Micronutrients in the Soil and Wheat: Impact of 84 Years of Organic or Synthetic Fertilization and Crop Residue Management
Abstract
:1. Introduction
- (1)
- Inorganic N application (NB45, NB90, SB45, or SB90) increases or maintains the concentration of Mn, Zn, Cu, Fe, and B in soil over time compared with the application of FYM or PV.
- (2)
- The spring residues burned plots with inorganic N application (SB45 or SB90) have similar or greater concentrations of Mn, Zn, Cu, Fe, and B in soil than no burn plots with inorganic N application (NB45 or NB90) over time.
- (3)
- The concentrations of Mn, Zn, Cu, Fe, and B in wheat grain and straw are greater or similar in NB45, NB90, SB45, or SB90 plots to those in FYM and PV application plots.
- (4)
- The concentrations of Mn, Zn, Cu, Fe, and B in wheat grain and straw are similar or greater in the SB45 or SB90 than those in the NB45 or NB90.
2. Materials and Methods
2.1. Site Descriptions and Treatments
2.2. Soil Sampling and Laboratory Analysis
2.3. Statistical Analysis
3. Results and Discussion
3.1. Mehlich III Extractable Manganese (Mn) in Soil
3.2. Mehlich III Extractable Boron (B) in Soil
3.3. Mehlich III Extractable Zinc (Zn) in Soil
3.4. Mehlich III Extractable Copper (Cu) in Soil
3.5. Total Micronutrient Accumulation in Wheat Grain and Straw
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Reagents |
---|
|
|
|
|
|
|
|
Mehlich-III Stock Solution (3.75M NH4F, 250mM EDTA) |
|
|
Mehlich-III Extractant (250 mM NH4NO3, 15 mM NH4F, 1.0 mM EDTA, 13.0 mM HNO3, 200 mM acetic acid) |
|
|
|
|
|
|
Summary |
---|
|
|
|
|
|
|
Equipment |
|
|
|
|
Reagents |
|
|
|
|
Element | Detection limits (μg/L) |
---|---|
Boron (B) | 1 |
Copper (Cu) | 0.4 |
Iron (Fe) | 0.1 |
Manganese (Mn) | 0.1 |
Zinc (Zn) | 0.2 |
References
- Jones, D.L.; Cross, P.; Withers, P.J.A.; DeLuca, T.H.; Robinson, D.A.; Quilliam, R.S.; Harris, I.M.; Chadwick, D.R.; Edwards-Jones, G. Review: Nutrient stripping: The global disparity between food security and soil nutrient stocks. J. Appl. Ecol. 2013, 50, 851–862. [Google Scholar] [CrossRef]
- Kirchmann, H.; Mattsson, L.; Eriksson, J. Trace element concentration in wheat grain: Results from the Swedish long-term soil fertility experiments and national monitoring program. Environ. Geochem. Health 2009, 31, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Li, B.Y.; Huang, S.M.; Wei, M.B.; Zhang, H.L.; Shen, A.L.; Xu, J.M.; Ruan, X.L. Dynamics of soil and grain micronutrients as sffected by long-term fertilization in an aquic inceptisol. Pedosphere 2010, 20, 725–735. [Google Scholar] [CrossRef]
- Mayer, J.E.; Pfeiffer, W.H.; Beyer, P. Biofortified crops to alleviate micronutrient malnutrition. Curr. Opin. Plant Biol. 2008, 11, 166–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, X.; Hao, M.; Shao, M.; Gale, W.J. Changes in soil properties and the availability of soil micronutrients after 18 years of cropping and fertilization. Soil Tillage Res. 2006, 91, 120–130. [Google Scholar] [CrossRef]
- Biederbeck, V.O.; Campbell, C.A.; Bowren, K.E.; Schnitzer, M.; McIver, R.N. Effect of burning cereal straw on soil properties and grain yields in Saskatchewan. Soil Sci. Soc. Am. J. 1980, 44, 103–111. [Google Scholar] [CrossRef]
- Li, B.Y.; Zhou, D.M.; Cang, L.; Zhang, H.L.; Fan, X.H.; Qin, S.W. Soil micronutrient availability to crops as affected by long-term inorganic and organic fertilizer applications. Soil Tillage Res. 2007, 96, 166–173. [Google Scholar] [CrossRef]
- Zhang, S.X.; Wang, X.B.; Jin, K. Effect of different N and P levels on availability of zinc, copper, manganese and iron under arid conditions. J. Plant Nutr. Fertil. 2001, 7, 391–396. [Google Scholar]
- Rui, Z.; Yuexia, G.; Chunqin, N. Study on trace elements of wheat grain in different fertilizer treatments. Acta Bot. Boreali Occident. Sin. 2004, 24, 125–129. [Google Scholar]
- Shengzhe, E.S.; Yuan, J.C.; Ding, Z.Y.; Yao, F.J.; Yu, X.P.; Luo, F.X. Effect of N, P, K fertilizers on Fe, Zn, Cu, Mn, Ca and Mg contents and yields in rice. Chin. J. Rice Sci. 2005, 19, 434–440. [Google Scholar]
- Morgounov, A.; Gómez-Becerra, H.F.; Abugalieva, A.; Dzhunusova, M.; Yessimbekova, M.; Muminjanov, H.; Zelenskiy, Y.; Ozturk, L.; Cakmak, I. Iron and zinc grain density in common wheat grown in Central Asia. Euphytica 2007, 155, 193–203. [Google Scholar] [CrossRef]
- Xue, Y.; Yue, S.; Zhang, W.; Liu, D.; Cui, Z.; Chen, X.; Ye, Y.; Zou, C. Zinc, iron, manganese and copper uptake requirement in response to nitrogen supply and the increased grain yield of summer maize. PLoS ONE 2014, 9, e93895. [Google Scholar] [CrossRef]
- Feil, B.; Moser, S.B.; Jampatong, S.; Stamp, P. Mineral composition of the grains of tropical maize varieties as affected by pre-anthesis drought and rate of nitrogen fertilization. Crop Sci. 2005, 45, 516–523. [Google Scholar] [CrossRef]
- Losak, T.; Hlusek, J.; Martinec, J.; Jandak, J.; Szostkova, M.; Filipcik, R.; Manasek, J.; Prokes, K.; Peterka, J.; Varga, L.; et al. Nitrogen fertilization does not affect micronutrient uptake in grain maize (Zea mays L.). Acta Agric. Scand. Sect. B Soil Plant Sci. 2011, 61, 543–550. [Google Scholar]
- Shiwakoti, S.; Zheljazkov, V.D.; Gollany, H.T.; Kleber, M.; Xing, B. Long-Term Impacts of Nitrogen Fertilizer, Tillage and Crop Residue on Soil and Plant Nutrients in Winter Wheat Cropping Systems under Dryland Conditions. Ph.D. Dissertation, Oregon State University, Corvallis, Oregon, 2018. Available online: https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/fx719s951 (accessed on 6 August 2019).
- CBARC. Columbia Basin Agricultural Experiment Center-Pendleton Coop Weather Data. 2015. Available online: https://agsci.oregonstate.edu/cbarc/climate-and-soils/weather-observations-columbia-basin-agricultural-research-centerpendleton/ (accessed on 10 August 2018).
- Rasmussen, P.E.; Douglas, C.L., Jr.; Collins, H.P.; Albrecht, S.L. Long-term cropping system effects on mineralizable nitrogen in soil. Soil Biol. Biochem. 1998, 30, 1829–1837. [Google Scholar] [CrossRef]
- Shiwakoti, S.; Zheljazkov, V.D.; Gollany, H.T.; Kleber, M.; Xing, B. Effect of tillage on macronutrients in soil and wheat of a long-term dryland wheat-pea rotation. Soil Tillage Res. 2019, 190, 194–201. [Google Scholar] [CrossRef]
- Papp, C.; Harms, T. Comparison of digestion methods for total elemental analysis of peat and separation of its organic and inorganic components. Analyst 1985, 110, 237–243. [Google Scholar] [CrossRef]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Shiwakoti, S.; Zheljazkov, V.D.; Gollany, H.T.; Xing, B.; Kleber, M. Micronutrient concentrations in soil and wheat decline by long-term tillage and winter wheat-pea rotation. Agronomy 2019, 9, 359. [Google Scholar] [CrossRef]
- Shiwakoti, S.; Zheljazkov, V.D.; Gollany, H.T.; Kleber, M.; Xing, B. Macronutrients in soil and wheat as affected by a long-term tillage and nitrogen fertilization in winter wheat-fallow rotation. Agronomy 2019, 9, 178. [Google Scholar] [CrossRef]
- SAS Institute Inc. SAS/STAT 9.4 User’s Guide, Cary; SAS Institute Inc.: Cary, NC, USA, 2014. [Google Scholar]
- Srivastava, P.C.; Gupta, U.C. Trace Elements in Crop Production.; Science Publishers, Inc.: Lebanon, NH, USA, 1996; ISBN 1886106622. [Google Scholar]
- Rengel, Z. Availability of Mn, Zn and Fe in the rhizosphere. J. Soil Sci. Plant Nutr. 2015, 15, 397–409. [Google Scholar] [CrossRef]
- Heredia, W.; Peirano, P.; Borie, G.; Aguilera, M. Soil organic matter-metal interactions in Chilean volcanic soils under different agronomic management. Commun. Soil Sci. Plant Anal. 2002, 33, 2083–2099. [Google Scholar] [CrossRef]
- Panwar, N.R.; Ramesh, P.; Singh, A.B.; Ramana, S. Influence of organic, chemical, and integrated management practices on soil organic carbon and soil nutrient status under semi-arid tropical conditions in Central India. Commun. Soil Sci. Plant Anal. 2010, 41, 1073–1083. [Google Scholar] [CrossRef]
- Sanchez, P.A.; Villachica, J.H.; Bandy, D.E. Soil fertility dynamics after clearing a tropical rainforest in Peru. Soil Sci. Soc. Am. J. 1983, 47, 1171–1178. [Google Scholar] [CrossRef]
- Yermiyahu, U.; Keren, R.; Chen, Y. Effect of Composted Organic Matter on Boron Uptake by Plants. Soil Sci. Soc. Am. J. 2001, 65, 1436–1441. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, P.E.; Albrecht, S.L.; Smiley, R.W. Soil C and N changes under tillage and cropping systems in semi-arid Pacific Northwest agriculture. Soil Tillage Res. 1998, 47, 197–205. [Google Scholar] [CrossRef]
- de la Fuente, C.; Clemente, R.; Martínez-Alcalá, I.; Tortosa, G.; Bernal, M.P. Impact of fresh and composted solid olive husk and their water-soluble fractions on soil heavy metal fractionation; microbial biomass and plant uptake. J. Hazard. Mater. 2011, 186, 1283–1289. [Google Scholar] [CrossRef]
- Fan, M.S.; Zhao, F.J.; Fairweather-Tait, S.J.; Poulton, P.R.; Dunham, S.J.; McGrath, S.P. Evidence of decreasing mineral density in wheat grain over the last 160 years. J. Trace Elem. Med. Biol. 2008, 22, 315–324. [Google Scholar] [CrossRef]
- Tella, M.; Bravin, M.N.; Thuriès, L.; Cazevieille, P.; Chevassus-Rosset, C.; Collin, B.; Chaurand, P.; Legros, S.; Doelsch, E. Increased zinc and copper availability in organic waste amended soil potentially involving distinct release mechanisms. Environ. Pollut. 2016, 212, 299–306. [Google Scholar] [CrossRef]
- Shi, R.; Zhang, Y.; Chen, X.; Sun, Q.; Zhang, F.; Rö Mheld, V.; Zou, C. Influence of long-term nitrogen fertilization on micronutrient density in grain of winter wheat (Triticum aestivum L.). J. Cereal Sci. 2010, 51, 165–170. [Google Scholar] [CrossRef]
- Svecnjak, Z.; Jenel, M.; Bujan, M.; Vitali, D.; Vedrina Dragojević, I. Trace element concentrations in the grain of wheat cultivars as affected by nitrogen fertilization. Agric. Food Sci. 2013, 22, 445–451. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shiwakoti, S.; Zheljazkov, V.D.; Gollany, H.T.; Kleber, M.; Xing, B.; Astatkie, T. Micronutrients in the Soil and Wheat: Impact of 84 Years of Organic or Synthetic Fertilization and Crop Residue Management. Agronomy 2019, 9, 464. https://doi.org/10.3390/agronomy9080464
Shiwakoti S, Zheljazkov VD, Gollany HT, Kleber M, Xing B, Astatkie T. Micronutrients in the Soil and Wheat: Impact of 84 Years of Organic or Synthetic Fertilization and Crop Residue Management. Agronomy. 2019; 9(8):464. https://doi.org/10.3390/agronomy9080464
Chicago/Turabian StyleShiwakoti, Santosh, Valtcho D. Zheljazkov, Hero T. Gollany, Markus Kleber, Baoshan Xing, and Tess Astatkie. 2019. "Micronutrients in the Soil and Wheat: Impact of 84 Years of Organic or Synthetic Fertilization and Crop Residue Management" Agronomy 9, no. 8: 464. https://doi.org/10.3390/agronomy9080464
APA StyleShiwakoti, S., Zheljazkov, V. D., Gollany, H. T., Kleber, M., Xing, B., & Astatkie, T. (2019). Micronutrients in the Soil and Wheat: Impact of 84 Years of Organic or Synthetic Fertilization and Crop Residue Management. Agronomy, 9(8), 464. https://doi.org/10.3390/agronomy9080464