Pin1 as Molecular Switch in Vascular Endothelium: Notes on Its Putative Role in Age-Associated Vascular Diseases
Abstract
:1. Aging and the Vasculature: Focus on Endothelial Dysfunction
2. The Role of the cis-trans Isomerase Pin1 in Vascular Endothelium
3. Multi-Way Regulation of NO Production by Pin1
3.1. Direct Regulation of eNOS Activity by Pin1
3.2. Indirect Regulation of NOS by Pin1
4. Pin1 Implication in Vascular Diseases
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xu, S.; Ilyas, I.; Little, P.J.; Li, H.; Kamato, D.; Zheng, X.; Luo, S.; Li, Z.; Liu, P.; Han, J.; et al. Endothelial Dysfunction in Atherosclerotic Cardiovascular Diseases and Beyond: From Mechanism to Pharmacotherapies. Pharmacol. Rev. 2021, 73, 924–967. [Google Scholar] [CrossRef]
- Celermajer, D.S.; Sorensen, K.E.; Spiegelhalter, D.J.; Georgakopoulos, D.; Robinson, J.; Deanfield, J.E. Aging is associated with endothelial dysfunction in healthy men years before the age-related decline in women. J. Am. Coll. Cardiol. 1994, 24, 471–476. [Google Scholar] [CrossRef] [Green Version]
- Herrera, M.D.; Mingorance, C.; Rodríguez-Rodríguez, R.; Alvarez de Sotomayor, M. Endothelial dysfunction and aging: An update. Ageing Res. Rev. 2010, 9, 142–152. [Google Scholar] [CrossRef]
- Smith, A.R.; Visioli, F.; Hagen, T.M. Plasma membrane-associated endothelial nitric oxide synthase and activity in aging rat aortic vascular endothelia markedly decline with age. Arch. Biochem. Biophys. 2006, 454, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Widlansky, M.E.; Gokce, N.; Keaney, J.F.J.; Vita, J.A. The clinical implications of endothelial dysfunction. J. Am. Coll. Cardiol. 2003, 42, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Lu, K.P.; Hanes, S.D.; Hunter, T. A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature 1996, 380, 544–547. [Google Scholar] [CrossRef]
- Lu, K.P.; Zhou, X.Z. The prolyl isomerase PIN1: A pivotal new twist in phosphorylation signalling and disease. Nat. Rev. Mol. Cell Biol. 2007, 8, 904–916. [Google Scholar] [CrossRef]
- Yeh, E.S.; Means, A.R. PIN1, the cell cycle and cancer. Nat. Rev. Cancer 2007, 7, 381–388. [Google Scholar] [CrossRef]
- Fagiani, F.; Govoni, S.; Racchi, M.; Lanni, C. The Peptidyl-prolyl Isomerase Pin1 in Neuronal Signaling: From Neurodevelopment to Neurodegeneration. Mol. Neurobiol. 2021, 58, 1062–1073. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Yu, P.; Jiang, H.; Yang, X.; Zhao, J.; Zou, Y.; Ge, J. The Essential Role of Pin1 via NF-κB Signaling in Vascular Inflammation and Atherosclerosis in ApoE(-/-) Mice. Int. J. Mol. Sci. 2017, 18, 644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurakula, K.; Hagdorn, Q.A.J.; van der Feen, D.E.; Vonk Noordegraaf, A.; Ten Dijke, P.; de Boer, R.A.; Bogaard, H.J.; Goumans, M.J.; Berger, R.M.F. Inhibition of the prolyl isomerase Pin1 improves endothelial function and attenuates vascular remodelling in pulmonary hypertension by inhibiting TGF-β signalling. Angiogenesis 2021, 1–14. [Google Scholar] [CrossRef]
- Paneni, F.; Costantino, S.; Castello, L.; Battista, R.; Capretti, G.; Chiandotto, S.; D’Amario, D.; Scavone, G.; Villano, A.; Rustighi, A.; et al. Targeting prolyl-isomerase Pin1 prevents mitochondrial oxidative stress and vascular dysfunction: Insights in patients with diabetes. Eur. Heart J. 2015, 36, 817–828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.; Huang, Y.; Likhotvorik, R.I.; Keshvara, L.; Hoyt, D.G. Protein Never in Mitosis Gene A Interacting-1 (PIN1) regulates degradation of inducible nitric oxide synthase in endothelial cells. Am. J. Physiol. Cell Physiol. 2008, 295, C819–C827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruan, L.; Torres, C.M.; Qian, J.; Chen, F.; Mintz, J.D.; Stepp, D.W.; Fulton, D.; Venema, R.C. Pin1 prolyl isomerase regulates endothelial nitric oxide synthase. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 392–398. [Google Scholar] [CrossRef] [Green Version]
- Bredt, D.S. Endogenous nitric oxide synthesis: Biological functions and pathophysiology. Free Radic. Res. 1999, 31, 577–596. [Google Scholar] [CrossRef] [PubMed]
- Tabatabaei, S.N.; Girouard, H. Nitric oxide and cerebrovascular regulation. Vitam. Horm. 2014, 96, 347–385. [Google Scholar] [CrossRef]
- Mount, P.F.; Kemp, B.E.; Power, D.A. Regulation of endothelial and myocardial NO synthesis by multi-site eNOS phosphorylation. J. Mol. Cell. Cardiol. 2007, 42, 271–279. [Google Scholar] [CrossRef]
- Chiasson, V.L.; Munshi, N.; Chatterjee, P.; Young, K.J.; Mitchell, B.M. Pin1 deficiency causes endothelial dysfunction and hypertension. Hypertension 2011, 58, 431–438. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Kennard, S.; Ruan, L.; Buffett, R.J.; Fulton, D.; Venema, R.C. TNFα reduces eNOS activity in endothelial cells through serine 116 phosphorylation and Pin1 binding: Confirmation of a direct, inhibitory interaction of Pin1 with eNOS. Vascul. Pharmacol. 2016, 81, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Kou, R.; Greif, D.; Michel, T. Dephosphorylation of endothelial nitric-oxide synthase by vascular endothelial growth factor. Implications for the vascular responses to cyclosporin A. J. Biol. Chem. 2002, 277, 29669–29673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.R.; Choi, H.S.; Heo, T.-H.; Hwang, S.W.; Kang, K.W. Induction of vascular endothelial growth factor by peptidyl-prolyl isomerase Pin1 in breast cancer cells. Biochem. Biophys. Res. Commun. 2008, 369, 547–553. [Google Scholar] [CrossRef]
- Erol, A. Pin1 as a protector of vascular endothelial homeostasis. Hypertension 2012, 59, e14. [Google Scholar] [CrossRef] [Green Version]
- De Stefano, A.; Carlomagno, C.; Pepe, S.; Bianco, R.; De Placido, S. Bevacizumab-related arterial hypertension as a predictive marker in metastatic colorectal cancer patients. Cancer Chemother. Pharmacol. 2011, 68, 1207–1213. [Google Scholar] [CrossRef] [PubMed]
- Nakano, A.; Koinuma, D.; Miyazawa, K.; Uchida, T.; Saitoh, M.; Kawabata, M.; Hanai, J.; Akiyama, H.; Abe, M.; Miyazono, K.; et al. Pin1 down-regulates transforming growth factor-beta (TGF-beta) signaling by inducing degradation of Smad proteins. J. Biol. Chem. 2009, 284, 6109–6115. [Google Scholar] [CrossRef] [Green Version]
- Paduch, R.; Kandefer-Szerszeń, M. Transforming growth factor-beta1 (TGF-beta1) and acetylcholine (ACh) alter nitric oxide (NO) and interleukin-1beta (IL-1beta) secretion in human colon adenocarcinoma cells. In Vitro Cell. Dev. Biol. Anim. 2009, 45, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Vural, P.; Degirmencioglu, S.; Erden, S.; Gelincik, A. The relationship between transforming growth factor-beta1, vascular endothelial growth factor, nitric oxide and Hashimoto’s thyroiditis. Int. Immunopharmacol. 2009, 9, 212–215. [Google Scholar] [CrossRef]
- Deedwania, P.C. Diabetes is a vascular disease: The role of endothelial dysfunction in pathophysiology of cardiovascular disease in diabetes. Cardiol. Clin. 2004, 22, 505–509. [Google Scholar] [CrossRef]
- Costantino, S.; Paneni, F.; Lüscher, T.F.; Cosentino, F. Pin1 inhibitor Juglone prevents diabetic vascular dysfunction. Int. J. Cardiol. 2016, 203, 702–707. [Google Scholar] [CrossRef]
- Lv, L.; Zhang, J.; Zhang, L.; Xue, G.; Wang, P.; Meng, Q.; Liang, W. Essential role of Pin1 via STAT3 signalling and mitochondria-dependent pathways in restenosis in type 2 diabetes. J. Cell. Mol. Med. 2013, 17, 989–1005. [Google Scholar] [CrossRef]
- Zhang, M.; Lin, L.; Xu, C.; Chai, D.; Peng, F.; Lin, J. VDR Agonist Prevents Diabetic Endothelial Dysfunction through Inhibition of Prolyl Isomerase-1-Mediated Mitochondrial Oxidative Stress and Inflammation. Oxid. Med. Cell. Longev. 2018, 2018, 1714896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Z.-J.; Esnault, S.; Malter, J.S. The peptidyl-prolyl isomerase Pin1 regulates the stability of granulocyte-macrophage colony-stimulating factor mRNA in activated eosinophils. Nat. Immunol. 2005, 6, 1280–1287. [Google Scholar] [CrossRef] [PubMed]
- Esnault, S.; Braun, R.K.; Shen, Z.-J.; Xiang, Z.; Heninger, E.; Love, R.B.; Sandor, M.; Malter, J.S. Pin1 modulates the type 1 immune response. PLoS ONE 2007, 2, e226. [Google Scholar] [CrossRef] [PubMed]
- Esnault, S.; Shen, Z.-J.; Whitesel, E.; Malter, J.S. The peptidyl-prolyl isomerase Pin1 regulates granulocyte-macrophage colony-stimulating factor mRNA stability in T lymphocytes. J. Immunol. 2006, 177, 6999–7006. [Google Scholar] [CrossRef]
- Barberi, T.J.; Dunkle, A.; He, Y.-W.; Racioppi, L.; Means, A.R. The prolyl isomerase Pin1 modulates development of CD8+ cDC in mice. PLoS ONE 2012, 7, e29808. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.-J.; Malter, J.S. Eosinophils, Pin1 and the Response to Respiratory Viral Infection and Allergic Stimuli. Crit. Rev. Immunol. 2019, 39, 135–149. [Google Scholar] [CrossRef]
- Boussetta, T.; Gougerot-Pocidalo, M.-A.; Hayem, G.; Ciappelloni, S.; Raad, H.; Arabi Derkawi, R.; Bournier, O.; Kroviarski, Y.; Zhou, X.Z.; Malter, J.S.; et al. The prolyl isomerase Pin1 acts as a novel molecular switch for TNF-alpha-induced priming of the NADPH oxidase in human neutrophils. Blood 2010, 116, 5795–5802. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Bedouhene, S.; Hurtado-Nedelec, M.; Pintard, C.; Dang, P.M.-C.; Yu, S.; El-Benna, J. The Prolyl Isomerase Pin1 Controls Lipopolysaccharide-Induced Priming of NADPH Oxidase in Human Neutrophils. Front. Immunol. 2019, 10, 2567. [Google Scholar] [CrossRef]
- Islam, R.; Yoon, W.-J.; Woo, K.-M.; Baek, J.-H.; Ryoo, H.-M. Pin1-mediated prolyl isomerization of Runx1 affects PU.1 expression in pre-monocytes. J. Cell. Physiol. 2014, 229, 443–452. [Google Scholar] [CrossRef]
- Dong, R.; Xue, Z.; Fan, G.; Zhang, N.; Wang, C.; Li, G.; Da, Y. Pin1 Promotes NLRP3 Inflammasome Activation by Phosphorylation of p38 MAPK Pathway in Septic Shock. Front. Immunol. 2021, 12, 620238. [Google Scholar] [CrossRef]
- Shimizu, T.; Uchida, C.; Shimizu, R.; Motohashi, H.; Uchida, T. Prolyl isomerase Pin1 promotes proplatelet formation of megakaryocytes via tau. Biochem. Biophys. Res. Commun. 2017, 493, 946–951. [Google Scholar] [CrossRef] [PubMed]
- Kurakula, K.; Koenis, D.S.; Herzik, M.A.J.; Liu, Y.; Craft, J.W.J.; van Loenen, P.B.; Vos, M.; Tran, M.K.; Versteeg, H.H.; Goumans, M.-J.T.H.; et al. Structural and cellular mechanisms of peptidyl-prolyl isomerase Pin1-mediated enhancement of Tissue Factor gene expression, protein half-life, and pro-coagulant activity. Haematologica 2018, 103, 1073–1082. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Su, Z.; Zou, Z.; Tan, H.; Cai, D.; Su, L.; Gu, Z. Ser46 phosphorylation of p53 is an essential event in prolyl-isomerase Pin1-mediated p53-independent apoptosis in response to heat stress. Cell Death Dis. 2019, 10, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, L.; Ye, M.; Duan, R.; Yuan, K.; Chen, J.; Liang, W.; Zhou, Z.; Zhang, L. Downregulation of Pin1 in human atherosclerosis and its association with vascular smooth muscle cell senescence. J. Vasc. Surg. 2018, 68, 873–883.e5. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhang, M.; Xu, C.; Chai, D.; Peng, F.; Lin, J. Anti-Diabetic Atherosclerosis by Inhibiting High Glucose-Induced Vascular Smooth Muscle Cell Proliferation via Pin1/BRD4 Pathway. Oxid. Med. Cell. Longev. 2020, 2020, 4196482. [Google Scholar] [CrossRef] [PubMed]
Cell Types | Molecular Targets | Roles | References |
---|---|---|---|
T Lymphocytes | A+U-rich RNA-binding factor (AUF1) | Pin1 mediates the association of AUF1 with GM-CSF mRNA, which determines the rate of decay by the exosome. | [34] |
T cells | The transcription factor PU.1 | Differentiation | [35] |
Eosinophils | The transcription factor X box-binding protein 1 (XBP1) and Interleukin-1 receptor (IL1R)-associated kinase 4 (IRAK4) AUF1 Heterogeneous nuclear ribonucleoprotein C (hnRNP C) | Toll-like receptor 7 (TLR7)-induced IFN expression. Pin1 mediates association of AUF1 with granulocyte-macrophage colony-stimulating factor (GM-CSF) mRNA, accelerating the rate of decay. Pin1 mediates association of hnRNP C with GM-CSF mRNA, decelerating the rate of decay. | [32,36] |
Neutrophils | p47phox (phox: phagocyte oxidase), the phagocyte NADPH oxidase/NOX2 organizer | Pin1 binds to p47phox, inducing conformational changes that facilitate p47phox phosphorylation by protein kinase C (PKC), and results in NADPH oxidase hyperactivation. Pin1 mediates TNF-α–induced neutrophil NADPH oxidase priming and reactive oxigen species hyperproduction via specific binding to p47phox. | [37,38] |
Monocytes | The transcription factors RUNX1 and PU.1 | Pin1 enhances Runx1 activity and represses PU.1 transcription. | [39] |
Macrophages | p38MAPK (p38 mitogen activated protein kinase) | In LPS-induced septic shock, Pin1 indirectly regulates p38MAPK-mediated NLRP3 (NLR Family Pyrin Domain Containing 3) inflammosome. | [40] |
Megakaryocytes | p-tau | The interaction between Pin1 and p-tau promotes microtubule assembly and proplatelet formation. | [41] |
Endothelial cells | Tissue factor (TF) | The interaction between Pin1 and TF results in increased protein half-life and pro-coagulant activity. | [42] |
NF-Kβ | Deposition of atherosclerotic plaques. | [10] | |
eNOS | Pin1 physically interacts with eNOS and inhibits eNOS activation and NO production in BAECs. | [9,14] | |
eNOS | Pin1 binds eNOS, promotes eNOS Ser116 dephosphorylation, and increases NO production. | [13] | |
iNOS | Pin1 interacts with iNOS and regulates NO production. | [8] | |
Vascular endothelial cells | p53 | Pin1 promotes heat stress-induced localization of p53 to mitochondria. | [43] |
Vascular smooth muscle cell (VSMC) | p53, p21, Gadd45a, p-pRb, p65, and cyclins | In atherosclerotic VSMC Pin1 modulates cellular senescence. | [44] |
Vascular smooth muscle cell (VSMC) | The transcription factor Bromine domain protein 4, BRD4 | Pin1 binds BRD4 and regulates proliferation and migration of VSMC. | [45] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fagiani, F.; Vlachou, M.; Di Marino, D.; Canobbio, I.; Romagnoli, A.; Racchi, M.; Govoni, S.; Lanni, C. Pin1 as Molecular Switch in Vascular Endothelium: Notes on Its Putative Role in Age-Associated Vascular Diseases. Cells 2021, 10, 3287. https://doi.org/10.3390/cells10123287
Fagiani F, Vlachou M, Di Marino D, Canobbio I, Romagnoli A, Racchi M, Govoni S, Lanni C. Pin1 as Molecular Switch in Vascular Endothelium: Notes on Its Putative Role in Age-Associated Vascular Diseases. Cells. 2021; 10(12):3287. https://doi.org/10.3390/cells10123287
Chicago/Turabian StyleFagiani, Francesca, Marieva Vlachou, Daniele Di Marino, Ilaria Canobbio, Alice Romagnoli, Marco Racchi, Stefano Govoni, and Cristina Lanni. 2021. "Pin1 as Molecular Switch in Vascular Endothelium: Notes on Its Putative Role in Age-Associated Vascular Diseases" Cells 10, no. 12: 3287. https://doi.org/10.3390/cells10123287
APA StyleFagiani, F., Vlachou, M., Di Marino, D., Canobbio, I., Romagnoli, A., Racchi, M., Govoni, S., & Lanni, C. (2021). Pin1 as Molecular Switch in Vascular Endothelium: Notes on Its Putative Role in Age-Associated Vascular Diseases. Cells, 10(12), 3287. https://doi.org/10.3390/cells10123287