; Urbanek, E.; Walsh, R.P.D. Impacts of prescribed fire on soil loss and soil quality: An assessment based on an experimentally-burned catchment in central Portugal. Catena 2015, 128, 278–293. [Google Scholar] [CrossRef]
- Roaldson, L.M.; Johnson, D.W.; Miller, W.W.; Murphy, J.D.; Walker, R.F.; Stein, C.M.; Glass, D.W. Prescribed fire and timber harvesting effects on soil carbon and nitrogen in a pine forest. Soil Sci. Soc. Am. J. 2014, 78, S48–S57. [Google Scholar] [CrossRef]
- Blankenship, B.A.; Arthur, M.A. Soil nutrient and microbial response to prescribed fire in an oak-pine ecosystem in eastern Kentucky. In Proceedings of the 12th Central Hardwood Forest Conference, Lexington, KY, USA, 1–2 March 1999; Stringer, J., Loftis, D., Eds.; Gen. Tech. Rep. SRS 24. USDA: Asheville, NC, USA, 1999; pp. 39–50. [Google Scholar]
- Canals, R.M.; Pedro, J.; Rupérez, E.; San Emeterio, L. Nutrient pulses after prescribed Winter fires and preferential patterns of N uptake may contribute to the expansion of B rachypodium pinnatum (L.) P Beauv. in highland grasslands. Appl. Veg. Sci. 2014, 17, 419–428. [Google Scholar] [CrossRef]
- Bowen, G.D.; Danso, S. Investigación sobre el nitrógeno en los cultivos perennes. OIEA Boletín 1987, 2, 5–8. [Google Scholar]
- McNabb, D.H.; Cromack, K., Jr. Effects of prescribed fire on nutrients and soil productivity. In Natural and Prescribed Fire in Pacific Northwest Forests; Walstad, J.D., Radosevich, S.R., Sandberg, D.V., Eds.; Oregon State University Press: Corvallis, OR, USA, 1990; pp. 125–141. [Google Scholar]
- Afif, E.; Oliveira, P. Efectos del fuego prescrito sobre el matorral en las propiedades del suelo. Investigaciones Agrarias. Sistema de Recursos Forestales 2006, 15, 262–270. [Google Scholar]
- McKee, W.H. Changes in Soil Fertility Following Prescribed Burning on Costal Pine Sites; United States Department of Agriculture Forest Service Research Paper SE-234; Southern Forest Experiment Station: Asheville, NC, USA, 1982. [Google Scholar]
- Aarons, S.R.; Hosseini, H.M.; Dorling, L.; Gourley, C.J.P. Dung decomposition in temperate dairy pastures. II contribution to plant-available soil phosphorus. Aust. J. Soil Res. 2004, 42, 115–123. [Google Scholar] [CrossRef]
- Sharpley, A.; Moyer, B. Phosporous forms in manure and compost and their release during simulated rainfall. J. Environ. Qual. 2000, 29, 1462–1469. [Google Scholar] [CrossRef]
- Stavi, I.; Ungar, E.D.; Lavee, H.; Sarah, P. Grazing-induced spatial variability of soil bulk density and content of moisture, organic carbon and calcium carbonate in a semi-arid grassland. Catena 2008, 75, 288–296. [Google Scholar] [CrossRef]
- INIA (Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria). Interpretación de Análisis de Suelos; Serie Actas 4; INIA: Madrid, Spain, 2016; pp. 10–14. [Google Scholar]
- Espinoza, L.; Slaton, N.; Mozaffari, M. Cómo Interpretar Los Resultados de Los Análisis de Suelos; Division of Agriculture Research & Extension, University of Arkansas System: Little Rock, AR, USA, 2007; Available online: https://www.uaex.edu/publications/PDF/FSA-2118SP.pdf (accessed on 15 May 2019).
- Sela, G. Guía de Interpretación de Análisis de Suelos; Smart Fertilizer Management: London, UK, 2018; pp. 1–4. [Google Scholar]
- Landon, S. Introducción al análisis de suelos; CIAT: Cali, Colombia, 1983. [Google Scholar]
- AQM. Available online: http://aqmlaboratorios.com (accessed on 5 June 2018).
Soil Properties | Statistics | Before PF | After PF | 1 Year | 2 Years and Immediately after Second PF | 4 Years Goats Introduced | 17 Years |
---|---|---|---|---|---|---|---|
pH | Min | 7.37 | 7.73 | 7.63 | 7.60 | 7.29 | 7.07 |
Max | 8.11 | 8.23 | 7.91 | 7.79 | 8.24 | 7.63 | |
Mean | 7.83 | 8.00 | 7.77 | 7.71 | 7.76 | 7.37 | |
SD | 0.14 | 0.13 | 0.07 | 0.05 | 0.18 | 0.13 | |
Variance | 0.02 | 0.02 | 0.01 | 0.00 | 0.03 | 0.02 | |
*** | b | a | bc | c | bc | d | |
OC (%) | Min | 3.55 | 4.32 | 6.54 | 7.77 | 4,54 | 1.10 |
Max | 21.98 | 24.74 | 14.18 | 12.17 | 12.98 | 12.51 | |
Mean | 10.32 | 11.53 | 11.42 | 10.09 | 8.56 | 5.39 | |
SD | 4.56 | 4.04 | 1.70 | 1.10 | 2.00 | 2.85 | |
Variance | 20.76 | 16.34 | 2.90 | 1.21 | 3.76 | 8.13 | |
*** | ab | a | a | ab | b | c | |
N (%) | Min | 0.26 | 0.32 | 0.29 | 0.23 | 0.20 | 0.32 |
Max | 0.53 | 0.64 | 0.64 | 0.50 | 0.50 | 0.94 | |
Mean | 0.36 | 0.46 | 0.48 | 0.34 | 0.32 | 0.63 | |
SD | 0.08 | 0.24 | 0.11 | 0.07 | 0.08 | 0.14 | |
Variance | 0.01 | 0.06 | 0.01 | 0.00 | 0.01 | 0.02 | |
*** | c | b | b | c | c | a | |
Ca2+ (ppm) | Min | 16,710 | 13,830 | 5120 | 15,138 | 4578 | 9014 |
Max | 29,900 | 31,280 | 13,420 | 21,731 | 9066 | 12,632 | |
Mean | 22,130 | 20,784 | 8836 | 18,179 | 6469 | 10,177 | |
SD | 4329 | 4121 | 2037 | 1668 | 869 | 790 | |
Variance | 18,748,186 | 16,990,130 | 4,149,975 | 2,783,349 | 756,751 | 625,038 | |
*** | a | a | c | b | d | c | |
Mg2+ (ppm) | Min | 614 | 960 | 320 | 533 | 474 | 325 |
Max | 1583 | 1444 | 830 | 838 | 886 | 640 | |
Mean | 1006 | 1244 | 507 | 627 | 713 | 446 | |
SD | 254 | 139 | 130 | 67 | 78 | 73 | |
Variance | 63,476 | 19,543 | 17,043 | 4522 | 6173 | 5446 | |
*** | b | a | d | c | c | d | |
K+ (ppm) | Min | 697 | 900 | 459 | 606 | 563 | 460 |
Max | 1732 | 1816 | 928 | 1003 | 956 | 865 | |
Mean | 1132 | 1326 | 665 | 738 | 771 | 591 | |
SD | 319 | 246 | 134 | 95 | 96 | 98 | |
Variance | 101,881 | 60,900 | 18,183 | 9155 | 9273 | 9617 | |
*** | b | a | cd | c | c | d | |
P2O5 (ppm) | Min | 49.12 | 5.98 | 78.95 | 105.20 | 41.20 | 45.00 |
Max | 138.01 | 245.72 | 253.16 | 320.44 | 142.54 | 143.55 | |
Mean | 84.70 | 132.24 | 137.25 | 216.53 | 65.24 | 69.61 | |
SD | 24.33 | 42.62 | 36.59 | 48.89 | 20.28 | 19.39 | |
Variance | 591.74 | 1816.65 | 1338.91 | 2390.59 | 411.39 | 375.89 | |
*** | c | b | b | a | c | c | |
CaCO3 (%) | Min | 21.48 | 19.57 | 11.01 | 20.60 | 21.00 | 21.60 |
Max | 43.61 | 32.97 | 28.76 | 30.91 | 29.05 | 29.13 | |
Mean | 28.72 | 24.34 | 20.80 | 24.28 | 25.87 | 24.54 | |
SD | 4.30 | 3.23 | 3.86 | 2.04 | 1.99 | 1.67 | |
Variance | 18.50 | 10.45 | 14.95 | 4.16 | 4.03 | 2.81 | |
*** | a | b | c | b | b | b |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Úbeda, X.; Alcañiz, M.; Borges, G.; Outeiro, L.; Francos, M. Soil Quality of Abandoned Agricultural Terraces Managed with Prescribed Fires and Livestock in the Municipality of Capafonts, Catalonia, Spain (2000–2017). Agronomy 2019, 9, 340. https://doi.org/10.3390/agronomy9060340
Úbeda X, Alcañiz M, Borges G, Outeiro L, Francos M. Soil Quality of Abandoned Agricultural Terraces Managed with Prescribed Fires and Livestock in the Municipality of Capafonts, Catalonia, Spain (2000–2017). Agronomy. 2019; 9(6):340. https://doi.org/10.3390/agronomy9060340
Chicago/Turabian StyleÚbeda, Xavier, Meritxell Alcañiz, Gonzalo Borges, Luis Outeiro, and Marcos Francos. 2019. "Soil Quality of Abandoned Agricultural Terraces Managed with Prescribed Fires and Livestock in the Municipality of Capafonts, Catalonia, Spain (2000–2017)" Agronomy 9, no. 6: 340. https://doi.org/10.3390/agronomy9060340
APA StyleÚbeda, X., Alcañiz, M., Borges, G., Outeiro, L., & Francos, M. (2019). Soil Quality of Abandoned Agricultural Terraces Managed with Prescribed Fires and Livestock in the Municipality of Capafonts, Catalonia, Spain (2000–2017). Agronomy, 9(6), 340. https://doi.org/10.3390/agronomy9060340