The Energy Efficiency of the Production and Conversion of Spring Triticale Grain into Bioethanol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.2. Energy Intensity of Spring Triticale Production
- ETR—tractors; EM—machines; ET—transport vehicles; EE—employees; ED—fuel; EFR—fertilizers; EP—pesticides
2.3. Analysis of The Content of Starch and Ethanol Efficiency
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Balat, M.; Balat, H. Recent trends in global production and utilization of bio-ethanol fuel. Appl. Energy 2009, 86, 2273–2282. [Google Scholar] [CrossRef]
- COM (Commission of the European Communities), 2008. Available online: http://www.europarl.europa.eu/RegData/docs_autres_institutions/commission_europeenne/com/2008/0030/COM_COM(2008)0030_EN.pdf (accessed on 15 January 2015).
- Ragauskas, A.J.; Williams, C.K.; Davison, B.H.; Britovsek, G.; Cairney, J.; Eckert, C.A.; Frederick, W.J.; Hallett, J.P.; Leak, D.J.; Liotta, C.L.; et al. The path forward for biofuels and biomaterials. Science 2006, 311, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Belboom, S.; Bodson, B.; Leonard, A. Does the production of Belgian bioethanol fit with European requirements on GHG emissions? Case of wheat. Biomass Bioenergy 2015, 74, 58–65. [Google Scholar] [CrossRef]
- Bielski, S.; Dubis, B.; Jankowski, K. The energy efficiency of production and conversion of winter triticale biomass into biofuels. Przem. Chem. 2015, 94, 1798–1801. [Google Scholar]
- Davis-Knight, H.R.; Weightman, R.M. The Potential of Triticale as a Low Input Cereal for Bioethanol Production. Project Report No. 434. July 2008. Available online: https://cereals.ahdb.org.uk/media/408618/pr434-final-project-report.pdf (accessed on 15 January 2019).
- Ho, D.P.; Ngo, H.H.; Gou, W. A mini review on renewable sources for biofuel. Bioresour. Technol. 2014, 169, 742–749. [Google Scholar] [CrossRef] [PubMed]
- Mojović, L.; Pejin, D.; Grujić, O.; Markov, S.; Pejin, J.; Rakin, M.; Vukašinović, M.; Nikolić, S.; Savić, D. Progress in the production of bioethanol on starch-based feedstocks. Chem. Ind. Chem. Eng. Q. 2009, 15, 211–226. [Google Scholar] [CrossRef]
- OECD. International Energy Agency. In Energy Technology Perspectives, Scenarios & Strategies to 2050; OECD: Paris, France, 2008. [Google Scholar]
- Gnansounou, E. Assessing the sustainability of biofuels: A logic-based model. Energy 2011, 36, 2089–2096. [Google Scholar] [CrossRef]
- McKenzie, R.H.; Bremer, E.; Middelton, A.B.; Beres, B.; Yoder, C.; Hietamaa, C.; Pfiffner, P.; Kereliuk, G.; Pauly, D.; Henriquez, B. Agronomic practices for bioethanol production from spring triticale in Alberta. Can. J. Plant Sci. 2014, 94, 15–22. [Google Scholar] [CrossRef]
- Lewandowski, I.; Kauter, D. The influence of nitrogen fertilizer on the yield and combustion quality of whole grain crops for solid fuel use. Ind. Crops Prod. 2003, 17, 103–117. [Google Scholar]
- Kindred, D.R.; Verhoeven, T.M.O.; Weightman, R.M.J.; Swanston, S.; Agu, R.C.; Brosnan, J.M.; Sylvester-Bradley, R. Effects of variety and fertiliser nitrogen on alcohol yield, grain yield, starch and protein content, and protein composition of winter wheat. J. Cereal Sci. 2008, 48, 46–57. [Google Scholar] [CrossRef]
- Cantale, C.; Petrazzuolo, F.; Correnti, A.; Farneti, A.; Felici, F.; Latini, A.; Galeffi, P. Triticale for bioenergy production. Agric. Agric. Sci. Procedia 2016, 8, 609–616. [Google Scholar] [CrossRef]
- Rosenberger, A.; Kaul, H.P.; Senn, T.; Aufhammer, W. Improving the energy balance of bioethanol production from winter cereals: The effect of crop production intensity. Appl. Energy 2001, 68, 51–67. [Google Scholar] [CrossRef]
- Kučerova, J. The effect of year, site and variety on the quality characteristics and bioethanol yield of winter triticale. J. Inst. Brew. 2007, 113, 142–146. [Google Scholar] [CrossRef]
- Klikocka, H.; Narolski, B.; Michałkiewicz, G. The effects of tillage and soil mineral fertilization on the yield and yield components of spring barley. Plant Soil Environ. 2014, 60, 255–261. [Google Scholar] [CrossRef]
- Eurostat Database. Available online: http://ec.europa.eu/invest-in-research/monitoring/statistical01_en.htm (accessed on 15 January 2019).
- Obuchovski, W.; Banaszak, Z.; Makowska, A.; Łuczak, M. Factors affecting usefulness of triticale grain for bioethanol production. J. Sci. Food Agric. 2010, 90, 2506–2511. [Google Scholar] [CrossRef]
- Jansone, I.; Malecka, S.; Miglane, V. Suitability of winter triticale varieties for bioethanol production in Latvia. Agron. Res. 2010, 8, 573–582. [Google Scholar]
- Swanston, J.S.; Smith, P.L.; Thomas, W.T.B.; Sylvester-Bradley, R.; Kindred, D.; Brosnan, J.M.; Bringhurst, T.A.; Agu, R.C. Stability, across environments, of grain and alcohol yield, in soft wheat varieties grown for grain distilling or bioethanol production. J. Sci. Food Agric. 2014, 94, 3234–3240. [Google Scholar] [CrossRef]
- Bielski, S.; Dubis, B.; Budzyński, W. Influence of nitrogen fertilization on the technological value of semi-dwarf grain winter triticale varieties Alekto and Gniewko. Pol. J. Nat. Sci. 2015, 30, 325–336. [Google Scholar]
- Lewandowski, I.; Schmidt, U. Nitrogen, energy and land use efficiencies of miscanthus, reed canary grass and triticale as determined by the boundary line approach. Agric. Ecosyst. Environ. 2006, 112, 335–346. [Google Scholar] [CrossRef] [Green Version]
- Wojtkowiak, K.; Stępień, A.; Warechowska, M.; Markowska, A. Effect of nitrogen fertilization method on the yield and quality of Milewo variety spring triticale grain. Pol. J. Nat. Sci. 2015, 30, 173–184. [Google Scholar]
- Smith, T.C.; Kindred, D.R.; Brosnan, J.M.; Weightman, R.M.; Shepherd, M.; Sylvester-Bradley, R. Wheat as a feedstock for alcohol production. In HGCA Research Review 61; HGCA: Warwickshire, UK, 2006. [Google Scholar]
- Burczyk, H. Usability of the cereals for generation of renewable energy– according to the research results. Probl. Inż. Roln. 2011, 3, 43–51. (In Polish) [Google Scholar]
- Janušauskaitė, D. Analysis of grain yield and its components in spring triticale under different N fertilization regimes. Zemdirb. Agric. 2014, 101, 381–388. [Google Scholar] [CrossRef]
- Beres, B.L.; Pozniak, C.J.; Bressler, D.C.; Gibreel, A.; Eudes, F.; Graf, R.J.; Randhawa, H.; Salmon, D.; McLeod, G.; Dion, Y.; et al. A Canadian ethanol feedstock study to benchmark the relative performance of triticale: II. Grain quality and ethanol production. Agron. J. 2013, 105, 1707–1720. [Google Scholar] [CrossRef]
- Knapowski, T.; Ralcewicz, M.; Barczak, B.; Kozera, W. Effect of nitrogen and zinc fertilizing on bread-making quality of spring triticale cultivated in Notec Valley. Pol. J. Environ. Stud. 2009, 18, 227–233. [Google Scholar]
- Hirel, B.; Tétu, T.; Lea, P.; Dubois, F. Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability 2011, 3, 1452–1485. [Google Scholar] [CrossRef]
- Czarnocki, S.; Starczewski, J.; Kapela, K. Comparison of the consumption of fuel and working time for a number of alternative pre-sowing soil preparation technologies. Inż. Roln. 2008, 4, 209–215. (In Polish) [Google Scholar]
- Dopka, D. Energy efficiency of various pre-sow cultivation systems on the example of winter triticale. Ann. UMCS E 2004, 59, 2071–2077. (In Polish) [Google Scholar]
- Dobek, T.; Dobek, M.; Šařec, O. Evaluation of the economic and energy efficiency of the production of winter triticale and winter rapeseed used for biofuel production purposes. Inż. Roln. 2010, 1, 161–168. (In Polish) [Google Scholar]
- Burešova, I.; Hřivna, L. Effect of wheat gluten proteins on bioethanol yield from grain. Appl. Energy 2011, 88, 1205–1210. [Google Scholar] [CrossRef]
Years | Months (k) | Sum—Mean (III-VIII) | |||||||
---|---|---|---|---|---|---|---|---|---|
III | IV | V | VI | VII | VIII | †k | p | t | |
2012 | 1.0 | 0.7 | 1.1 | 1.2 | 0.9 | 1.8 | 1.3 | 330.2 | 2923 |
2013 | 1.1 | 1.2 | 1.8 | 2.3 | 0.9 | 0.5 | 1.6 | 395.6 | 2638 |
2014 | 2.3 | 1.1 | 5.2 | 1.7 | 2.2 | 1.4 | 2.3 | 619.7 | 2440 |
1981–2005 | 5.1 | 1.8 | 1.5 | 1.6 | 1.7 | 1.0 | 1.6 | 367.7 | 2353 |
Tillage Systems | Nitrogen Dosage | Grain Yield | Starch Content | Starch Yield | Efficiency of Ethanol | Bioethanol Yield | Agronomic Effectiveness of N Fertilizer |
---|---|---|---|---|---|---|---|
(t ha−1) | (%) | (t ha−1) | (L t−1) | (L ha−1) | (L 1 kg N−1 Applied) | ||
TRD | 0 | 3.777 a | 66.67 a | 2.518 a | 478.9 a | 1808.9 a | - |
40 | 5.190 a | 66.70 a | 3.462 a | 479.2 a | 2487.3 a | 16.96 a | |
80 | 5.803 a | 66.70 a | 3.871 a | 479.2 a | 2780.7 a | 12.15 bc | |
120 | 5.967 a | 66.90 a | 3.992 a | 480.6 a | 2667.9 a | 8.82 c | |
Mean | 5.184 A | 66.74 A | 3.461 A | 479.5 A | 2486.2 A | 13.64 A | |
RED | 0 | 3.413 a | 67.03 a | 2.287 a | 481.6 a | 1643.4 a | - |
40 | 4.103 a | 66.97 a | 2.747 a | 481.1 a | 1973.5 a | 8.25 c | |
80 | 4.777 a | 66.70 a | 3.184 a | 479.2 a | 2287.7 a | 8.05 c | |
120 | 5.020 a | 66.87 a | 3.355 a | 480.4 a | 2410.2 a | 6.39 c | |
Mean | 4.328 B | 66.89 A | 2.893 B | 480.6 A | 2078.7 B | 7.56 B | |
Nitrogen dosage | 0 | 3.395 C | 66.85 A | 2.403 C | 480.3 A | 1726.1 C | - |
40 | 4.647 B | 66.83 A | 3.105 B | 480.1 A | 2230.4 B | 12.61 A | |
80 | 5.290 AB | 66.70 A | 3.528 AB | 479.2 A | 2534.3 AB | 10.10 B | |
120 | 5.493 A | 66.88 A | 3.673 A | 480.5 A | 2639.1 A | 7.61 C | |
Year | 2012 | 4.748 B | 66.59 B | 3.160 B | 478.4 C | 2270.3 B | 8.21B C |
2013 | 5.108 A | 66.81 AB | 3.413 A | 480.0 AB | 2452.0 A | 12.35 A | |
2014 | 4.414 C | 67.05 A | 2.958 C | 481.7 A | 2125.1 B | 9.75 B | |
Mean | 4.756 | 66.82 | 3.177 | 480.0 | 2282.5 | 10.10 AB |
Tillage Systems | Nitrogen Dosage | Direct Energy Carries | Raw Materials and Materials | Investments | Human Labor | Total | ||||
---|---|---|---|---|---|---|---|---|---|---|
(MJ ha−1) | (%) | (MJ ha−1) | (%) | (MJ ha−1) | (%) | (MJ ha−1) | (%) | (MJ ha−1) | ||
TRD | 0 | 2564 | 31.0 | 3208 | 38.8 | 1743 | 21.1 | 760 | 9.2 | 8275 |
40 | 2564 | 22.6 | 6288 | 55.4 | 1743 | 15.4 | 760 | 6.7 | 11355 | |
80 | 2807 | 19.1 | 9368 | 63.6 | 1743 | 11.8 | 816 | 5.5 | 14734 | |
120 | 2994 | 16.6 | 12448 | 69.1 | 1743 | 9.7 | 840 | 4.7 | 18026 | |
Mean | 2733 | 22.3 | 7828 | 56.7 | 1743 | 14.5 | 794 | 6.5 | 13097 | |
RED | 0 | 2138 | 27.7 | 3208 | 41.6 | 1747 | 22.7 | 616 | 8.0 | 7710 |
40 | 2138 | 19.8 | 6288 | 58.3 | 1747 | 16.2 | 616 | 5.7 | 10790 | |
80 | 2381 | 16.8 | 9368 | 66.1 | 1747 | 12.3 | 672 | 4.7 | 14169 | |
120 | 2567 | 14.7 | 12448 | 71.3 | 1747 | 10.0 | 696 | 4.0 | 17460 | |
Mean | 2306 | 19.8 | 7828 | 59.3 | 1747 | 15.3 | 650 | 5.6 | 12532 | |
Nitrogen dosage | 0 | 2351 | 29.4 | 3208 | 40.2 | 1745 | 21.9 | 688 | 8.6 | 7993 |
40 | 2351 | 21.2 | 6288 | 56.8 | 1745 | 15.8 | 688 | 6.2 | 11073 | |
80 | 2594 | 17.9 | 9368 | 64.8 | 1745 | 12.1 | 744 | 5.1 | 14452 | |
120 | 2781 | 15.7 | 12448 | 70.2 | 1745 | 9.8 | 768 | 4.3 | 17743 | |
Mean | 2519 | 21.1 | 7828 | 58.0 | 1745 | 14.9 | 722 | 6.1 | 12815 |
Tillage Systems | Nitrogen Dosage | Unit | Fertilizers | Pesticides | Seeds | Total | ||
---|---|---|---|---|---|---|---|---|
N | P | K | ||||||
TRD and RED ‡ | 0 | MJ ha−1 | 0 | 1260 | 1000 | 448 | 500 | 3208 |
% † | 0.00 | 39.28 | 31.17 | 13.97 | 15.59 | 100.00 | ||
40 | MJ ha−1 | 3080 | 1260 | 1000 | 448 | 500 | 6288 | |
% | 48.98 | 20.04 | 15.90 | 7.12 | 7.95 | 100.00 | ||
80 | MJ ha−1 | 6160 | 1260 | 1000 | 448 | 500 | 9368 | |
% | 65.76 | 13.45 | 10.67 | 4.78 | 5.34 | 100.00 | ||
120 | MJ ha−1 | 9240 | 1260 | 1000 | 448 | 500 | 12448 | |
% | 74.23 | 10.12 | 8.03 | 3.60 | 4.02 | 100.00 | ||
Mean | MJ ha−1 | 4620 | 1260 | 1000 | 448 | 500 | 7828 | |
% | 59.02 | 16.10 | 12.77 | 5.72 | 6.39 | 100.00 |
Tillage Systems | Nitrogen Dosage | Unit | Soil Tillage | Fertilization | Care and Protection | Sowing | Harvest and Transport | Total |
---|---|---|---|---|---|---|---|---|
TRD | 0 | MJ ha− | 1377 | 354 | 365 | 407 | 1803 | 4307 |
% † | 31.97 | 9.46 | 8.23 | 8.48 | 41.87 | 100.00 | ||
40 | MJ ha−1 | 1377 | 354 | 365 | 407 | 1803 | 4307 | |
% | 31.97 | 9.46 | 8.23 | 8.48 | 41.87 | 100.00 | ||
80 | MJ ha−1 | 1377 | 354 | 365 | 407 | 2046 | 4550 | |
% | 30.26 | 8.95 | 8.02 | 8.02 | 44.97 | 100.00 | ||
120 | MJ ha−1 | 1377 | 354 | 365 | 407 | 2234 | 4737 | |
% | 29.07 | 8.60 | 7.71 | 7.71 | 47.15 | 100.00 | ||
Mean | MJ ha−1 | 1377 | 354 | 365 | 407 | 1972 | 4476 | |
% | 30.76 | 7.91 | 8.15 | 9.09 | 44.06 | 100.00 | ||
RED | 0 | MJ ha−1 | 955 | 354 | 365 | 407 | 1803 | 3886 |
% | 24.59 | 10.49 | 9.39 | 9.39 | 46.41 | 100.00 | ||
40 | MJ ha−1 | 955 | 354 | 365 | 407 | 1803 | 3886 | |
% | 24.59 | 10.49 | 9.39 | 9.39 | 46.41 | 100.00 | ||
80 | MJ ha−1 | 955 | 354 | 365 | 407 | 2046 | 4129 | |
% | 23.14 | 9.87 | 8.84 | 8.84 | 49.57 | 100.00 | ||
120 | MJ ha−1 | 955 | 354 | 365 | 407 | 2234 | 4316 | |
% | 22.14 | 9.44 | 8.46 | 8.46 | 51.75 | 100.00 | ||
Mean | MJ ha−1 | 955 | 354 | 365 | 407 | 1972 | 4056 | |
% | 23.55 | 8.73 | 9.00 | 10.03 | 48.62 | 100.00 | ||
Nitrogen dosage | 0 | MJ ha−1 | 1166 | 354 | 365 | 407 | 1803 | 4095 |
% | 28.47 | 8.64 | 8.91 | 9.94 | 44.03 | 100.00 | ||
40 | MJ ha−1 | 1166 | 354 | 365 | 407 | 1803 | 4095 | |
% | 28.47 | 8.64 | 5.91 | 9.94 | 44.03 | 100.00 | ||
80 | MJ ha−1 | 1166 | 354 | 365 | 407 | 2046 | 4338 | |
% | 26.88 | 8.16 | 8.41 | 9.38 | 47.16 | 100.00 | ||
120 | MJ ha−1 | 1166 | 354 | 365 | 407 | 2234 | 4526 | |
% | 25.76 | 7.82 | 8.06 | 8.99 | 49.36 | 100.00 | ||
Mean | MJ ha−1 | 1166 | 354 | 365 | 407 | 1972 | 4264 | |
% | 27.35 | 8.30 | 8.56 | 9.55 | 46.25 | 100.00 |
Tillage Systems | Nitrogen Dosage | Energy Value of Grain Yield | Energy Expenditure on Producing Yield | Energy Intensity | Energy Value of Bioethanol | Energy Value of Inputs on Grain Fermentation | EROI |
---|---|---|---|---|---|---|---|
MJ ha−1 | MJ ha−1 | ||||||
TRD | 0 | 69340 a | 8275 a | 8.379 a | 36901 c | 23045 c | 1.174 a |
40 | 95288 a | 11355 a | 8.392 a | 50741 b | 31688 b | 1.176 a | |
80 | 106549 a | 14734 a | 7.232 a | 56730 a | 35428 a | 1.130 a | |
120 | 109548 a | 18026 a | 6.077 a | 58505 a | 36537 a | 1.071 a | |
Mean | 95181 A | 13097 A | 7.267 A | 50719 A | 31675 A | 1.138 A | |
RED | 0 | 62667 a | 7710 a | 8.128 a | 33525 d | 20936 c | 1.162 a |
40 | 75337 a | 10790 a | 6.982 a | 40259 c | 25142 c | 1.111 a | |
80 | 87700 a | 14169 a | 6.190 a | 46668 b | 29145 b | 1.070 a | |
120 | 92167 a | 17460 a | 5.279 a | 49169 b | 30706 b | 1.014 a | |
Mean | 79468 B | 12532 B | 6.341 B | 42405 B | 26482 B | 1.089 B | |
Nitrogen dosage | 0 | 66004 D | 7993 D | 8.258 A | 35213 C | 21991 C | 1.168 A |
40 | 85312 C | 11073 C | 7.705 B | 45500 B | 28415 B | 1.144 B | |
80 | 97124 B | 14452 B | 6.720 C | 51699 A | 32287 A | 1.100 C | |
120 | 100858 A | 17743 A | 5.684 D | 53837 A | 33622 A | 1.043 D | |
Year | 2012 | 87164 B | 12815 A | 6.802 B | 46314 B | 28923 B | 1.113 B |
2013 | 93773 A | 12815 A | 7.317 A | 50022 A | 31239 A | 1.139 A | |
2014 | 81036 C | 12815 A | 6.323 C | 43351 C | 27073 C | 1.088 C | |
Mean | 87325 | 12815 | 6.814 | 46562 | 29079 | 1.114 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klikocka, H.; Kasztelan, A.; Zakrzewska, A.; Wyłupek, T.; Szostak, B.; Skwaryło-Bednarz, B. The Energy Efficiency of the Production and Conversion of Spring Triticale Grain into Bioethanol. Agronomy 2019, 9, 423. https://doi.org/10.3390/agronomy9080423
Klikocka H, Kasztelan A, Zakrzewska A, Wyłupek T, Szostak B, Skwaryło-Bednarz B. The Energy Efficiency of the Production and Conversion of Spring Triticale Grain into Bioethanol. Agronomy. 2019; 9(8):423. https://doi.org/10.3390/agronomy9080423
Chicago/Turabian StyleKlikocka, Hanna, Armand Kasztelan, Aneta Zakrzewska, Teresa Wyłupek, Bogdan Szostak, and Barbara Skwaryło-Bednarz. 2019. "The Energy Efficiency of the Production and Conversion of Spring Triticale Grain into Bioethanol" Agronomy 9, no. 8: 423. https://doi.org/10.3390/agronomy9080423
APA StyleKlikocka, H., Kasztelan, A., Zakrzewska, A., Wyłupek, T., Szostak, B., & Skwaryło-Bednarz, B. (2019). The Energy Efficiency of the Production and Conversion of Spring Triticale Grain into Bioethanol. Agronomy, 9(8), 423. https://doi.org/10.3390/agronomy9080423