Biochar or Biochar-Compost Amendment to a Peat-Based Substrate Improves Growth of Syngonium podophyllum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical and Physical Properties of Growth Substrates
2.2. Plant Material and Experimental Design
2.3. Morphological Evaluation
2.4. Physiological Parameters
2.5. Biochemical Parameters
2.6. Statistical Analysis
3. Results and Discussion
3.1. Substrate Chemical Properties
3.2. Substrate Physical Properties
3.3. Plant Growth
3.4. Biochemical Parameters
4. Conclusion
Author Contributions
Funding
Conflicts of Interest
References
- Zulfiqar, F.; Younis, A.; Abideen, Z.; Allaire, S.E.; Shao, Q. Evaluation of container substrates containing compost and biochar for ornamental plant Dracaena deremensis. Pak. J. Agric. Sci. 2019, 56, 613–621. [Google Scholar]
- Judd, L.A.; Jackson, B.E.; Fonteno, W.C. Advancements in root growth measurement technologies and observation capabilities for container-grown plants. Plants 2015, 4, 369–392. [Google Scholar] [CrossRef] [PubMed]
- USDA (U.S. Department of Agriculture). Census of Agriculture; 2007 Summary and State Data; USDA: Washington, DC, USA, 2009. Available online: http://www.agcensus.usda.gov/Publications/2007/Full_Report/usv1.pdf (accessed on 6 August 2019).
- Chen, J.; Wei, X. Controlled-released fertilizers as a means to reduce nitrogen leaching and runoff in container-grown plant production. In Nitrogen in Agriculture-Updates; Khan, A., Fahad, S., Eds.; InTechOpen: Rijeka, Croatia, 2018; pp. 33–52. [Google Scholar]
- Zulfiqar, F.; Allaire, S.E.; Akram, N.A.; Méndez, A.; Younis, A.; Peerzada, A.M.; Shaukat, N.; Wright, S.R. Challenges in organic component selection and biochar as an opportunity in potting substrates: A review. J. Plant Nutr. 2019, 42, 1386–1401. [Google Scholar] [CrossRef]
- Li, Q.; Chen, J.; Caldwell, R.D.; Deng, M. Cowpeat as a substitute for peat in container substrates for foliage plant propagation. HortTechnology 2009, 19, 340–345. [Google Scholar] [CrossRef]
- Di Lonardo, S.; Baronti, S.; Vaccari, F.P.; Albanese, L.; Battista, P.; Miglietta, F.; Bacci, L. Biochar-based nursery substrates: The effect of peat substitution on reduced salinity. Urban For. Urban Green. 2017, 23, 27–34. [Google Scholar] [CrossRef]
- Carlile, B.; Coules, A. Towards sustainability in growing media. Acta Hortic. 2013, 1013, 341–349. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Antoniou, O.; Tzionis, A.; Prasad, M.; Tzortzakis, N. Alternative soilless media using olive-mill and paper waste for growing ornamental plants. Environ. Sci. Pollut. 2018, 25, 35915–35927. [Google Scholar] [CrossRef]
- Alvarez, J.M.; Pasian, C.; Lal, R.; Lopez-Nunez, R.; Fernandez, M. A biotic strategy to sequester carbon in the ornamental containerized bedding plant production. A review. J. Agric. Res. 2018, 16, e03R01. (In Spanish) [Google Scholar] [CrossRef]
- Huang, L.; Niu, G.; Feagley, S.E.; Gu, M. Evaluation of a hardwood biochar and two composts mixes as replacements for a peat-based commercial substrate. Ind. Crop. Prod. 2019, 129, 549–560. [Google Scholar] [CrossRef]
- Chen, J.; McConnell, D.B.; Robinson, C.A.; Caldwell, R.D.; Huang, Y. Production and interior performances of tropical ornamental foliage plants grown in container substrates amended with composts. Compost Sci. Util. 2002, 10, 217–225. [Google Scholar] [CrossRef]
- Huang, L.; Gu, M. Effects of biochar on container substrate properties and growth of plants—A review. Horticulturae 2019, 5, 14. [Google Scholar] [CrossRef]
- Gruda, N.S. Increasing Sustainability of Growing Media Constituents and Stand-Alone Substrates in Soilless Culture Systems. Agronomy 2019, 9, 298. [Google Scholar] [CrossRef]
- Yu, H.; Zou, W.; Chen, J.; Chen, H.; Yu, Z.; Huang, J.; Tang, H.; Wei, X.; Gao, B. Biochar amendment improves crop production in problem soils: A review. J. Environ. Manag. 2019, 232, 8–21. [Google Scholar] [CrossRef] [PubMed]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Méndez, A.; Paz-Ferreiro, J.; Gil, E.; Gascó, G. The effect of paper sludge and biochar addition on brown peat and coir based growing media properties. Sci. Hortic. 2015, 193, 225–230. [Google Scholar] [CrossRef]
- Dispenza, V.; De Pasquale, C.; Fascella, G.; Mammano, M.; Alonzo, G. Use of biochar as peat substitute for growing substrates of Euphorbia× lomi potted plants. J. Agric. Res. 2016, 14, 1–11. (In Spanish) [Google Scholar] [CrossRef]
- Margenot, A.J.; Griffin, D.E.; Alves, B.S.; Rippner, D.A.; Li, C.; Parikh, S.J. Substitution of peat moss with softwood biochar for soil-free marigold growth. Ind. Crop. Prod. 2018, 112, 160–169. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Niu, G.; Starman, T.; Gu, M. Growth and development of easter lily in response to container substrate with biochar. J. Hortic. Sci. Biotechnol. 2019, 94, 80–86. [Google Scholar] [CrossRef]
- Li, S.; Harris, S.; Anandhi, A.; Chen, G. Predicting biochar properties and functions based on feedstock and pyrolysis temperature: A review and data syntheses. J. Clean. Prod. 2019, 215, 890–902. [Google Scholar] [CrossRef]
- Chen, J.; McConnell, D.B.; Robinson, C.A.; Caldwell, R.D.; Huang, Y. Rooting foliage plant cuttings in compost-formulated substrates. HortTechnology 2003, 13, 110–114. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, X.Y.; Tian, Y.; Gong, X.Q. Composted green waste as a substitute for peat in growth media: Effects on growth and nutrition of Calathea insignis. PLoS ONE 2013, 8, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Barker, A.V.; Bryson, G.M. Comparisons of composts with low or high nutrient status for growth of plants in containers. Commun. Soil Sci. Plant Anal. 2006, 37, 1303–1319. [Google Scholar] [CrossRef]
- Kammann, C.I.; Schmidt, H.P.; Messerschmidt, N.; Linsel, S.; Steffens, D.; Müller, C.; Koyro, H.W.; Conte, P.; Joseph, S. Plant growth improvement mediated by nitrate capture in co-composted biochar. Sci. Rep. 2015, 5, 11080. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, J.; Pasian, C.; Lal, R.; López, R.; Fernández, M. Vermicompost and biochar as substitutes of growing media in ornamental-plant production. J. Appl. Hortic. 2017, 19, 205–214. [Google Scholar]
- Álvarez, J.M.; Pasian, C.; Lal, R.; López, R.; Díaz, M.J.; Fernández, M. Morpho-physiological plant quality when biochar and vermicompost are used as growing media replacement in urban horticulture. Urban. For. Urban Green. 2018, 34, 175–180. [Google Scholar] [CrossRef]
- Rhoades, J.D. Salinity, electrical conductivity and total dissolved solids. In Methods of Soil Analysis. Part 3. Chemical Methods; Bigham, J.M., Ed.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 417–435. [Google Scholar]
- Thomas, G.W. Soil pH and soil acidity. In Methods of Soil Analysis. Part 3. Chemical Methods; Bigham, J.M., Ed.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 475–489. [Google Scholar]
- Sumner, M.E.; Miller, W.P. Cation exchange capacity and exchange coefficients. In Methods of Soil Analysis. Part 3. Chemical Methods; Bigham, J.M., Ed.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 1201–1229. [Google Scholar]
- Nieto, A.; Gascó, G.; Paz-Ferreiro, J.; Fernández, J.M.; Plaza, C.; Méndez, A. The effect of pruning waste and biochar addition on brown peat based growing media properties. Sci. Hortic. 2016, 199, 142–148. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzyme in isolated chloroplast: Polyphenol oxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Constable and Co. Ltd.: London, UK, 1962. [Google Scholar]
- Chapman, H.D.; Pratt, P.F. Methods of Analysis for Soils, Plants and Water; University of California, Division of Agriculture Science Riverside: Riverside, CA, USA, 1961. [Google Scholar]
- Folin, O.; Ciocalteu, V. On tyrosine and tryptophane determinations in proteins. J. Biol. Chem. 1927, 73, 627–650. [Google Scholar]
- Yen, G.C.; Chen, H.Y. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Yadav, M.; Yadav, A.; Yadav, J.P. In vitro antioxidant activity and total phenolic content of endophytic fungi isolated from Eugenia jambolana Lam. Asian Pac. J. Trop. Med. 2014, 7, S256–SS261. [Google Scholar] [CrossRef]
- Chance, B.; Maehly, A.C. Assay of catalases and peroxidases. Methods Enzymol. 1955, 2, 764–775. [Google Scholar]
- Giannopolitis, C.N.; Ries, S.K. Superoxide dismutase: I. Occurrence in higher plants. Plant Physiol. 1977, 59, 309–314. [Google Scholar] [PubMed]
- Sambrook, J.; Russell, D.W. In vitro mutagenesis using doublestranded DNA templates, selection of mutants with DpnI. Mol. Cloning 2001, 2, 13–19. [Google Scholar]
- Bradford, M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, L.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Chavez, W.; Di Benedetto, A.; Civeira, G.; Lavado, R. Alternative soilless media for growing Petunia x hybrida and Impatiens wallerana: Physical behavior, effect of fertilization and nitrate losses. Bioresour. Technol. 2008, 99, 8082–8087. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; McConnell, D.B.; Norman, D.J.; Henny, R.J. The foliage plant industry. Hortic. Rev. 2005, 31, 45–110. [Google Scholar]
- Luo, J.; Fan, RQ.; Wang, T.; Gao, Y.; Liu, L.Z.; Yan, S.H.; Zhang, Z.H. Evaluation of spent pig litter compost as a peat substitute in soilless growth media. Biol Agric. Hortic. 2015, 31, 219–229. [Google Scholar] [CrossRef]
- Méndez, A.; Cárdenas-Aguiar, E.; Paz-Ferreiro, J.; Plaza, C.; Gascó, G. The effect of sewage sludge biochar on peat-based growing media. Biol. Agric. Hortic. 2017, 33, 40–51. [Google Scholar] [CrossRef]
- Bunt, A.C. Media and Mixes for Container Grown Plants: A Manual on the Preparation and Use of Growing Pot Plants, 2nd ed.; Unwin Hyman Ltd.: London, UK, 1988. [Google Scholar]
- Abad, M.; Noguera, P.; Burés, S. National inventory of organic wastes for use as growing media for ornamental potted plant production: Case study in Spain. Bioresour. Technol. 2001, 77, 197–200. [Google Scholar] [CrossRef]
- Chen, J.; McConnell, D.B.; Henny, R.J. The world foliage plant industry. Chron. Hortic. 2005, 45, 9–15. [Google Scholar]
- Gascó, G.; Lobo, M.C.; Guerrero, F. Land application of sewage sludge: A soil columns study. Water SA 2005, 31, 309–318. [Google Scholar] [CrossRef]
- Abad, M.; Noguera, P.; Puchades, R.; Maquieira, A.; Noguera, V. Physico-chemical and chemical properties of some coconut coir dusts for use as a peat substitute for containerized ornamental plants. Bioresour. Technol. 2002, 82, 241–245. [Google Scholar] [CrossRef]
- Michel, J.C. Physical properties of growing media: State of the art and future challenge. Acta Hortic. 2007, 819, 65–71. [Google Scholar] [CrossRef]
- Yeager, T.; Guilliam, C.; Bilderback, T.E.; Fare, D.; Niemiera, E.; Tilt, K. Best Management Practices Guide for Producing Container-Grown Plants; Southern Nursery Association: Atlanta, GA, USA, 1997. [Google Scholar]
- Abad, M.; Fornes, F.; Carrion, C.; Noguera, P.; Maguieira, A.; Puchades, R. Physical properties of various coconut coir dusts compared to peat. HortScience 2005, 40, 2138–2144. [Google Scholar] [CrossRef]
- Altland, J.; Locke, J. Biochar affects macronutrient leaching from a soilless substrate. HortScience 2012, 47, 1136–1140. [Google Scholar] [CrossRef]
- Tian, Y.; Sun, X.; Li, S.; Wang, H.; Wang, L.; Cao, J.; Zhang, L. Biochar made from green waste as peat substitute in growth media for Calathea rotundifola cv. Fasciata. Sci. Hortic. 2012, 143, 15–18. [Google Scholar] [CrossRef]
- Guo, Y.; Niu, G.; Starman, T.; Volder, A.; Gu, M. Poinsettia growth and development response to container root substrate with biochar. Horticulturae 2018, 4, 1. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Q. Variation in photosynthetic characteristics and leaf area contributes to Spathiphyllum cultivar difference in biomass production. Photosynthetica 2003, 41, 443–447. [Google Scholar]
- Scherer, R.; Lemos, M.F.; Lemos, M.F.; Martinelli, G.C.; Martins, J.D.L.; da Silva, A.G. Antioxidant and antibacterial activities and composition of Brazilian spearmint (Mentha spicata L.). Ind. Crop. Prod. 2013, 50, 408–413. [Google Scholar] [CrossRef]
- Foyer, C.H.; Noctor, G. Ascorbate and glutathione: The heart of the redox hub. Plant Physiol. 2011, 155, 2–18. [Google Scholar] [CrossRef] [PubMed]
- Chrysargyris, A.; Xylia, P.; Botsaris, G.; Tzortzakis, N. Antioxidant and antibacterial activities, mineral and essential oil composition of spearmint (Mentha spicata L.) affected by the potassium levels. Ind. Crop. Prod. 2017, 103, 202–212. [Google Scholar] [CrossRef]
Component | pH | EC (dS m−1) | CEC (cmol kg−1) | C (g kg−1) | Total N (g kg−1) | P (g kg−1) | K (g kg−1) | Ca (g kg−1) |
---|---|---|---|---|---|---|---|---|
Peat | 5.6 | 0.04 | 101.4 | 212 | 0.4 | 0.04 | 0.5 | 11.2 |
Biochar | 8.4 | 2.2 | 115.0 | 635 | 2.1 | 1.05 | 3.95 | 0.91 |
Compost | 7.7 | 3.8 | - | 303 | 12.5 | 4.7 | 11.4 | 3.3 |
Growing media | ||||||||
Control | 5.64 a | 0.03 a | 101.5 a | |||||
BC | 6.12 b | 0.47 b | 101.1 a | |||||
BioComp | 6.60 c | 1.04 c | 106.4 b |
Growing Media | Bulk Density (g cm−3) | Air Space (vol %) | Water-Holding Capacity (vol %) | Total Porosity (vol %) |
---|---|---|---|---|
Control | 0.16 a | 9.06 a | 61.6 a | 78.6 a |
BC | 0.22 b | 13.76 b | 64.0 b | 82.6 b |
BioComp | 0.25 c | 16.36 c | 64.6 b | 83.6 b |
Growing Media | Canopy Height (cm) | Number of Leaves | Leaf FM (g) | Leaf DM (g) | Root FM (g) | Root DM (g) | Plant Grade |
---|---|---|---|---|---|---|---|
Control | 21.2 a | 19.7 a | 14.3 a | 1.3 a | 6.4 a | 1.7 a | 3.6 a |
BC | 24.4 b | 24.3 b | 16.4 b | 2.0 a | 9.0 b | 2.4 b | 3.6 a |
BioComp | 29.2 c | 30.1 c | 26.2 c | 2.4 b | 14.4 c | 3.2 c | 4.1 a |
Growing Media | N | P | K |
---|---|---|---|
Control | 2.70 a | 0.14 a | 2.58 a |
BC | 2.42 a | 0.32 b | 2.87 b |
BioComp | 3.93 b | 0.38 c | 3.11 c |
Growing Media | Chlorophyll a (mg g−1 FW) | Chlorophyll b (mg g−1 FW) | Total Chlorophyll (mg g−1 FW) | Carotenoids Content (mg g−1 FW) |
---|---|---|---|---|
Control | 4.3 a | 4.5 a | 8.8 a | 8.3 a |
BC | 5.5 b | 5.1 b | 10.6 b | 8.2 a |
BioComp | 6.34 c | 4.9 a | 11.2 c | 8.5 a |
Growing Media | Pn (µmol CO2 m−2 s−1) | Gs (mol H2O m−2 s−1) | Ci (µmol m−2 s−1) | E (mmol H2O m−2 s−1) |
---|---|---|---|---|
Control | 5.2 a | 0.42 a | 175 a | 4.23 a |
BC | 6.3 a | 0.44 a | 154 b | 4.40 a |
BioComp | 8.1 b | 0.46 a | 144 c | 4.69 a |
Growing Media | TSP (mg mL−1) | TPC (mg GAE g−1) | DPPH (%) | SOD (µmol min−1 mg−1 protein) | POD (µmol min−1 mg−1 protein) | CAT (µmol min−1 mg−1 protein) | RP (%) | Leaf-Free Proline (µmol g−1 FW) |
---|---|---|---|---|---|---|---|---|
Control | 3.1 a | 129.4 a | 0.2 a | 53.5 a | 1.7 a | 18.8 a | 0.5 a | 3.14 a |
BC | 4.2 b | 143.0 a | 0.2 a | 54.0 a | 1.5 a | 16.8 a | 0.5 a | 3.20 a |
BioComp | 4.6 c | 165.1 b | 0.2 a | 57.0 a | 1.8 a | 17.3 a | 0.4 a | 3.60 a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zulfiqar, F.; Younis, A.; Chen, J. Biochar or Biochar-Compost Amendment to a Peat-Based Substrate Improves Growth of Syngonium podophyllum. Agronomy 2019, 9, 460. https://doi.org/10.3390/agronomy9080460
Zulfiqar F, Younis A, Chen J. Biochar or Biochar-Compost Amendment to a Peat-Based Substrate Improves Growth of Syngonium podophyllum. Agronomy. 2019; 9(8):460. https://doi.org/10.3390/agronomy9080460
Chicago/Turabian StyleZulfiqar, Faisal, Adnan Younis, and Jianjun Chen. 2019. "Biochar or Biochar-Compost Amendment to a Peat-Based Substrate Improves Growth of Syngonium podophyllum" Agronomy 9, no. 8: 460. https://doi.org/10.3390/agronomy9080460
APA StyleZulfiqar, F., Younis, A., & Chen, J. (2019). Biochar or Biochar-Compost Amendment to a Peat-Based Substrate Improves Growth of Syngonium podophyllum. Agronomy, 9(8), 460. https://doi.org/10.3390/agronomy9080460