Classification of Groundwater Suitability for Irrigation in the Ulagalla Tank Cascade Landscape by GIS and the Analytic Hierarchy Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Cascade Boundary Demarcation and Groundwater Sampling
2.3. Indices of Irrigation Water Quality
2.4. Spatial Interpolation
2.5. Analytic Hierarchy Process (AHP)
3. Results and Discussion
3.1. Hydrochemistry of Groundwater in the Ulagalla Cascade
3.2. Weighting of Criteria for Irrigation Water Quality
3.3. Irrigation Water Quality Zoning in the Ulagalla Cascade
3.4. Groundwater Quality for Irrigation: Present Status and Future Implications in the Tank Cascade Landscape
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Annapoorna, H.; Janardhana, M.R. Assessment of groundwater quality for drinking purpose in rural areas surrounding a defunct copper mine. Aquat. Procedia 2015, 4, 685–692. [Google Scholar] [CrossRef]
- Jalali, M. Effect of sodium and magnesium on kinetics of potassium release in some calcareous soils of western Iran. Geoderma 2008, 145, 207–215. [Google Scholar] [CrossRef]
- Gunarathna, M.H.J.P.; Kumari, M.K.N.; Nirmanee, K.G.S.; Jayasinghe, G.Y. spatial and seasonal water quality variation of yan oya in tropical Sri Lanka. Int. J. Appl. Nat. Sci. 2016, 5, 45–56. [Google Scholar] [CrossRef]
- Raychaudhuri, M.; Raychaudhuri, S.; Jena, S.K.; Kumar, A.; Srivastava, R.C. WQI to Monitor Water Quality for Irrigation and Potable Use; S J Technotrade (P) Ltd.: Bhubaneswar, India, 2014; ISBN 9167423000. [Google Scholar]
- Kumari, M.K.N.; Pathmarajah, S.; Dayawansa, N.D.K.; Nirmanee, K.G.S. Evaluation of groundwater quality for irrigation in Malwathu Oya cascade-I in Anuradhapura District of Sri Lanka. Trop. Agric. Res. 2016, 27, 310–324. [Google Scholar] [CrossRef]
- Nag, S.K.; Suchetana, B. Groundwater quality and its suitability for irrigation and domestic purposes: A study in Rajnagar block, Birbhum district, West Bengal, India. J. Earth Sci. Clim. Change 2016, 7, 1–15. [Google Scholar] [CrossRef]
- Sarath Prasanth, S.V.; Magesh, N.S.; Jitheshlal, K.V.; Chandrasekar, N.; Gangadhar, K. Evaluation of groundwater quality and its suitability for drinking and agricultural use in the coastal stretch of Alappuzha District, Kerala, India. Appl. Water Sci. 2012, 2, 165–175. [Google Scholar] [CrossRef] [Green Version]
- Kumari, M.K.N.; Pathmarajah, S.; Dayawansa, N.D.K. Characterization of agro-well water in Malwathu Oya cascade-I in Anuradhapura District of Sri Lanka. Trop. Agric. Res. 2013, 25, 46–55. [Google Scholar] [CrossRef]
- Gunarathne, M.H.J.P.; Kumari, M.K.N. Water quality for agriculture and aquaculture in Malwathu Oya cascade-I in Sri Lanka. Rajarata Univ. J. 2014, 2, 33–39. [Google Scholar]
- Subramani, T.; Rajmohan, N.; Elango, L. Groundwater geochemistry and identification of hydrogeochemical processes in a hard rock region, Southern India. Environ. Monit. Assess. 2010, 162, 123–137. [Google Scholar] [CrossRef]
- Thapa, R.; Gupta, S.; Reddy, D.V.; Kaur, H. Comparative evaluation of water quality zonation within Dwarka River Basin, India. Hydrol. Sci. J. 2018, 63, 583–595. [Google Scholar] [CrossRef]
- Gunaalan, K.; Ranagalage, M.; Gunarathna, M.H.J.P.; Kumari, M.K.N.; Vithanage, M.; Saravanan, S.; Warnasuriya, T.W.S. Application of geospatial techniques for groundwater quality and availability assessment: A case study in Jaffna Peninsula, Sri Lanka. Int. J. Geo Inf. 2018, 7, 20. [Google Scholar] [CrossRef]
- Ranagalage, M.; Estoque, R.C.; Handayani, H.H.; Zhang, X.; Morimoto, T.; Tadono, T.; Murayama, Y. Relation between urban volume and land surface temperature: A comparative study of planned and traditional cities in Japan. Sustainability 2018, 10, 1–17. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y.; Ranagalage, M.; Hou, H.; Subasinghe, S.; Gong, H.; Simwanda, M.; Handyani, H.H.; Zhang, X. Validating ALOS PRISM DSM-derived surface feature height: Implications for urban volume estimation. Tsukuba Geoenviron. Sci. 2017, 13, 13–22. [Google Scholar] [CrossRef]
- Gunarathna, M.H.J.P.; Nirmanee, K.G.S.; Kumari, M.K.N. Are geostatistical interpolation methods better than deterministic interpolation methods in mapping salinity of groundwater? Int. J. Res. Innov. Earth Sci. 2016, 3, 59–64. [Google Scholar]
- Gunarathna, M.H.J.P.; Kumari, M.K.N.; Nirmanee, K.G.S. Evaluation of interpolation methods for mapping pH of groundwater. IJLTEMAS 2016, 5, 1–5. [Google Scholar]
- Üstün, A.K.; Barbarosoğlu, G. Performance evaluation of Turkish disaster relief management system in 1999 earthquakes using data envelopment analysis. Nat. Hazards 2015, 75, 1977–1996. [Google Scholar] [CrossRef]
- Saaty, R. The analytic hierarchy process—What it is and how it is used. Mathl Model. 1987, 9, 161–176. [Google Scholar] [CrossRef]
- Machiwal, D.; Jha, M.K.; Mal, B.C. Assessment of groundwater potential in a semi-arid region of india using Remote Sensing, GIS and MCDM Techniques. Water Resour. Manag. 2011, 25, 1359–1386. [Google Scholar] [CrossRef]
- Jozaghi, A.; Alizadeh, B.; Hatami, M.; Flood, I.; Khorrami, M.; Khodaei, N.; Ghasemi Tousi, E. A Comparative study of the AHP and TOPSIS techniques for dam site selection using GIS: A case study of Sistan and Baluchestan Province, Iran. Geosciences 2018, 8, 494. [Google Scholar] [CrossRef]
- Pramanik, M.K. Site suitability analysis for agricultural land use of Darjeeling district using AHP and GIS techniques. Model. Earth Syst. Environ. 2016, 2, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Abeywardana, N.; Bebermeier, W.; Schütt, B. Ancient water management and governance in the dry zone of Sri Lanka until abandonment, and the influence of colonial politics during reclamation. Water 2018, 10, 1746. [Google Scholar] [CrossRef]
- Bebermeier, W.; Meister, J.; Withanachchi, C.R.; Middelhaufe, I.; Middelhaufe, B. Tank cascade systems as a sustainable measure of watershed management in South Asia. Water 2017, 9, 1–16. [Google Scholar] [CrossRef]
- Madduma Bandara, C. Catchment ecosystem and village tank cascade in the dry zone of Sri Lanka: A time-tested system of land and water resources management. In Stratergies for River Basin Management; Lundqvist, J., Lohm, U., Falkenmark, M., Eds.; Springer: Linkoping, Sweden, 1985. [Google Scholar]
- Wijesundara, W.; Nandasena, K.; Jayakody, A. Temporal variation of nitrate and phosphate in selected six small tanks of dry zone in Sri Lanka. Trop. Agric. Res. 2012, 23, 277–282. [Google Scholar] [CrossRef]
- Kavurmaci, M.; Üstün, A.K. Assessment of groundwater quality using DEA and AHP: A case study in the Sereflikochisar region in Turkey. Environ. Monit. Assess. 2016, 188, 258. [Google Scholar] [CrossRef] [PubMed]
- Rabeiy, R.E.S. Assessment and modeling of groundwater quality using WQI and GIS in Upper Egypt area. Environ. Sci. Pollut. Res. 2018, 25, 30808–30817. [Google Scholar] [CrossRef] [PubMed]
- Sirimanne, C.H.L. Geology for water supply. In CAAS 8th Annual session; Ceylon Association of Advancement of Science: Colombo, Ceylon, 1952; pp. 87–118. [Google Scholar]
- Panabokke, C.R.; Perera, A.P.G.R.L. Groundwater Resources of Sri Lanka; Water Resources Board: Colombo, Sri Lanka, 2005. [Google Scholar]
- Gunarathna, M.H.J.P.; Sakai, K.; Nakandakari, T.; Momii, K.; Kumari, M.K.N.; Amarasekara, M.G.T.S. Pedotransfer functions to estimate hydraulic properties of tropical Sri Lankan soils. Soil Tillage Res. 2019, 190, 109–119. [Google Scholar] [CrossRef]
- Gunarathna, M.H.J.P.; Kumari, M.K.N. Rainfall trends in Anuradhapura: Rainfall analysis for agricultural planning. Rajarata Univ. J. 2013, 1, 38–44. [Google Scholar]
- Ahmadi, H.; Das, A.; Pourtaheri, M.; Komaki, C.B.; Khairy, H. Redefining the watershed line and stream networks via digital resources and topographic map using GIS and remote sensing (case study: The Neka River’s watershed). Nat. Hazards 2014, 72, 711–722. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater; APHA: Washington, DC, USA, 2005; ISBN 978-0875532356. [Google Scholar]
- Olsen, S.; Cole, C.; Watanabe, F.; Dean, L. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; USDA Circular Nr 939; United States Government Publishing Office: Washington, DC, USA, 1954.
- Cataldo, D.A.; Haroon, M.H.; Schrader, L.E.; Youngs, V.L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil Sci. Plant Anal. 1975, 6, 71–80. [Google Scholar] [CrossRef]
- Hach. DR5000 Spectrophotometer: Procedures Manual, 2nd ed.; HACH Company: Berlin, Germany, 2005. [Google Scholar]
- Wilcox, L.V. Classification and Use of Irrigation Waters; Circular 9; United States Department of Agriculture: Washington, DC, USA, 1955. [Google Scholar]
- Raghunath, H.M. Ground Water: Hydrogeology, Ground Water Survey and Pumping Tests, Rural Water Supply and Irrigation Systems; New Age International (P) Limited: New Delhi, India, 1987; ISBN 0852262981. [Google Scholar]
- Todd, D.K.; Mays, L. Groundwater Hydrology, 3rd ed.; John Wiley & Sons, Inc: New York, NY, USA, 2005; ISBN 047105937-4. [Google Scholar]
- Kelly, W.P. Use of saline irrigation water. Soil Sci. 1963, 95, 355–391. [Google Scholar] [CrossRef]
- Kumari, M.K.N.; Sakai, K.; Kimura, S.; Nakamura, S.; Yuge, K.; Gunarathna, M.H.J.P.; Ranagalage, M.; Duminda, D.M.S. Interpolation methods for groundwater quality assessment in tank cascade landscape: A Study of Ulagalla Cascade, Sri Lanka. Appl. Ecol. Environ. Res. 2018, 16, 5359–5380. [Google Scholar] [CrossRef]
- Krivoruchko, K. Empirical bayesian kriging implemented in ArcGIS geostatistical analyst. Softw. Data 2012, 2012, 6–10. [Google Scholar]
- Bozdag, A. Combining AHP with GIS for assessment of irrigation water quality in Çumra Combining AHP with GIS for assessment of irrigation water quality in Çumra irrigation district (Konya), Central Anatolia, Turkey. Environ. Earth Sci. 2015, 73, 8217–8236. [Google Scholar] [CrossRef]
- Hsu, C.W.; Hu, A.H. Green supply chain management in the electronic industry. Int. J. Environ. Sci. Technol. 2008, 5, 205–216. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. Decision making—The analytic hierarchy and network processes (AHP/ANP). J. Syst. Sci. Syst. Eng. 2004, 13, 1–35. [Google Scholar] [CrossRef]
- Ayers, A.; Wescot, D. Water Quality for Agriculture; FAO Irrigation and Drainage paper 29: Rome, Italy, 1994; pp. 1–130. [Google Scholar]
- Rubasinghe, R.; Gunatilake, S.K.; Chandrajith, R. Geochemical characteristics of groundwater in different climatic zones of Sri Lanka. Environ. Earth Sci. 2015, 74, 3067–3076. [Google Scholar] [CrossRef]
- Sayyed, J.A.; Bhosle, A.B. Analysis of chloride, sodium and potassium in groundwater samples of Nanded City in Mahabharata, India. Eur. J. Exp. Biol. 2011, 1, 74–82. [Google Scholar]
- Singh, P.; Khan, I.A. Ground water quality assessment of Dhankawadi ward of Pune by using GIS. Int. J. Geomat. Geosci. 2011, 2, 688–703. [Google Scholar]
- Ravikumar, P.; Somashekar, R.K.; Angami, M. Hydrochemistry and evaluation of groundwater suitability for irrigation and drinking purposes in the Markandeya River basin, Belgaum District, Karnataka State, India. Environ. Monit. Assess. 2011, 173, 459–487. [Google Scholar] [CrossRef]
- Najim, M.M.M.; Jayakody, K.P. Salinity development in the dry zone of Sri Lanka—A review. In Crop and Forage Production Using Saline Waters; Kafi, M., Khan, M.A., Eds.; Daya Publishing House: New Delhi, India, 2008; pp. 319–327. [Google Scholar]
- Gunatilake, S.K.; Samarathunga, S.S.; Rubasinghe, R.T. Chronic kidney disease (CKD) in Sri Lanka—Current research evidence justification: A review. Sabaragamuwa Univ. J. 2014, 13, 31–58. [Google Scholar] [CrossRef]
- Murkute, A.A.; Sharma, S.; Singh, S.K. Citrus in terms of soil and water salinity: A review. J. Sci. Ind. Res. (India) 2005, 64, 393–402. [Google Scholar]
- Perera, M.P. Groundwater exploration for agro-well developemnt in Sri Lanka and the current status. Int. Res. J. Hum. Resour. Soc. Sci. 2017, 4, 359–373. [Google Scholar]
- Mikunthan, T.; Vithanage, M.; Pathmarajah, S.; Arasalingam, S.; Ariyaratne, R.; Manthrithilake, H. Hydrogeochemical Characterization of Jaffna’ s Aquifer Systems in Sri Lanka; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2013; ISBN 9789290908241. [Google Scholar]
- Piyasiri, S.; Senanayake, I. Status of ground water in Vavuniya City, Sri Lanka with special reference to fluoride and hardness. Int. J. Multidicipl. Stud. 2016, 3, 35–45. [Google Scholar] [CrossRef]
- Karunaratne, A.D.M.; Pathmarajah, S. Groundwater development through introduction of agrowells and micro-irrigation in Sri Lanka. In Use of Groundwater for Agriculture in Sri Lanka; Agricultural Engineering Society of Sri Lanka: Peradeniya, Sri Lanka, 2002; pp. 29–41. [Google Scholar]
Importance | Description | Explanation |
---|---|---|
1 | Equal importance | Two criteria contribute equally to the objective |
3 | Moderate importance | Experience and judgment slightly favour one criterion over the other |
5 | Strong importance | Experience and judgment strongly favour one criterion over the other |
7 | Very strong importance | Experience and judgment very strongly favour one criterion over the other |
9 | Extreme importance | The evidence favouring one criterion over another is of the highest possible validity |
2, 4, 6, 8 | Intermediate values | When compromise is needed |
Reciprocals | Values for inverse comparison | If criterion i had one of the above numbers assigned to it when compared with criterion j, then j has the reciprocal value when compared with i |
Number of Criteria (N) | Random Consistency Index (RI) |
---|---|
1 | 0.00 |
2 | 0.00 |
3 | 0.58 |
4 | 0.90 |
5 | 1.12 |
6 | 1.24 |
7 | 1.32 |
8 | 1.41 |
9 | 1.45 |
10 | 1.49 |
11 | 1.51 |
12 | 1.54 |
13 | 1.56 |
14 | 1.57 |
15 | 1.59 |
Irrigation Criterion | Range | Water Class/Restriction | Rank |
---|---|---|---|
EC | <0.7 | none | 1 |
0.7–3 | slight to moderate | 2 | |
>3 | severe | 3 | |
SAR | <3 | none | 1 |
3–9 | slight to moderate | 2 | |
>9 | severe | 3 | |
Cl− | <140 | none | 1 |
140–350 | slight to moderate | 2 | |
>350 | severe | 3 | |
MAR | <50 | suitable | 1 |
>50 | unsuitable | 3 | |
KR | <1 | suitable | 1 |
>1 | unsuitable | 3 | |
TH | <75 | soft | 1 |
75–150 | moderate | 2 | |
150–300 | hard | 2 | |
>300 | very hard | 3 |
Water Quality Parameter a | Yala season | Maha season | ||||||
---|---|---|---|---|---|---|---|---|
Max | Min | Mean | SD | Max | Min | Mean | SD | |
pH | 8.8 | 6.2 | 7.7 | 0.4 | 9.3 | 6.8 | 7.9 | 0.4 |
EC | 4300.0 | 172.4 | 1267.1 | 787.4 | 4310.0 | 337.0 | 1274.4 | 803.0 |
Na+ | 329.4 | 5.9 | 130.4 | 70.6 | 363.8 | 23.0 | 139.3 | 80.5 |
K+ | 15.5 | 0.2 | 2.4 | 2.5 | 20.7 | 0.2 | 2.9 | 2.8 |
Ca2+ | 386.2 | 6.4 | 78.1 | 73.2 | 280.1 | 4.3 | 65.6 | 45.7 |
Mg2+ | 202.6 | 1.5 | 46.3 | 39.0 | 284.2 | 5.1 | 55.7 | 44.6 |
HCO3− | 175.0 | 37.5 | 87.4 | 20.4 | 215.0 | 27.5 | 84.9 | 23.2 |
Cl− | 2020.0 | 20.0 | 312.9 | 340.1 | 2120.0 | 40.0 | 351.2 | 334.9 |
SO42− | 84.0 | 1.0 | 30.6 | 15.2 | 94.0 | 2.0 | 34.7 | 18.7 |
NO3-N | 17.6 | 0.1 | 1.5 | 2.5 | 25.2 | 0.1 | 1.4 | 3.3 |
PO43− | 1.5 | 0.0 | 0.3 | 0.3 | 0.6 | 0.0 | 0.1 | 0.1 |
Irrigation Criteria | EC | SAR | Cl− | MAR | KR | TH |
---|---|---|---|---|---|---|
Average relative weights | 0.27 | 0.25 | 0.16 | 0.11 | 0.11 | 0.10 |
Well No. | Location | Construction of the Well | |
---|---|---|---|
Longitude | Latitude | ||
1 | 80°32′28″E | 8°13′35″N | unlined |
2 | 80°32′21″E | 8°14′5″N | unlined |
3 | 80°32′47″E | 8°13′18″N | lined |
4 | 80°33′1″E | 8°12′43″N | lined |
5 | 80°33′0″E | 8°12′1″N | unlined |
6 | 80°32′30″E | 8°12′27″N | lined |
7 | 80°33′27″E | 8°11′58″N | lined |
8 | 80°33′38′E | 8°11′25″N | lined |
9 | 80°33′33″E | 8°10′53″N | unlined |
10 | 80°32′59″E | 8°11′6″N | lined |
11 | 80°32′23″E | 8°11′32″N | lined |
12 | 80°31′55″E | 8°10′36″N | lined |
13 | 80°32′16″E | 8°9′49″N | lined |
14 | 80°33′11″E | 8°9′54″N | lined |
15 | 80°32′60″E | 8°10′27″N | unlined |
16 | 80°32′35″E | 8°9′34″N | lined |
17 | 80°34′11″E | 8°6′36″N | lined |
18 | 80°33′51″E | 8°7′18″N | lined |
19 | 80°33′21″E | 8°7′8′N | unlined |
20 | 80°33′30″E | 8°8′16″N | lined |
21 | 80°33′36″E | 8°8′38″N | lined |
22 | 80°33′55″E | 8°9′0″N | lined |
23 | 80°33′7″E | 8°8′9″N | lined |
24 | 80°32′43″E | 8°8′53″N | lined |
25 | 80°33′32″E | 8°6′29″N | lined |
26 | 80°32′35″E | 8°7′24″N | lined |
27 | 80°33′21″E | 8°7′42″N | lined |
28 | 80°31′37″E | 8°13′28″N | lined |
29 | 80°31′56″E | 8°12′46″N | lined |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumari, M.K.N.; Sakai, K.; Kimura, S.; Yuge, K.; Gunarathna, M.H.J.P. Classification of Groundwater Suitability for Irrigation in the Ulagalla Tank Cascade Landscape by GIS and the Analytic Hierarchy Process. Agronomy 2019, 9, 351. https://doi.org/10.3390/agronomy9070351
Kumari MKN, Sakai K, Kimura S, Yuge K, Gunarathna MHJP. Classification of Groundwater Suitability for Irrigation in the Ulagalla Tank Cascade Landscape by GIS and the Analytic Hierarchy Process. Agronomy. 2019; 9(7):351. https://doi.org/10.3390/agronomy9070351
Chicago/Turabian StyleKumari, M.K.N., Kazuhito Sakai, Sho Kimura, Kozue Yuge, and M.H.J.P. Gunarathna. 2019. "Classification of Groundwater Suitability for Irrigation in the Ulagalla Tank Cascade Landscape by GIS and the Analytic Hierarchy Process" Agronomy 9, no. 7: 351. https://doi.org/10.3390/agronomy9070351
APA StyleKumari, M. K. N., Sakai, K., Kimura, S., Yuge, K., & Gunarathna, M. H. J. P. (2019). Classification of Groundwater Suitability for Irrigation in the Ulagalla Tank Cascade Landscape by GIS and the Analytic Hierarchy Process. Agronomy, 9(7), 351. https://doi.org/10.3390/agronomy9070351