Growth, Fruit Yield, Photosynthetic Characteristics, and Leaf Microelement Concentration of Two Blueberry Cultivars under Different Long-Term Soil pH Treatments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Plant Cultivation and Treatment
2.3. Data Collection
2.3.1. Growth Parameter Determination
2.3.2. Determination of Flowing and Fruit Characteristics
2.3.3. Determination of Photosynthetic Characteristics
2.3.4. Determination of Leaf Microelements
2.3.5. Determination of the pH Value of the Rhizosphere Soil
2.4. Experimental Design and Statistical Analysis
3. Results
3.1. Effects of Different pH Treatments on Rhizosphere Soil pH
3.2. Effects of Different pH Treatments on Vegetative Organ Growth
3.3. Effects of Different pH Treatments on the Flowering and Ripening Times and the Fruit Production and Quality
3.4. Effects of Different pH Treatments on Leaf Fe, Mn, Cu, and Zn Concentration
3.5. Effects of Different pH Treatments on Photosynthetic Characteristics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Scalzo, J.; Stanley, J.; Alspach, P.; Mezzetti, B. Preliminary evaluation of fruit traits and phytochemicals in a highbush blueberry seedling population. J. Berry Res. 2013, 3, 103–111. [Google Scholar] [Green Version]
- Cappai, F.; Benevenuto, J.; Ferrão, L.F.V.; Munoz, P. Molecular and genetic bases of fruit firmness variation in blueberry—A review. Agronomy 2018, 8, 174. [Google Scholar] [CrossRef]
- Nunez, G.H.; Olmstead, J.W.; Darnell, R.L. Rhizosphere acidification is not part of the strategy I iron deficiency response of Vaccinium arboreum and the southern highbush blueberry. HortScience 2015, 50, 1064–1069. [Google Scholar] [CrossRef]
- Finn, C.E.; Luby, J.J.; Rosen, C.J.; Ascher, P.D. Blueberry germplasm screening at several soil pH regimes. I. Plant survival and growth. J. Am. Soc. Hortic. Sci. 1993, 118, 377–382. [Google Scholar] [CrossRef]
- Gallegos-Cedillo, V.M.; Alvaro, J.E.; Capatos, T.; Hachmann, T.L.; Carrasco, G.; Urrestarazu, M. Effect of pH and silicon in the fertigation solution on vegetative growth of blueberry plants in organic agriculture. HortScience 2018, 53, 1423–1428. [Google Scholar] [CrossRef]
- Austin, M.E.; Bondari, K. Soil pH effects on yield and fruit size of two rabbiteye blueberry cultivars. J. Hortic. Sci. 1992, 67, 779–785. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, Y.; Zeng, Q.; Wei, J.; Yu, H. The effect of soil pH on plant growth, leaf chlorophyll fluorescence and mineral element content of two blueberries. Acta Hortic. 2017, 1180, 269–276. [Google Scholar] [CrossRef]
- Almutairi, K.F.; Machado, R.M.A.; Bryla, D.R.; Strik, B.C. Chemigation with micronized sulfur rapidly reduces soil pH in a new planting of northern highbush blueberry. HortScience 2017, 52, 1413–1418. [Google Scholar] [CrossRef]
- Finn, C.E.; Luby, J.J.; Rosen, C.J.; Ascher, P.D. Evaluation in vitro of blueberry germplasm for higher pH tolerance. J. Am. Soc. Hortic. Sci. 1991, 116, 312–316. [Google Scholar] [CrossRef]
- Tsuda, H.; Kunitake, H.; Aoki, Y.; Oyama, A.; Tetsumura, T.; Komatsu, H.; Yoshioka, K. Efficient in vitro screening for higher soil pH adaptability of intersectional hybrids in blueberry. HortScience 2014, 49, 141–144. [Google Scholar] [CrossRef]
- Baker, N.R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 2008, 59, 89–113. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Yu, H.; Gu, Y. Prospects and problems of blueberry growing in China. Acta Hortic. 2009, 810, 61–64. [Google Scholar]
- Li, Y.; Sun, H.; Chen, L. The blueberry industry of China: The past 10 years and the future. Acta Hortic. 2017, 1180, 531–536. [Google Scholar] [CrossRef]
- Hancock, J.F.; Lyrene, P.; Finn, C.E.; Vorsa, N.; Lobos, G.A. Blueberries and cranberries. In Temperate Fruit Crop Breeding; Hancock, J.F., Ed.; Springer Verlag: Berlin, Germany, 2008; pp. 115–149. [Google Scholar]
- Li, Y.; Hong, Y. The current status and future of the blueberry industry in China. Acta Hortic. 2009, 810, 445–456. [Google Scholar]
- Miyashita, C.; Ishikawa, S. Higher Soil pH Adaptability of Interspecific Hybrids between Highbush Blueberry and Rabbiteye Blueberry; Bulletin of Tokyo Metropolitan Agriculture and Forestry Ressearch Center: Tokyo, Japan, 2008; pp. 57–65. [Google Scholar]
- Katakura, Y.; Yokomizo, H. Effects of nutrient solution pH on the growth nutrient uptake of highbush and rabbiteye blueberries. Jpn. J. Soil Sci. Plant Nutr. 1995, 66, 513–519. [Google Scholar]
- Zhang, D.; Yu, H.; Jiang, Y.; Wang, C. Seedling selection of ‘Southmoon’ blueberry. Acta Hortic. 2009, 810, 65–70. [Google Scholar] [CrossRef]
- Wang, L.; Li, X.; Liang, M.; Gao, Z.; Xu, G.; Liu, J.; Chen, P.; Wan, H.; Jin, Y.; Liu, J.; et al. A new blueberry cultivar ‘Yunlan’. Acta Hortic. Sin. 2015, 42, 2843–2844. [Google Scholar]
- Jiang, Y.; Wei, J.; Zeng, Q.; Yu, H. A new cultivar of southern highbush blueberry ‘Xinxin 1’. Acta Hortic. Sin. 2015, 42, 2845–2846. [Google Scholar]
- Ehret, D.L.; Frey, B.; Forge, T.; Helmer, T.; Bryla, D.R. Effects of drip irrigation configuration and rate on yield and fruit quality of young highbush blueberry plants. HortScience 2012, 47, 414–421. [Google Scholar] [CrossRef]
- Haynes, R.J.; Swift, R.S. The effects of pH and of form and rate of applied iron on micronutrient availability and nutrient uptake by highbush blueberry plants grown in peat or soil. J. Hortic. Sci. 1986, 61, 287–294. [Google Scholar] [CrossRef]
- Austin, M.E.; Bondari, K. Response of ‘Tifblue’ and ‘Delite’ rabbiteye blueberry plants to varying soil pH. J. Small Fruit Viticul. 1995, 3, 25–37. [Google Scholar] [CrossRef]
- Kovaleski, A.P.; Williamson, J.G.; Olmstead, J.W.; Darnell, R.L. Inflorescence bud initiation, development, and bloom in two southern highbush blueberry cultivars. J. Am. Soc. Hortic. Sci. 2015, 140, 38–44. [Google Scholar] [CrossRef]
- Spann, T.M.; Williamson, J.G.; Darnell, R.L. Photoperiod and temperature effects on growth and carbohydrate storage in southern highbush blueberry interspecific hybrid. J. Am. Soc. Hortic. Sci. 2004, 129, 294–298. [Google Scholar] [CrossRef]
- Zang, Y.; Chun, I.; Zhang, L.; Hong, S.; Zheng, W.; Xu, K. Effect of gibberellic acid application on plant growth attributes, return bloom, and fruit quality of rabbiteye blueberry. Sci. Hortic. 2016, 200, 13–18. [Google Scholar] [CrossRef]
- Togano, Y.; Fujimoto, J.; Azukizawa, H. Effect of different soils on young tree growth and fruit quality of blueberry cultivars. Jpn. Soc. Agric. Technol. Manag. 2004, 11, 69–73. [Google Scholar]
- Cummings, G.A.; Mainland, C.M.; Lilly, J.P. Influence of soil pH, sulfur, and sawdust on rabbiteye blueberry survival, growth, and yield. J. Am. Soc. Hortic. Sci. 1981, 106, 783–785. [Google Scholar]
- Gündüz, K.; Serçe, S.; Hancock, J.F. Variation among highbush and rabbiteye cultivars of blueberry for fruit quality and phytochemical characteristics. J. Food Compos. Anal. 2015, 38, 69–79. [Google Scholar] [CrossRef]
- Calvo-Polanco, M.; Zhang, W.; Macdonald, S.E.; Señorans, J.; Zwiazek, J.J. Boreal forest plant species responses to pH: Ecological interpretation and application to reclamation. Plant Soil 2017, 420, 195–208. [Google Scholar] [CrossRef]
- Bailey, J.S. A chlorosis of cultivated blueberries. Proc. Am. Soc. Hortic. Sci. 1936, 34, 395–396. [Google Scholar]
- Finn, C.E.; Rosen, C.J.; Luby, J.J.; Ascher, P.D. Blueberry germplasm screening at several soil pH regimes. II. Plant nutrient composition. J. Am. Soc. Hortic. Sci. 1993, 118, 383–387. [Google Scholar] [CrossRef]
- Cain, J.C. Blueberry leaf chlorosis in relation to leaf pH and mineral composition. Proc. Am. Soc. Hortic. Sci. 1954, 64, 61–70. [Google Scholar]
- Fujumoto, J.; Togano, Y.; Ito, N. Cause and countermeasure of chlorosis in younger leaves on shoot in blueberry. Jpn. Soc. Agric. Technnol. Manag. 2004, 11, 27–31. [Google Scholar]
- Gupton, C.L.; Spiers, J.M. Inheritance of tolerance to mineral element-induced chlorosis in rabbiteye blueberry. HortScience 1992, 27, 148–151. [Google Scholar] [CrossRef]
- Petridis, A.; van der Kaay, J.; Chrysanthou, E.; McCallum, S.; Graham, J.; Hancock, R.D. Photosynthetic limitation as a factor influencing yield in highbush blueberries (Vaccinium corymbosum) grown in a northern European environment. J. Exp. Bot. 2018, 69, 3069–3080. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Ma, Y.; Guo, F. Effect of soil pH on the growth, photosynthesis and mineral element content in own-rooted saplings and grafted saplings of blueberry. Asian Agric. Res. 2017, 9, 75–81. [Google Scholar]
- Kalaji, H.M.; Bąba, W.; Gediga, K.; Goltsev, V.; Samborska, I.A.; Cetner, M.D.; Dimitrova, S.; Piszcz, U.; Bielecki, K.; Karmowska, K.; et al. Chlorophyll fluorescence as a tool for nutrient status identification in rapeseed plants. Photosynth. Res. 2018, 136, 329–343. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Cen, W.; Chen, L.; Di, L.; Li, Y.; Guo, W. Differential sensitivity of four highbush blueberry (Vaccinium corymbosum L.) cultivars to heat stress. Pak. J. Bot. 2012, 44, 853–860. [Google Scholar]
- Reyes-Diaz, M.; Alberdi, M.; de la Luz Mora, M. Short-term aluminum stress differentially affects the photochemical efficiency of photosystem II in highbush blueberry genotypes. J. Am. Soc. Hortic. Sci. 2009, 134, 14–21. [Google Scholar] [CrossRef]
- Inostroza-Blancheteau, C.; Acevedo, P.; Loyola, R.; Arce-Johnson, P.; Alberdi, M.; Reyes-Diaz, M. Short-term UV-B radiation affects photosynthetic performance and antioxidant gene expression in highbush blueberry leaves. Plant Physiol. Biochem. 2016, 107, 301–309. [Google Scholar] [CrossRef]
- Xu, W.; Jia, L.; Baluška, F.; Ding, G.; Shi, W.; Ye, N.; Zhang, J. PIN2 is required for the adaptation of Arabidopsis roots to alkaline stress by modulating proton secretion. J. Exp. Bot. 2012, 63, 6105–6114. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.C.; Draper, A.D. Differential response of blueberry (Vaccinium) progenies to pH and subsequent use of iron. J. Am. Soc. Hortic. Sci. 1980, 105, 20–24. [Google Scholar]
Cultivar | 4.5 | 5.3 | 6.0 |
---|---|---|---|
Climax | 5.29 ± 0.19 a | 6.00 ± 0.13 a | 6.41 ± 0.15 a |
Chaoyue No. 1 | 5.26 ± 0.22 a | 5.74 ± 0.12 b | 6.24 ± 0.12 a |
Cultivar | pH | Plant Height (cm) | Main stem Diameter (mm) | Branch Number per Plant | Root dry Weight (g) | Shoot dry Weight (g) | Leaf dry Weight (g) | Total dry Weight (g) |
---|---|---|---|---|---|---|---|---|
Climax | 4.5 | 79.8 ± 5.1 a | 18.32 ± 1.76 a | 4.8 ± 0.5 a | 41.08 ± 1.92 a | 67.08 ± 8.80 a | 29.91 ± 8.09 a | 138.07 ± 18.41 a |
5.3 | 73.5 ± 1.7 a | 14.87 ± 0.79 b | 4.3 ± 0.5 a | 35.69 ± 3.23 b | 46.77 ± 3.40 b | 25.02 ± 2.97 a | 107.48 ± 4.32 b | |
6.0 | 34.0 ± 4.9 b | 6.50 ± 0.48 c | 2.5 ± 0.6 b | 3.13 ± 0.67 c | 3.84 ± 0.63 c | 6.50 ± 0.48 b | 13.47 ± 1.64 c | |
Chaoyue No. 1 | 4.5 | 88.3 ± 6.0 a | 18.07 ± 0.75 a | 4.3 ± 1.3 a | 45.97 ± 4.16 a | 59.03 ± 4.17 a | 22.36 ± 2.01 a | 127.36 ± 9.68 a |
5.3 | 73.8 ± 3.9 b | 14.01 ± 2.18 b | 3.8 ± 0.5 ab | 36.74 ± 4.71 b | 44.42 ± 9.34 b | 18.73 ± 1.00 b | 99.89 ± 13.84 b | |
6.0 | 32.8 ± 3.9 c | 7.71 ± 1.59 c | 2.5 ± 0.6 b | 6.97 ± 2.37 c | 5.73 ± 2.37 c | 3.11 ± 1.22 c | 15.81 ± 5.89 c |
Cultivar | pH | First Flowering Date (month-day) | 50% Flowering Date (month-day) | First Ripening Date (month-day) | 50% Ripening Date (month-day) |
---|---|---|---|---|---|
Climax | 4.5 | 3–31 a | 4–7 b | 6–26 c | 7–1 b |
5.3 | 4–1 a | 4–9 a | 6–27 b | 7–2 b | |
6.0 | 4–2 b | 4–10 a | 7–4 a | 7–8 a | |
Chaoyue No. 1 | 4.5 | 3–24 b | 3–28 b | 5–27 b | 6–2 b |
5.3 | 3–26 a | 4–1 a | 5–28 b | 6–3 b | |
6.0 | 3–26 a | 4–2 a | 6–1 a | 6–8 a |
Cultivar | pH | Flower Buds Number per Plant | Florets Number per bud | single Berry Weight (g) | Fruit Yield per Plant (g) | Total Soluble Solid Content (TSS) (%) | Titratable acid Content (TA) (%) | TSS:TA Ratio |
---|---|---|---|---|---|---|---|---|
Climax | 4.5 | 49.8 a | 6.7 a | 1.19 ± 0.05 a | 241.96 ± 34.06 a | 11.88 ± 0.33 a | 0.53 ± 0.08 b | 22.99 ± 3.51 a |
5.3 | 43.8 a | 6.7 a | 1.05 ± 0.08 b | 194.46 ± 26.09 b | 11.56 ± 0.65 a | 0.63 ± 0.09 b | 18.72 ± 2.65 b | |
6.0 | 2.8 b | 4.6 b | 0.81 ± 0.02 c | 20.68 ± 11.81 c | 9.74 ± 0.35 b | 0.98 ± 0.16 a | 10.12 ± 1.29 c | |
Chaoyue No. 1 | 4.5 | 26.3 a | 9.5 a | 1.48 ± 0.07 a | 260.74 ± 26.29 a | 12.59 ± 0.32 a | 0.53 ± 0.04 b | 23.98 ± 2.44 a |
5.3 | 28.0 a | 8.6 a | 1.34 ± 0.04 b | 178.52 ± 30.54 b | 12.07 ± 0.45 a | 0.62 ± 0.04 b | 19.49 ± 0.84 b | |
6.0 | 13.3 b | 8.1 a | 1.01 ± 0.01 c | 62.31 ± 18.67 c | 10.31 ± 0.37 b | 0.84 ± 0.11 a | 12.47 ± 1.65 c |
Cultivar | pH | Fe Concentration (mg/kg) | Mn Concentration (mg/kg) | Cu Concentration (mg/kg) | Zn Concentration (mg/kg) |
---|---|---|---|---|---|
Climax | 4.5 | 51.90 ± 6.20 b | 35.10 ± 8.26 a | 2.24 ± 0.22 a | 8.55 ± 1.25 b |
5.3 | 41.09 ± 1.86 b | 13.38 ± 4.18 b | 2.37 ± 0.24 a | 10.16 ± 3.18 b | |
6.0 | 68.81 ± 12.88 a | 18.41 ± 3.37 b | 3.04 ± 0.99 a | 17.51 ± 2.75 a | |
Chaoyue No. 1 | 4.5 | 69.23 ± 11.09 a | 117.17 ± 21.93 a | 5.33 ± 1.07 a | 13.79 ± 3.17 a |
5.3 | 56.17 ± 3.88 a | 40.21 ± 8.98 b | 3.38 ± 0.74 b | 12.25 ± 3.86 a | |
6.0 | 63.95 ± 13.13 a | 24.79 ± 4.21 b | 3.24 ± 0.66 b | 15.91 ± 4.82 a |
Cultivar | pH | CCI | Fv/Fm | Y(II) | Net photosynthetic Rate (µmol CO2 m−2 s−1) | Stomatal Conductance (mol H2O m−2 s−1) | Intercellular CO2 Concentration (µmol CO2 mol−1) | Transpiration Rate (mmol H2O m−2 s−1) |
---|---|---|---|---|---|---|---|---|
Climax | 4.5 | 42.39 ± 1.82 a | 0.781 ± 0.010 a | 0.599 ± 0.007 a | 11.74 ± 1.85 a | 0.133 ± 0.031 ab | 214.49 ± 12.03 b | 3.68 ± 0.55 a |
5.3 | 27.19 ± 2.52 b | 0.759 ± 0.011 a | 0.556 ± 0.019 b | 11.70 ± 1.74 a | 0.151 ± 0.025 a | 231.29 ± 15.18 b | 3.95 ± 0.38 a | |
6.0 | 10.16 ± 3.72 c | 0.654 ± 0.033 b | 0.404 ± 0.018 c | 3.35 ± 0.46 b | 0.085 ± 0.034 b | 299.97 ± 27.82 a | 2.42 ± 0.68 b | |
Chaoyue No. 1 | 4.5 | 46.55 ± 1.85 a | 0.807 ± 0.006 a | 0.612 ± 0.020 a | 12.36 ± 0.39 a | 0.200 ± 0.033 a | 252.74 ± 14.93 ab | 4.93 ± 0.65 a |
5.3 | 39.71 ± 3.93 b | 0.790 ± 0.005 b | 0.527 ± 0.032 b | 9.92 ± 1.40 b | 0.140 ± 0.030 b | 242.41 ± 8.37 b | 3.79 ± 0.68 b | |
6.0 | 27.62 ± 4.94 c | 0.780 ± 0.008 c | 0.441 ± 0.013 c | 5.75 ± 1.34 c | 0.095 ± 0.024 b | 266.18 ± 6.90 a | 2.68 ± 0.49 c |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Zeng, Q.; Wei, J.; Jiang, J.; Li, Y.; Chen, J.; Yu, H. Growth, Fruit Yield, Photosynthetic Characteristics, and Leaf Microelement Concentration of Two Blueberry Cultivars under Different Long-Term Soil pH Treatments. Agronomy 2019, 9, 357. https://doi.org/10.3390/agronomy9070357
Jiang Y, Zeng Q, Wei J, Jiang J, Li Y, Chen J, Yu H. Growth, Fruit Yield, Photosynthetic Characteristics, and Leaf Microelement Concentration of Two Blueberry Cultivars under Different Long-Term Soil pH Treatments. Agronomy. 2019; 9(7):357. https://doi.org/10.3390/agronomy9070357
Chicago/Turabian StyleJiang, Yanqin, Qilong Zeng, Jiguang Wei, Jiafeng Jiang, Yajing Li, Jingbo Chen, and Hong Yu. 2019. "Growth, Fruit Yield, Photosynthetic Characteristics, and Leaf Microelement Concentration of Two Blueberry Cultivars under Different Long-Term Soil pH Treatments" Agronomy 9, no. 7: 357. https://doi.org/10.3390/agronomy9070357
APA StyleJiang, Y., Zeng, Q., Wei, J., Jiang, J., Li, Y., Chen, J., & Yu, H. (2019). Growth, Fruit Yield, Photosynthetic Characteristics, and Leaf Microelement Concentration of Two Blueberry Cultivars under Different Long-Term Soil pH Treatments. Agronomy, 9(7), 357. https://doi.org/10.3390/agronomy9070357