Genetic Engineering and Genome Editing for Improving Nitrogen Use Efficiency in Plants
Abstract
:1. Introduction
2. Nitrogen Use Efficiency
3. Nitrogen Metabolism in Plants
3.1. Forms of Nitrogen
3.2. Nitrogen Uptake and Transport
3.3. Nitrogen Assimilation
3.4. Remobilization of Nitrogen
3.5. Regulation of Nitrogen Metabolism
4. Genetic Engineering of Nitrogen Metabolism
4.1. Nitrate Transporters
4.2. Ammonium Transporters
4.3. Nitrate and Nitrite Reductases
4.4. Glutamine Synthetase
4.5. Glutamate Synthase
4.6. Glutamate Dehydrogenase
4.7. Asparagine Synthetase
4.8. Alanine Aminotransferase
4.9. Aspartate Aminotransferase
4.10. Amino Acid Transporters
4.11. Transcription Factors
5. Nitrogen Metabolism in Forest Trees and Its Modification
5.1. Nitrogen Metabolism in Trees
5.2. Transgenic Modification of Nitrogen Metabolism in Trees
6. Ammonium Toxicity and Resistance to Phosphinothricin
7. Unintended Effects of Transgenic Plants
8. Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maathuis, F.J.M. Physiological functions of mineral macronutrients. Curr. Opin. Plant Biol. 2009, 12, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-Y.; Cheng, Y.-H.; Chen, K.-E.; Tsay, Y.-F. Nitrate transport, signaling, and use efficiency. Annu. Rev. Plant Biol. 2018, 69, 85–122. [Google Scholar] [CrossRef] [PubMed]
- Hirel, B.; Tétu, T.; Lea, P.J.; Dubois, F. Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability 2011, 3, 1452. [Google Scholar] [CrossRef]
- McAllister, C.H.; Beatty, P.H.; Good, A.G. Engineering nitrogen use efficient crop plants: The current status. Plant Biotechnol. J. 2012, 10, 1011–1025. [Google Scholar] [CrossRef] [PubMed]
- Good, A.G.; Beatty, P.H. Fertilizing nature: A tragedy of excess in the commons. PLoS Biol. 2011, 9, e1001124. [Google Scholar] [CrossRef] [PubMed]
- Vitousek, P.; Naylor, R.; Crews, T.; David, M.B.; Drinkwater, L.E.; Holland, E.; Johnes, P.J.; Katzenberger, J.; Martinelli, L.A.; Matson, P.A.; et al. Nutrient imbalances in agricultural development. Science 2009, 324, 1519–1520. [Google Scholar] [CrossRef]
- Johnson, J.M.F.; Franzluebbers, A.J.; Weyers, S.L.; Reicosky, D.C. Agricultural opportunities to mitigate greenhouse gas emissions. Environ. Pollut. 2007, 150, 107–124. [Google Scholar] [CrossRef]
- Adams, M.A.; Buchmann, N.; Sprent, J.; Buckley, T.N.; Turnbull, T.L. Crops, nitrogen, water: Are legumes friend, foe, or misunderstood ally? Trends Plant Sci. 2018, 23, 539–550. [Google Scholar] [CrossRef] [Green Version]
- Dellero, Y. Manipulating amino acid metabolism to improve crop nitrogen use efficiency for a sustainable agriculture. Front. Plant Sci. 2020, 11, 602548. [Google Scholar] [CrossRef]
- The, S.V.; Snyder, R.; Tegeder, M. Targeting nitrogen metabolism and transport processes to improve plant nitrogen use efficiency. Front. Plant Sci. 2021, 11, 628366. [Google Scholar] [CrossRef] [PubMed]
- Hou, M.; Yu, M.; Li, Z.; Ai, Z.; Chen, J. Molecular regulatory networks for improving nitrogen use efficiency in rice. Int. J. Mol. Sci. 2021, 22, 9040. [Google Scholar] [CrossRef] [PubMed]
- Nazish, T.; Arshad, M.; Jan, S.U.; Javaid, A.; Khan, M.H.; Naeem, M.A.; Baber, M.; Ali, M. Transporters and transcription factors gene families involved in improving nitrogen use efficiency (NUE) and assimilation in rice (Oryza sativa L.). Transgenic Res. 2021, 1–20. [Google Scholar] [CrossRef]
- Sandhu, N.; Sethi, M.; Kumar, A.; Dang, D.; Singh, J.; Chhuneja, P. Biochemical and genetic approaches improving nitrogen use efficiency in cereal crops: A review. Front. Plant Sci. 2021, 12, 657629. [Google Scholar] [CrossRef]
- Xu, G.; Fan, X.; Miller, A.J. Plant nitrogen assimilation and use efficiency. Annu. Rev. Plant Biol. 2012, 63, 153–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Good, A.G.; Shrawat, A.K.; Muench, D.G. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci. 2004, 9, 597–605. [Google Scholar] [CrossRef]
- Masclaux-Daubresse, C.; Daniel-Vedele, F.; Dechorgnat, J.; Chardon, F.; Gaufichon, L.; Suzuki, A. Nitrogen uptake, assimilation and remobilization in plants: Challenges for sustainable and productive agriculture. Ann. Bot. 2010, 105, 1141–1157. [Google Scholar] [CrossRef] [Green Version]
- Chardon, F.; Barthelemy, J.; Daniel-Vedele, F.; Masclaux-Daubresse, C. Natural variation of nitrate uptake and nitrogen use efficiency in Arabidopsis thaliana cultivated with limiting and ample nitrogen supply. J. Exp. Bot. 2010, 61, 2293–2302. [Google Scholar] [CrossRef] [Green Version]
- Brauer, E.K.; Shelp, B.J. Nitrogen use efficiency: Re-consideration of the bioengineering approach. Botany 2010, 88, 103–109. [Google Scholar] [CrossRef]
- Raun, W.R.; Solie, J.B.; Johnson, G.V.; Stone, M.L.; Mullen, R.W.; Freeman, K.W.; Thomason, W.E.; Lukina, E.V. Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. Agron. J. 2002, 94, 815–820. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.P.; Cui, Z.L.; Fan, M.S.; Vitousek, P.; Zhao, M.; Ma, W.Q.; Wang, Z.L.; Zhang, W.J.; Yan, X.Y.; Yang, J.C.; et al. Producing more grain with lower environmental costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef] [PubMed]
- Hirel, B.; Le Gouis, J.; Ney, B.; Gallais, A. The challenge of improving nitrogen use efficiency in crop plants: Towards a more central role for genetic variability and quantitative genetics within integrated approaches. J. Exp. Bot. 2007, 58, 2369–2387. [Google Scholar] [CrossRef]
- Kamal, N.M.; Gorafi, Y.S.A.; Abdelrahman, M.; Abdellatef, E.; Tsujimoto, H. Stay-green trait: A prospective approach for yield potential, and drought and heat stress adaptation in globally important cereals. Int. J. Mol. Sci. 2019, 20, 5837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, A.J.; Cramer, M.D. Root nitrogen acquisition and assimilation. In Root Physiology: From Gene to Function; Lambers, H., Colmer, T.D., Eds.; Springer: Dordrecht, Germany, 2005; pp. 1–36. [Google Scholar]
- Nasholm, T.; Kielland, K.; Ganeteg, U. Uptake of organic nitrogen by plants. New Phytol. 2009, 182, 31–48. [Google Scholar] [CrossRef] [PubMed]
- Zanin, L.; Tomasi, N.; Wirdnam, C.; Meier, S.; Komarova, N.Y.; Mimmo, T.; Cesco, S.; Rentsch, D.; Pinton, R. Isolation and functional characterization of a high affinity urea transporter from roots of Zea mays. BMC Plant Biol. 2014, 14, 222. [Google Scholar] [CrossRef] [Green Version]
- Andrews, M.; Raven, J.A.; Lea, P.J. Do plants need nitrate? The mechanisms by which nitrogen form affects plants. Ann. Appl. Biol. 2013, 163, 174–199. [Google Scholar] [CrossRef]
- Crawford, N.M.; Glass, A.D.M. Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci. 1998, 3, 389–395. [Google Scholar] [CrossRef]
- Fan, X.; Naz, M.; Fan, X.; Xuan, W.; Miller, A.J.; Xu, G. Plant nitrate transporters: From gene function to application. J. Exp. Bot. 2017, 68, 2463–2475. [Google Scholar] [CrossRef]
- Fan, X.; Xie, D.; Chen, J.; Lu, H.; Xu, Y.; Ma, C.; Xu, G. Over-expression of OsPTR6 in rice increased plant growth at different nitrogen supplies but decreased nitrogen use efficiency at high ammonium supply. Plant Sci. 2014, 227, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Hao, D.-L.; Zhou, J.-Y.; Yang, S.-Y.; Qi, W.; Yang, K.-J.; Su, Y.-H. Function and regulation of ammonium transporters in plants. Int. J. Mol. Sci. 2020, 21, 3557. [Google Scholar] [CrossRef]
- Yang, G.; Wei, Q.; Huang, H.; Xia, J. Amino acid transporters in plant cells: A brief review. Plants 2020, 9, 967. [Google Scholar] [CrossRef] [PubMed]
- Hirel, B.; Lea, P.J. Ammonium assimilation. In Plant Nitrogen; Lea, P.J., Morot-Gaudry, J.F., Eds.; Springer: Berlin, Germany, 2001; pp. 79–99. [Google Scholar]
- Bernard, S.M.; Habash, D.Z. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytolog. 2009, 182, 608–620. [Google Scholar] [CrossRef]
- Cren, M.; Hirel, B. Glutamine synthetase in higher plants: Regulation of gene and protein expression from the organ to the cell. Plant Cell Physiol. 1999, 40, 1187–1193. [Google Scholar] [CrossRef] [Green Version]
- Keys, A.; Bird, I.; Cornelius, M.; Lea, P.; Wallsgrove, R.; Miflin, B. Photorespiratory nitrogen cycle. Nature 1978, 275, 741–743. [Google Scholar] [CrossRef]
- Garcıa-Guitierrez, A.; Dubois, F.; Canton, F.R.; Gallardo, F.; Gallardo, F.; Sangwan, R.S.; Canovas, F.M. Two different modes of early development and nitrogen assimilation in gymnosperm seedlings. Plant J. 1998, 13, 187–199. [Google Scholar] [CrossRef] [Green Version]
- Lea, P.J.; Miflin, B.J. Glutamate synthase and the synthesis of glutamate in plants. Plant Physiol. Biochem. 2003, 41, 555–564. [Google Scholar] [CrossRef]
- Temple, S.J.; Vance, C.P.; Gantt, J.S. Glutamate synthase and nitrogen assimilation. Trends Plant Sci. 1998, 3, 51–56. [Google Scholar] [CrossRef]
- Lam, H.M.; Coschigano, K.T.; Olveira, I.C.; Melo-Oliveira, R.; Coruzzi, G.M. The molecular genetics of nitrogen assimilation into amino acids in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1996, 47, 569–593. [Google Scholar] [CrossRef] [PubMed]
- Harrison, J.; Brugiere, N.; Phillipson, B.; Ferrario-Mery, S.; Becker, T.; Anis Limami, A.; Hirel, B. Manipulating the pathway of ammonia assimilation through genetic engineering and breeding: Consequences to plant physiology and plant development. Plant Soil 2000, 221, 81–93. [Google Scholar] [CrossRef]
- Okumoto, S.; Pilot, G. Amino acid export in plants: A missing link in nitrogen cycling. Mol. Plant 2011, 4, 453–463. [Google Scholar] [CrossRef] [Green Version]
- Duff, S.M.G.; Qi, Q.; Reich, T.; Wu, X.; Brown, T.; Crowley, J.H.; Fabbri, B. A kinetic comparison of asparagine synthetase isozymes from higher plants. Plant Physiol. Biochem. 2011, 49, 251–256. [Google Scholar] [CrossRef]
- McAllister, C.H.; Wolansky, M.; Good, A.G. The impact on nitrogen-efficient phenotypes when aspartate aminotransferase is expressed tissue-specifically in Brassica napus. New Negat. Plant Sci. 2016, 3–4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kichey, T.; Hirel, B.; Heumez, E.; Dubois, F.; Le Gouis, J. In winter wheat (Triticum aestivum L.), postanthesis nitrogen uptake and remobilisation to the grain correlates with agronomic traits and N physiological markers. Field Crops Res. 2007, 102, 22–32. [Google Scholar] [CrossRef]
- Kant, S.; Bi, Y.; Rothstein, S.J. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. J. Exp. Bot. 2011, 62, 1499–1509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santiago, P.; Tegeder, M. Connecting source with sink: The role of Arabidopsis AAP8 in phloem loading of amino acids. Plant Physiol. 2016, 171, 508–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidal, E.A.; Alvarez, J.M.; Araus, V.; Riveras, E.; Brooks, M.D.; Krouk, G. Nitrate in 2020: Thirty years from transport to signaling networks. Plant Cell 2020, 32, 2094–2119. [Google Scholar] [CrossRef] [PubMed]
- Gaudinier, A.; Rodriguez-Medina, J.; Zhang, L.; Olson, A.; Liseron-Monfils, C.; Bagman, A.-M.; Foret, J.; Abbitt, S.; Tang, M.; Li, B.; et al. Transcriptional regulation of nitrogen-associated metabolism and growth. Nature 2018, 563, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Yanagisawa, S.; Akiyama, A.; Kisaka, H.; Uchimiya, H.; Miwa, T. Metabolic engineering with Dof1 transcription factor in plants: Improved nitrogen assimilation and growth under low-nitrogen conditions. Proc. Natl. Acad. Sci. USA 2004, 101, 7833–7838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, C.H.; Tsay, Y.F. Nitrate, ammonium, and potassium sensing and signaling. Curr. Opin. Plant Biol. 2010, 13, 604–610. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, B.; Chu, C. Towards understanding the hierarchical nitrogen signalling network in plants. Curr. Opin. Plant Biol. 2020, 55, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Brooks, M.D.; Cirrone, J.; Pasquino, A.V.; Alvarez, J.M.; Swift, J.; Mittal, S.; Juang, C.-L.; Varala, K.; Gutiérrez, R.A.; Krouk, G.; et al. Network walking charts transcriptional dynamics of nitrogen signaling by integrating validated and predicted genome-wide interactions. Nat. Commun. 2019, 10, 1569. [Google Scholar] [CrossRef] [Green Version]
- Pathak, R.R.; Lochab, S.; Raghuram, N. Improving plant nitrogen-use efficiency. In Comprehensive Biotechnology, 2nd ed.; Murray, M.-Y., Ed.; Elsevier: Amsterdam, The Netherlands, 2011; Volume 4, pp. 209–218. [Google Scholar] [CrossRef]
- Katayama, H.; Mori, M.; Kawamura, Y.; Tanaka, T.; Mori, M.; Hasegawa, H. Production and characterization of transgenic rice plants carrying a high-affinity nitrate transporter gene (OsNRT2.1). Breed. Sci. 2009, 59, 237–243. [Google Scholar] [CrossRef] [Green Version]
- Yan, M.; Fan, X.; Feng, H.; Miller, A.J.; Shen, Q.; Guohua Xu, G. Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges. Plant Cell Environ. 2011, 34, 1360–1372. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Xia, K.; Yang, X.; Grotemeyer, M.S.; Meier, S.; Rentsch, D.; Xu, X.; Zhang, M. Altered expression of the PTR/NRT1 homologue OsPTR9 affects nitrogen utilization efficiency, growth and grain yield in rice. Plant Biotechnol. J. 2013, 11, 446–458. [Google Scholar] [CrossRef]
- Hu, B.; Wang, W.; Ou, S.; Tang, J.; Li, H.; Che, R.; Zhang, Z.; Chai, X.; Wang, H.; Wang, Y.; et al. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat. Genet. 2015, 47, 834–838. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Yi, H.; Bao, J.; Gong, J. LeNRT2.3 functions in nitrate acquisition and long-distance transport in tomato. FEBS Lett. 2015, 589, 1072–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, X.; Tang, Z.; Tan, Y.; Zhang, Y.; Luo, B.; Yang, M.; Lian, X.; Shen, Q.; Millerc, A.J.; Xu, G. Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields. Proc. Natl. Acad. Sci. USA 2016, 113, 7118–7123. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Feng, H.; Tan, Y.; Xu, Y.; Miao, Q.; Xu, G. A putative 6-transmembrane nitrate transporter OsNRT1.1b plays a key role in rice under low nitrogen. J. Integr. Plant Biol. 2016, 58, 590–599. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Zhang, Y.; Tan, Y.; Zhang, M.; Zhu, L.; Xu, G.; Fan, X. Agronomic nitrogen-use efficiency of rice can be increased by driving OsNRT2.1 expression with the OsNAR2.1 promoter. Plant Biotechnol. J. 2016, 14, 1705–1715. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Fan, X.; Qian, K.; Zhang, Y.; Song, M.; Liu, Y.; Xu, G.; Fan, X. pOsNAR2.1:OsNAR2.1 expression enhances nitrogen uptake efficiency and grain yield in transgenic rice plants. Plant Biotechnol. J. 2017, 15, 1273–1283. [Google Scholar] [CrossRef] [Green Version]
- Fang, Z.; Bai, G.; Huang, W.; Wang, Z.; Wang, X.; Mingyong Zhang, M. The rice peptide transporter OsNPF7.3 is induced by organic nitrogen, and contributes to nitrogen allocation and grain yield. Front. Plant Sci. 2017, 8, 1338. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Genxiang Bai, G.; Wang, J.; Zhu, W.; Zeng, Q.; Lu, K.; Sun, S.; Fang, Z. Two splicing variants of OsNPF7.7 regulate shoot branching and nitrogen utilization efficiency in rice. Front. Plant Sci. 2018, 9, 300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, W.; Ye, J.; Yao, X.; Zhao, P.; Xuan, W.; Tian, Y.; Zhang, Y.; Shuang Xu, S.; An, H.; Chen, G.; et al. Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice. Nat. Commun. 2019, 10, 5279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Chen, A.; Xie, K.; Yanga, X.; Luo, Z.; Chen, J.; Zeng, D.; Ren, Y.; Yang, C.; Wang, L.; et al. Functional analysis of the OsNPF4.5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants. Proc. Natl. Acad. Sci. USA 2020, 117, 16649–16659. [Google Scholar] [CrossRef]
- Klaassen, M.T.; Dees, D.C.T.; Garrido, R.M.; Báez, J.A.; Schrijen, M.; Baldeón Mendoza, P.G.; Trindade, L.M. Overexpression of a putative nitrate transporter (StNPF1.11) increases plant height, leaf chlorophyll content and tuber protein content of young potato plant. Funct. Plant Biol. 2020, 47, 464–472. [Google Scholar] [CrossRef]
- Chen, J.; Liu, X.; Liu, S.; Fan, X.; Zhao, L.; Song, M.; Fan, X.; Xu, G. Co-Overexpression of OsNAR2.1 and sNRT2.3a increased agronomic nitrogen use efficiency in transgenic rice plants. Front. Plant Sci. 2020, 11, 1245. [Google Scholar] [CrossRef]
- Chen, K.-E.; Chen, H.-Y.; Tseng, C.-S.; Tsay, Y.-F. Improving nitrogen use efficiency by manipulating nitrate remobilization in plants. Nature Plants 2020, 6, 1126–1135. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kaiser, B.N.; Siddiqi, M.Y.; Glass, A.D.M. Functional characterisation of OsAMT1.1 overexpression lines of rice, Oryza sativa. Funct. Plant Biol. 2006, 33, 339–346. [Google Scholar] [CrossRef]
- Hoque, M.S.; Masle, J.; Udvardi, M.K.; Peter, R.; Ryan, P.R.; Upadhyaya, N.M. Over-expression of the rice OsAMT1-1 gene increases ammonium uptake and content, but impairs growth and development of plants under high ammonium nutrition. Funct. Plant Biol. 2006, 33, 153–163. [Google Scholar] [CrossRef]
- Ranathunge, K.; El-kereamy, A.; Gidda, S.; Mei Bi, Y.-M.; Rothstein, S.J. AMT1;1 transgenic rice plants with enhanced NH4+ permeability show superior growth and higher yield under optimal and suboptimal NH4+ conditions. J. Exp. Bot. 2014, 65, 965–979. [Google Scholar] [CrossRef]
- Bao, A.; Liang, Z.; Zhao, Z.; Cai, H. Overexpressing of OsAMT1-3, a high affinity ammonium transporter gene, modifies rice growth and carbon-nitrogen metabolic status. Int. J. Mol. Sci. 2015, 16, 9037–9063. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Liu, Z.; Duan, F.; An, X.; Liu, X.; Hao, D.; Gu, R.; Wang, Z.; Chen, F.; Yuan, L. Overexpression of the maize ZmAMT1;1a gene enhances root ammonium uptake efficiency under low ammonium nutrition. Plant Biotechnol. Rep. 2018, 12, 47–56. [Google Scholar] [CrossRef]
- Curtis, I.S.; Power, J.B.; de Laat, A.M.M.; Caboche, M.; Davey, M.R. Expression of a chimeric nitrate reductase gene in transgenic lettuce reduces nitrate in leaves. Plant Cell Rep. 1999, 18, 889–896. [Google Scholar] [CrossRef]
- Djennane, S.; Chauvin, J.-E.; Meyer, C. Glasshouse behaviour of eight trangenic potato clones with a modified nitrate reductase espression under two fertilization regimes. J. Exp. Bot. 2002, 53, 1037–1045. [Google Scholar] [CrossRef]
- Djennane, S.; Chauvin, J.-E.; Quillere, I.; Meyer, C.; Chupeau, Y. Introduction and expression of a deregulated tobacco nitrate reductase gene in potato lead to highly reduced nitrate levels in transgenic tubers. Transgenic Res. 2002, 11, 175–184. [Google Scholar] [CrossRef]
- Djennane, S.; Quillere, I.; Leydecker, M.-T.; Meyer, C.; Chauvin, J.-E. Expression of a deregulated tobacco nitrate reductase gene in potato increases biomass production and decreases nitrate concentration in all organs. Planta 2004, 219, 884–893. [Google Scholar] [CrossRef] [PubMed]
- Dubois, V.; Botton, E.; Meyer, C.; Rieu, A.; Bedu, M.; Maisonneuve, B.; Mazier, M. Systematic silencing of a tobacco nitrate reductase transgene in lettuce (Lactuca sativa L.). J. Exp. Bot. 2005, 56, 2379–2388. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.-Q.; Nie, X.-L.; Xing-Guo Xiao, X.-G. Over-expression of a tobacco nitrate reductase gene in wheat (Triticum aestivum L.) increases seed protein content and weight without augmenting nitrogen supplying. PLoS ONE 2013, 8, e74678. [Google Scholar] [CrossRef] [Green Version]
- Davenport, S.; Le Lay, P.; Sanchez-Tamburrrino, J.P. Nitrate metabolism in tobacco leaves overexpressing Arabidopsis nitrite reductase. Plant Physiol. Biochem. 2015, 97, 96–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, J.; Zhang, L.; Lewis, R.S.; Bovet, L.; Goepfert, S.; Jack, A.M.; Crutchfield, J.D.; Ji, H.; Dewey, R.E. Expression of a constitutively active nitrate reductase variant in tobacco reduces tobacco-specific nitrosamine accumulation in cured leaves and cigarette smoke. Plant Biotechnol. J. 2016, 14, 1500–1510. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Wang, Y.; Chen, G.; Zhang, A.; Yang, S.; Shang, L.; Wang, D.; Ruan, B.; Liu, C.; Jiang, H.; et al. The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency. Nat. Commun. 2019, 10, 5207. [Google Scholar] [CrossRef]
- Lu, J.; Chandrakanth, N.N.; Lewis, R.S.; Andres, K.; Bovet, L.; Goepfert, S.; Dewey, R.E. Constitutive activation of nitrate reductase in tobacco alters flowering time and plant biomass. Sci. Rep. 2021, 11, 4222. [Google Scholar] [CrossRef] [PubMed]
- Vincent, R.; Fraisier, V.; Chaillou, S.; Limami, M.A.; Deleens, E.; Phillipson, B.; Douat, C.; Boutin, J.-P.; Hirel, B. Overexpression of a soybean gene encoding cytosolic glutamine synthetase in shoots of transgenic Lotus corniculatus L. plants triggers changes in ammonium assimilation and plant development. Planta 1997, 201, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Limami, A.; Phillipson, B.; Ameziane, R.; Pernollet, N.; Jiang, Q.; Roy, R.; Deleens, E.; Chaumont-Bonnet, M.; Gresshoff, P.M.; Hirel, B. Does root glutamine synthetase control plant biomass production in Lotus japonicus L.? Planta 1999, 209, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Habash, D.Z.; Massiah, A.J.; Rong, H.L.; Wallsgrove, R.V.; Leigh, R.A. The role of cytosolic glutamine synthetase in wheat. Ann. Appl. Biol. 2001, 138, 83–89. [Google Scholar] [CrossRef]
- Harrison, J.; Pou de Crescenzo, M.-A.; Olivier Sene, O.; Bertrand Hirel, B. Does lowering glutamine synthetase activity in nodules modify nitrogen metabolism and growth of Lotus japonicus? Plant Physiol. 2003, 133, 253–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fei, H.; Chaillou, S.; Hirel, B.; Mahon, J.D.; Vessey, J.K. Overexpression of a soybean cytosolic glutamine synthetase gene linked to organ-specific promoters in pea plants grown in different concentrations of nitrate. Planta 2003, 216, 467–474. [Google Scholar] [CrossRef]
- Ortega, J.L.; Temple, S.J.; Bagga, S.; Ghoshroy, S.; Sengupta-Gopalan, C. Biochemical and molecular characterization of transgenic Lotus japonicus plants constitutively over-expressing a cytosolic glutamine synthetase gene. Planta 2004, 219, 807–818. [Google Scholar] [CrossRef] [Green Version]
- Fei, H.; Chaillou, S.; Hirel, B.; Polowick, P.; Mahonc, J.D.; Vesseya, J.K. Effects of the overexpression of a soybean cytosolic glutamine synthetase gene (GS15) linked to organ-specific promoters on growth and nitrogen accumulation of pea plants supplied with ammonium. Plant Physiol. Biochem. 2006, 44, 543–550. [Google Scholar] [CrossRef]
- Martin, A.; Lee, J.; Kichey, T.; Gerentes, D.; Zivy, M.; Tatout, C.; Dubois, F.; Balliau, T.; Valot, B.; Davanture, M.; et al. Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. Plant Cell 2006, 18, 3252–3274. [Google Scholar] [CrossRef] [Green Version]
- Cai, H.; Zhou, Y.; Xiao, J.; Li, X.; Zhang, Q.; Lian, X. Overexpressed glutamine synthetase gene modifies nitrogen metabolism and abiotic stress responses in rice. Plant Cell Rep. 2009, 28, 527–537. [Google Scholar] [CrossRef]
- Brauer, E.K.; Rochon, A.; Bi, Y.-M.; Bozzo, G.G.; Rothstein, S.J.; Barry, J.; Shelp, B.J. Reappraisal of nitrogen use efficiency in rice overexpressing glutamine synthetase1. Physiol. Plant. 2011, 141, 361–372. [Google Scholar] [CrossRef]
- Bao, A.; Zhao, Z.; Ding, G.; Shi, L.; Xu, F.; Cai, H. Accumulated expression level of cytosolic glutamine synthetase 1 gene (OsGS1;1 or OsGS1;2) alter plant development and the carbon-nitrogen metabolic status in rice. PLoS ONE 2014, 9, e95581. [Google Scholar] [CrossRef] [Green Version]
- Urriola, J.; Rathore, K.S. Overexpression of a glutamine synthetase gene affects growth and development in sorghum. Transgenic Res. 2015, 24, 397–407. [Google Scholar] [CrossRef]
- Sun, F.; Wang, Z.; Mao, X.; Zhang, C.; Wang, D.; Wang, X.; Hou, X. Overexpression of BcGS2 gene in non-heading Chinese cabbage (Brassica campestris) enhanced GS activity and total amino acidcontent in transgenic seedlings. Sci. Hortic. 2015, 186, 129–136. [Google Scholar] [CrossRef]
- Hu, M.; Zhao, X.; Liu, Q.; Hong, X.; Zhang, W.; Zhang, Y.; Sun, L.; Li, H.; Tong, Y. Transgenic expression of plastidic glutamine synthetase increases nitrogen uptake and yield in wheat. Plant Biotechnol. J. 2018, 16, 1858–1867. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; de Bang, T.C.; Schjoerring, J.K. Cisgenic overexpression of cytosolic glutamine synthetase improves nitrogen utilization efficiency in barley and prevents grain protein decline under elevated CO2. Plant Biotechnol. J. 2019, 17, 1209–1221. [Google Scholar] [CrossRef] [Green Version]
- Kaur, H.; Peel, A.; Acosta, K.; Gebril, S.; Ortega, J.L.; Sengupta-Gopalan, C. Comparison of alfalfa plants overexpressing glutamine synthetase with those overexpressing sucrose phosphate synthase demonstrates a signaling mechanism integrating carbon and nitrogen metabolism between the leaves and nodules. Plant Direct. 2019, 3, e00115. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Teng, W.; Wang, Y.; Ouyang, X.; Xue, H.; Zhao, X.; Gao, C.; Tong, Y. The wheat cytosolic glutamine synthetase GS1.1 modulates N assimilation and spike development by characterizing CRISPR-edited mutants. bioRxiv 2020. [Google Scholar] [CrossRef]
- Amiour, N.; Décousset, L.; Rouster, J.; Quenard, N.; Buet, C.; Dubreuil, P.; Quilleré, I.; Brulé, L.; Cukier, C.; Dinant, S.; et al. Impacts of environmental conditions, and allelic variation of cytosolic glutamine synthetase on maize hybrid kernel production. Commun. Biol. 2021, 4, 1095. [Google Scholar] [CrossRef]
- Yamaya, T.; Obara, M.; Nakajima, H.; Sasaki, S.; Hayakawa, T.; Sato, T. Genetic manipulation and quantitative-trait loci mapping for nitrogen recycling in rice. J. Exp. Bot. 2002, 53, 917–925. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Marmagne, A.; Park, J.; Fabien, C.; Yim, Y.; Kim, S.J.; Kim, T.-H.; Lim, P.O.; Masclaux-Daubresse, C.; Gil, H. Concurrent activation of OsAMT1;2 and OsGOGAT1 in rice leads to enhanced nitrogen use efficiency under nitrogen limitation. Plant J. 2020, 103, 7–20. [Google Scholar] [CrossRef]
- Cañas, R.A.; Yesbergenova-Cuny, Z.; Belanger, L.; Rouster, J.; Brulé, L.; Gilard, F.; Quilleré, I.; Sallaud, C.; Hirel, B. NADH-GOGAT overexpression does not improve maize (Zea mays L.) performance even when pyramiding with NAD-IDH, GDH and GS. Plants 2020, 9, 130. [Google Scholar] [CrossRef] [Green Version]
- Lightfoot, D.A.; Mungur, R.; Ameziane, R.; Nolte, S.; Long, L.; Bernhard, K.; Colter, A.; Jones, K.; Iqbal, M.J.; Varsa, E.; et al. Improved drought tolerance of transgenic Zea mays plants that express the glutamate dehydrogenase gene (gdhA) of E. coli. Euphytica 2007, 156, 103–116. [Google Scholar] [CrossRef]
- Abiko, T.; Wakayama, M.; Kawakami, A.; Obara, M.; Kisaka, H.; Miwa, T.; Aoki, N.; Ohsugi, R. Changes in nitrogen assimilation, metabolism, and growth in transgenic rice plants expressing a fungal NADP(H)-dependent glutamate dehydrogenase (gdhA). Planta 2010, 232, 299–311. [Google Scholar] [CrossRef]
- Egami, T.; Wakayama, M.; Aoki, N.; Sasaki, H.; Kisaka, H.; Miwa, T.; Ohsugi, R. The effects of introduction of a fungal glutamate dehydrogenase gene (gdhA) on the photosynthetic rates, biomass, carbon and nitrogen contents in transgenic potato. Plant Biotechnol. 2012, 29, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Du, C.; Lin, J.; Yang, Y.; Liu, H.; Li, C.; Zhou, Y.; Li, Y.; Tang, T.; Zhao, T.; Zhu, Y.; et al. Molecular cloning, characterization and function analysis of a GDH gene from Sclerotinia sclerotiorum in rice. Mol. Biol. Rep. 2014, 41, 3683–3693. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, H.; Zhou, X.; Yan, Y.; Changqing Du, C.; Li, Y.; Liu, D.; Zhang, C.; Deng, X.; Tang, D.; et al. Over-expression of a fungal NADP(H)-dependent glutamate dehydrogenase PcGDH improves nitrogen assimilation and growth quality in rice. Mol. Breed. 2014, 34, 335–349. [Google Scholar] [CrossRef]
- Zhou, X.; Lin, J.; Zhou, Y.; Yang, Y.; Liu, H.; Zhang, C.; Tang, D.; Zhao, X.; Zhu, Y.; Liu, X. Overexpressing a fungal CeGDH gene improves nitrogen utilization and growth in rice. Crop Sci. 2015, 55, 811–820. [Google Scholar] [CrossRef]
- Tang, D.; Peng, Y.; Lin, J.; Du, C.; Yang, Y.; Wang, D.; Liu, C.; Yan, L.; Zhao, X.; Li, X.; et al. Ectopic expression of fungal EcGDH improves nitrogen assimilation and grain yield in rice. J. Integr. Plant Biol. 2018, 60, 85–88. [Google Scholar] [CrossRef] [Green Version]
- Du, C.-Q.; Lin, J.-Z.; Dong, L.-A.; Liu, C.; Tang, D.-Y.; Yan, L.; Chen, M.-D.; Liu, S.; Liu, X.-M. Overexpression of an NADP(H)-dependent glutamate dehydrogenase gene, TrGDH, from Trichurus improves nitrogen assimilation, growth status and grain weight per plant in rice. Breedi. Sci. 2019, 69, 429–438. [Google Scholar] [CrossRef] [Green Version]
- Bellucci, M.; Ederli, L.; De Marchis, F.; Pasqualini, S.; Arcioni, S. Transformation of Lotus corniculatus plants with Escherichia coli asparagine synthetase A: Effect on nitrogen assimilation and plant development. Plant Cell Tiss. Organ Cult. 2004, 78, 139–150. [Google Scholar] [CrossRef]
- Seiffert, B.; Zhou, Z.; Wallbraun, M.; Lohaus, G.; Mollers, C. Expression of a bacterial asparagine synthetase gene in oilseed rape (Brassica napus) and its effect on traits related to nitrogen efficiency. Physiol. Plant. 2004, 121, 656–665. [Google Scholar] [CrossRef]
- Giannino, D.; Nicolodi, C.; Testone, G.; Frugis, G.; Pace, E.; Santamaria, P.; Guardasole, M.; Mariotti, D. The overexpression of asparagine synthetase A from E. coli affects the nitrogen status in leaves of lettuce (Lactuca sativa L.) and enhances vegetative growth. Euphytica 2007, 162, 11–22. [Google Scholar] [CrossRef]
- Martinez-Andujar, C.; Ghanem, M.E.; Albacete, A.; Perez-Alfocea, F. Response to nitrate/ammonium nutrition of tomato (Solanum lycopersicum L.) plants overexpressing a prokaryotic NH4(+)-dependent asparagine synthetase. J. Plant Physiol. 2013, 170, 676–687. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Qin, R.; Liu, T.; Yu, M.; Yang, T.; Xu, G. OsASN1 plays a critical role in asparagine-dependent rice development. Int. J. Mol. Sci. 2019, 20, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Park, J.; Lee, J.; Shin, D.; Marmagne, A.; Lim, P.O.; Masclaux-Daubresse, C.; An, G.; Nam, H.G. OsASN1 overexpression in Rice increases grain protein content and yield under nitrogen-limiting conditions. Plant Cell Physiol. 2020, 61, 1309–1320. [Google Scholar] [CrossRef] [PubMed]
- Good, A.G.; Johnson, S.J.; De Pauw, M.A.; Carrol, R.T.; Savidov, N.; Vidmar, J.; Lu, Z.; Taylor, G.; Stroeher, V. Engineering nitrogen use efficiency with alanine aminotransferase. Can. J. Bot. 2007, 85, 252–262. [Google Scholar] [CrossRef]
- Shrawat, A.K.; Carroll, R.T.; DePauw, M.; Taylor, G.J.; Good, A.G. Genetic engineering of improved nitrogen use efficiency in rice by the tissue-specific expression of alanine aminotransferase. Plant Biotechnol. J. 2008, 6, 722–732. [Google Scholar] [CrossRef]
- Beatty, P.H.; Carroll, R.T.; Shrawat, A.K.; Guevara, D.; Good, A.G. Physiological analysis of nitrogen-efficient rice overexpressing alanine aminotransferase under different N regimes. Botany 2013, 91, 866–883. [Google Scholar] [CrossRef]
- Snyman, S.J.; Hajari, E.; Watt, M.P.; Lu, Y.; Kridl, J.C. Improved nitrogen use efficiency in transgenic sugarcane: Phenotypic assessment in a pot trial under low nitrogen conditions. Plant Cell Rep. 2015, 34, 667–669. [Google Scholar] [CrossRef] [Green Version]
- Selvaraj, M.G.; Valencia, M.O.; Ogawa, S.; Lu, Y.; Wu, L.; Downs, C.; Skinner, W.; Lu, Z.; Kridl, J.C.; Ishitani, M.; et al. Development and field performance of nitrogen use efficient rice lines for Africa. Plant Biotechnol. J. 2017, 15, 775–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pena, P.A.; Quach, T.; Sato, S.; Ge, Z.; Nersesian, N.; Dweikat, I.M.; Soundararajan, M.; Clemente, T. Molecular and phenotypic characterization of transgenic wheat and sorghum events expressing the barley alanine aminotransferase. Planta 2017, 246, 1097–1107. [Google Scholar] [CrossRef] [Green Version]
- Sisharmini, A.; Apriana, A.; Khumaida, N.; Trijatmiko, K.R.; Purwoko, B.S. Expression of a cucumber alanine aminotransferase2 gene improves nitrogen use efficiency in transgenic rice. J. Genet. Eng. Biotechnol. 2019, 17, 9. [Google Scholar] [CrossRef] [PubMed]
- Tiong, J.; Sharma, N.; Sampath, R.; MacKenzie, N.; Watanabe, S.; Metot, C.; Lu, Z.; Skinner, W.; Lu, Y.; Kridl, J.; et al. Improving nitrogen use efficiency through overexpression of alanine aminotransferase in rice, wheat, and barley. Front. Plant Sci. 2021, 12, 29. [Google Scholar] [CrossRef]
- Zhou, Y.; Cai, H.; Xiao, J.; Li, X.; Zhang, O.; Lian, X. Over-expression of aspartate aminotransferase genes in rice resulted in altered nitrogen metabolism and increased amino acid content in seeds. Theor. Appl. Genet. 2009, 118, 1381–1390. [Google Scholar] [CrossRef]
- Koch, W.; Kwart, M.; Laubner, M.; Heineke, D.; Stransky, H.; Frommer, W.B.; Tegede, M. Reduced amino acid content in transgenic potato tubers due to antisense inhibition of the leaf Hþ/amino acid symporter StAAP1. Plant J. 2003, 33, 211–220. [Google Scholar] [CrossRef]
- Rolletschek, H.; Hosein, F.; Miranda, M.; Heim, U.; Gotz, K.P.; Schlereth, A.; Borisjuk, L.; Saalbach, I.; Wobus, U.; Weber, H. Ectopic expression of an amino acid transporter (VfAAP1) in seeds of Vicia narbonensis and pea increases storage proteins. Plant Physiol. 2005, 137, 1236–1249. [Google Scholar] [CrossRef] [Green Version]
- Weigelt, K.; Kuster, H.; Radchuk, R.; Muller, M.; Weichert, H.; Fait, A.; Fernie, A.R.; Saalbach, I.; Weber, H. Increasing amino acid supply in pea embryos reveals specific interactions of N and C metabolism, and highlights the importance of mitochondrial metabolism. Plant J. 2008, 55, 909–926. [Google Scholar] [CrossRef]
- Tan, Q.; Zhang, L.; Grant, J.; Cooper, P.; Tegeder, M. Increased phloem transport of S-methylmethionine positively affects sulfur and nitrogen metabolism and seed development in pea plants. Plant Physiol. 2010, 154, 1886–1896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, B.; Kong, H.; Li, Y.; Wang, L.; Zhong, M.; Sun, L.; Gao, G.; Zhang, Q.; Luo, L.; Wang, G.; et al. OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice. Nat. Commun. 2014, 5, 4847. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Garneau, M.G.; Majumdar, R.; Grant, J.; Tegeder, M. Improvement of pea biomass and seed productivity by simultaneous increase of phloem and embryo loading with amino acids. Plant J. 2015, 81, 134–146. [Google Scholar] [CrossRef]
- Perchlik, M.; Tegederm, M. Improving plant nitrogen use efficiency through alteration of amino acid transport processes. Plant Physiol. 2017, 175, 235–247. [Google Scholar] [CrossRef] [Green Version]
- Lu, K.; Wu, B.; Wang, J.; Zhu, W.; Nie, H.; Qian, J.; Huang, W.; Fang, Z. Blocking amino acid transporter OsAAP3 improves grain yield by promoting outgrowth buds and increasing tiller number in rice. Plant Biotechnol. J. 2018, 16, 1710–1722. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wu, B.; Lu, K.; Wei, Q.; Qian, J.; Chen, Y.; Fang, Z. The amino acid Permease 5 (OsAAP5) regulates tiller number and grain yield in rice. Plant Physiol. 2019, 180, 1031–1045. [Google Scholar] [CrossRef]
- Wang, X.; Yang, G.; Shi, M.; Hao, D.; Wei, Q.; Wang, Z.; Fu, S.; Su, Y.; Xia, J. Disruption of an amino acid transporter LHT1 leads to growth inhibition and low yields in rice. BMC Plant Biol. 2019, 19, 268. [Google Scholar] [CrossRef] [Green Version]
- Guo, N.; Gu, M.; Hu, J.; Qu, H.; Xu, G. Rice OsLHT1 functions in leaf-to-panicle nitrogen allocation for grain yield and quality. Front. Plant Sci. 2020, 11, 1150. [Google Scholar] [CrossRef]
- Ji, Y.; Huang, W.; Wu, B.; Fang, Z.; Wang, X. The amino acid transporter OsAAP1 mediates growth and grain yield by regulating neutral amino acids uptake and reallocation in Oryza sativa. J. Exp. Bot. 2020, 71, 4763–4777. [Google Scholar] [CrossRef]
- Fang, Z.; Bowen Wu, B.; Ji, Y. The amino acid transporter OsAAP4 contributes to rice tillering and grain yield by regulating neutral amino acid allocation through two splicing variants. Rice 2021, 14, 2–17. [Google Scholar] [CrossRef]
- Wan, Y.; Wang, Y.; Shi, Z.; Rentsch, D.; Jane, L.; Ward, J.L.; Hassall, K.I. Wheat amino acid transporters highly expressed in grain cells regulate amino acid accumulation in grain. PLoS ONE 2021, 16, e0246763. [Google Scholar] [CrossRef]
- Grant, J.E.; Ninan, A.; Cripps-Guazzone, N.; Shaw, M.; Song, J.; Petrík, I.; Novák, O.; Tegeder, M.; Jameson, P.E. Concurrent overexpression of amino acid permease AAP1(3a) and SUT1 sucrose transporter in pea resulted in increased seed number and changed cytokinin and protein levels. Funct. Plant Biol. 2021, 48, 889–904. [Google Scholar] [CrossRef]
- Asano, T.; Wakayama, M.; Aoki, N.; Komatsu, S.; Ichikawa, H.; Hirochika, H.; Ohsugi, R. Overexpression of a calcium-dependent protein kinase gene enhances growth of rice under low-nitrogen conditions. Plant Biotechnol. 2010, 27, 369–373. [Google Scholar] [CrossRef] [Green Version]
- Kurai, T.; Wakayama, M.; Abiko, T.; Yanagisawa, S.; Aoki, N.; Ohsugi, R. Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low-nitrogen conditions. Plant Biotechnol. J. 2011, 9, 826–837. [Google Scholar] [CrossRef]
- He, X.; Qu, B.; Li, W.; Zhao, X.; Teng, W.; Ma, W.; Ren, Y.; Li, B.; Li, Z.; Tong, Y. The nitrate-inducible NAC transcription factor TaNAC2-5A controls nitrate response and increases wheat yield. Plant Physiol. 2015, 169, 1991–2005. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Derkx, A.P.; Liu, D.C.; Buchner, P.; Hawkesford, M.J. Overexpression of a NAC transcription factor delays leaf senescence and increases grain nitrogen concentration in wheat. Plant Biol. 2015, 17, 904–913. [Google Scholar] [CrossRef] [Green Version]
- Peña, P.A.; Quach, T.; Sato, S.; Ge, Z.; Nersesian, N.; Changa, T.; Dweikat, I.; Soundararajan, M.; Clemente, T.E. Expression of the maize Dof1 transcription factor in wheat and sorghum. Front. Plant Sci. 2017, 8, 434. [Google Scholar] [CrossRef] [Green Version]
- Xing, Y.; Guo, S.; Chen, X.; Du, D.; Liu, M.; Xiao, Y.; Zhang, T.; Zhu, M.; Zhang, Y.; Sang, X.; et al. Nitrogen metabolism is affected in the nitrogen-deficient rice mutant esl4 with a calcium-dependent protein kinase gene mutation. Plant Cell Physiol. 2018, 59, 2512–2525. [Google Scholar] [CrossRef]
- Li, S.; Tian, Y.; Wu, K.; Ye, Y.; Yu, J.; Zhang, J.; Liu, Q.; Hu, M.; Li, H.; Tong, Y.; et al. Modulating plant growth-metabolism coordination for sustainable agriculture. Nature 2018, 560, 595–600. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Fengler, K.A.; Van Hemert, J.L.; Gupta, R.; Mongar, N.; Sun, J.; Allen, W.B.; Wang, Y.; Weers, B.; et al. Identification and characterization of a novel stay-green QTL that increases yield in maize. Plant Biotechnol. J. 2019, 17, 2272–2285. [Google Scholar] [CrossRef]
- Yang, J.; Wang, M.; Li, W.; He, X.; Teng, W.; Ma, W.; Zhao, X.; Hu, M.; Li, H.; Zhang, Y.; et al. Reducing expression of a nitrate-responsive bZIP transcription factor increases grain yield and N use in wheat. Plant Biotechnol. J. 2019, 17, 1823–1833. [Google Scholar] [CrossRef]
- Dominguez-Figuero, J.; Carrillo, L.; Renau-Morata, B.; Yang, L.; Molina, R.-V.; Marino, D.; Canales, J.; Weih, M.; Vicente-Carbajosa, J.; Nebauer, S.G.; et al. The Arabidopsis transcription factor CDF3 is involved in nitrogen responses and improves nitrogen use efficiency in tomato. Front. Plant Sci. 2020, 11, 601558. [Google Scholar] [CrossRef] [PubMed]
- Alfatih, A.; Wu, J.; Zhang, Z.-S.; Xia, J.-Q.; Jan, S.U.; Yu, L.-H.; Xiang, C.-B. Rice NIN-LIKE PROTEIN 1 rapidly responds to nitrogen deficiency and improves yield and nitrogen use efficiency. J. Exp. Bot. 2020, 71, 6032–6042. [Google Scholar] [CrossRef]
- Gao, Y.; Xu, Z.; Zhang, L.; Li, S.; Wang, S.; Yang, H.; Liu, X.; Zeng, D.; Liu, Q.; Qian, Q.; et al. MYB61 is regulated by GRF4 and promotes nitrogen utilization and biomass production in rice. Nat. Commun. 2020, 11, 5219. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Z.-S.; Xia, J.-Q.; Alfatih, A.; Song, Y.; Huang, Y.-J.; Wan, G.-Y.; Sun, L.-Q.; Tang, H.; Liu, Y.; et al. Rice NIN-LIKE PROTEIN 4 plays a pivotal role in nitrogen use efficiency. Plant Biotechnol. J. 2021, 19, 448–461. [Google Scholar] [CrossRef]
- Reeves, T.; Thomas, G.; Ramsay, G. Save and Grow in Practice: Maize, Rice, Wheat. A Guide to Sustainable Cereal Production; FAO: Rome, Italy, 2016. [Google Scholar]
- Kirk, G.J.D.; Kronzucker, H.J. The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants: A modelling study. Ann. Bot. 2005, 96, 639–646. [Google Scholar] [CrossRef] [Green Version]
- Lee, S. Recent advances on nitrogen use efficiency in rice. Agronomy 2021, 11, 753. [Google Scholar] [CrossRef]
- Beier, M.P.; Fujita, T.; Sasaki, K.; Kanno, K.; Ohashi, M.; Tamura, W.; Konishi, N.; Saito, M.; Imagawa, F.; Ishiyama, K.; et al. The urea transporter DUR3 contributes to rice production under nitrogen-deficient and field conditions. Physiol. Plant. 2019, 167, 75–89. [Google Scholar] [CrossRef] [Green Version]
- Lewis, R.S.; Jack, A.M.; Morris, J.W.; Robert, V.J.M.; Gavilano, L.B.; Siminszky, B.; Bush, L.P.; Hayes, A.J.; Deweu, R.E. RNA interference (RNAi)-induced suppression of nicotine demethylase activity reduces levels of a key carcinogen in cured tobacco leaves. Plant Biotechnol. J. 2008, 6, 346–354. [Google Scholar] [CrossRef]
- Cantón, F.R.; Suárez, M.F.; Cánovas, F.M. Molecular aspects of nitrogen mobilisation and recycling in trees. Photosynth. Res. 2005, 83, 265–278. [Google Scholar] [CrossRef]
- Eckes, P.; Schmitt, P.; Daub, W.; Wengenmaye, F. Overproduction of alfalfa glutamine synthetase in transgenic tobacco plants. Mol. Gen. Genet. 1989, 217, 263–268. [Google Scholar] [CrossRef]
- Thomsen, H.C.; Eriksson, D.; Møller, I.S.; Schjoerring, J.K. Cytosolic glutamine synthetase: A target for improvement of crop nitrogen use efficiency? Trends Plant Sci. 2014, 19, 10. [Google Scholar] [CrossRef]
- Michno, J.-M.; Wang, X.; Liu, J.; Curtin, S.J.; Kono, T.J.Y.; Stupar, R.M. CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme. GM Crops Food 2015, 6, 243–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bi, Z.; Wu, W.; Zhan, X.; Yu, N.; Xu, T.; Liu, Q.; Li, Z.; Shen, X.; Chen, D.; Cheng, S.; et al. ES7, encoding a ferredoxin-dependent glutamate synthase, functions in nitrogen metabolism and impacts leaf senescence in rice. Plant Sci. 2017, 259, 24–34. [Google Scholar] [CrossRef]
- Sienkiewicz-Porzucek, A.; Sulpice, R.; Osorio, S.; Krahnert, I.; Leisse, A.; Urbanczyk-Wochniak, E.; Hodges, M.; Fernie, A.R.; Nunnes-Nesi, A. Mild reductions in mitochondrial NAD-dependent isocitrate dehydrogenase activity result in altered nitrate assimilation and pigmentation but no impact on growth. Mol. Plant 2010, 1, 156–173. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, C.; Lin, J.; Yang, Y.; Peng, Y.; Tang, D.; Zhao, X.; Zhu, Y.; Liu, X. Over-expression of a glutamate dehydrogenase gene, MgGDH, from Magnaporthe grisea confers tolerance to dehydration stress in transgenic rice. Planta 2015, 241, 727–740. [Google Scholar] [CrossRef] [PubMed]
- Richards, N.G.; Schuster, S.M. Mechanistic issues in asparagine synthetase catalysis. Adv. Enzymol. Relat. Areas Mol. Biol. 1998, 72, 145–198. [Google Scholar] [CrossRef]
- Good, A.G.; Muench, D.G. Long-term anaerobic metabolism in root tissue. Plant Physiol. 1993, 101, 1163–1168. [Google Scholar] [CrossRef] [Green Version]
- McAllister, C.H.; Facette, M.; Holt, A.; Good, A.G. Analysis of the enzymatic properties of a broad family of alanine aminotransferases. PLoS ONE 2013, 8, e55032. [Google Scholar] [CrossRef]
- Schultz, C.J.; Coruzzi, G.M. The aspartate aminotransferase gene family of Arabidopsis encodes esoenzymes localized to three distinct subcellular compartments. Plant J. 1995, 7, 61–75. [Google Scholar] [CrossRef]
- Tegeder, M.; Masclaux-Daubresse, C. Source and sink mechanisms of nitrogen transport and use. New Phytol. 2018, 217, 35–53. [Google Scholar] [CrossRef] [Green Version]
- Hirner, A.; Ladwig, F.; Stransky, H.; Okumoto, S.; Keinath, M.; Harms, A.; Frommer, W.B.; Koch, W. Arabidopsis LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll. Plant Cell 2006, 18, 1931–1946. [Google Scholar] [CrossRef] [Green Version]
- Bourgis, F.; Roje, S.; Nuccio, M.L.; Fisher, D.B.; Tarczynski, M.C.; Li, C.; Herschbach, C.; Rennenberg, H.; Pimenta, M.J.; Shen, T.L.; et al. S-Methylmethionine plays a major role in phloem sulfur transport and is synthesized by a novel type of methyltransferase. Plant Cell 1999, 11, 1485–1498. [Google Scholar] [CrossRef] [Green Version]
- Cánovas, F.M.; Cañas, R.A.; de la Torre, F.N.; Pascual, M.B.; Castro-Rodríguez, V.; Avila, C. Nitrogen metabolism and biomass production in forest trees. Front. Plant Sci. 2018, 9, 1449. [Google Scholar] [CrossRef] [PubMed]
- Castro-Rodríguez, V.; Cañas, R.A.; de la Torre, F.; Pascual, M.B.; Ávila, C.; Cánovas, F.M. Molecular fundamentals of nitrogen uptake and transport in trees. J. Exp. Bot. 2017, 68, 2489–2500. [Google Scholar] [CrossRef]
- Kirby, E.G.; Gallardo, F.; Man, H.; El-Khatib, R. The overexpression of glutamine synthetase in transgenic poplar: A review. Silvae Genetica 2006, 55, 278–284. [Google Scholar] [CrossRef] [Green Version]
- DesRochers, A.; van den Driessche, R.; Thomas, B.R. Nitrogen fertilization of trembling aspen seedlings grown on soils of different pH. Canad. J. For. Res. 2003, 33, 552–560. [Google Scholar] [CrossRef]
- Couturier, J.; Montanini, B.; Martin, F.; Brun, A.; Blaudez, D.; Chalot, M. The expanded family of ammonium transporters in the perennial poplar plant. New Phytolog. 2007, 174, 137–150. [Google Scholar] [CrossRef]
- Wu, X.; Yang, H.; Qu, C.; Xu, Z.; Li, W.; Hao, B.; Yang, C.; Sun, G.; Liu, G. Sequence and expression analysis of the AMT gene family in poplar. Front. Plant Sci. 2015, 6, 337. [Google Scholar] [CrossRef] [Green Version]
- Cánovas, F.M.; Ávila, C.; Cantón, F.R.; Cañas, R.A.; de la Torre, F. Ammonium assimilation and amino acid metabolism in conifers. J. Exp. Bot. 2007, 58, 2307–2318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babst, B.A.; Coleman, G.D. Seasonal nitrogen cycling in temperate trees: Transport and regulatory mechanisms are key missing links. Plant Sci. 2018, 270, 268–277. [Google Scholar] [CrossRef]
- Sauter, J.J.; van Cleve, B. Biochemical, immunochemical, and ultrastructural studies of protein storage in poplar (Populus×canadensis ‘robusta’) wood. Planta 1991, 183, 92–100. [Google Scholar] [CrossRef]
- Rennenberg, H.; Wildhagen, H.; Ehlting, B. Nitrogen nutrition of poplar trees. Plant Biol. 2010, 12, 275–291. [Google Scholar] [CrossRef]
- Millard, P.; Grelet, G.A. Nitrogen storage and remobilization by trees: Ecophysiological relevance in a changing world. Tree Physiol. 2010, 30, 1083–1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frak, E.; Millard, P.; Le Roux, X.; Guillaumie, S.; Wendler, R. Coupling sap flow velocity and amino acid concentrations as an alternative method to (15)N labeling for quantifying nitrogen remobilization by walnut trees. Plant Physiol. 2002, 130, 1043–1053. [Google Scholar] [CrossRef] [Green Version]
- Gallardo, F.; Fu, J.; Jing, Z.P.; Kirby, E.G.; Cánovas, F.M. Genetic modification of amino acid metabolism in woody plants. Plant Physiol. Biochem. 2003, 41, 587–594. [Google Scholar] [CrossRef]
- Zhang, X.; Misra, A.; Nargund, S.; Coleman, G.D.; Sriram, G. Concurrent isotope-assisted metabolic flux analysis and transcriptome profiling reveal responses of poplar cells to altered nitrogen and carbon supply. Plant J. 2018, 3, 472–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lebedev, V.G.; Shestibratov, K.A. Genetic engineering of lignin biosynthesis in trees: Compromise between wood properties and plant viability. Russ. J. Plant Physiol. 2021, 68, 596–612. [Google Scholar] [CrossRef]
- Gallardo, F.; Fu, J.; Canton, F.R.; Garcia-Gutierrez, A.; Canovas, F.M.; Kirby, E.G. Expression of a conifer glutamine synthetase gene in transgenic poplar. Planta 1999, 210, 19–26. [Google Scholar] [CrossRef]
- Fu, J.; Sampalo, R.; Gallardo, F.; Cánovas, F.M.; Kirby, E.G. Assembly of a cytosolic pine glutamine synthetase holoenzyme in the leaf of transgenic poplar leads to enhanced vegetative growth in young plants. Plant Cell Environ. 2003, 26, 411–418. [Google Scholar] [CrossRef]
- Man, H.M.; Boriel, R.; El-Khatib, R.; Kirby, E.G. Characterization of transgenic poplar with ectopic expression of pine cytosolic glutamine synthetase under conditions of varying nitrogen availability. New Phytolog. 2005, 167, 31–39. [Google Scholar] [CrossRef]
- Castro-Rodríguez, V.; García-Gutiérrez, A.; Canales, J.; Cañas, R.A.; Kirby, E.G.; Avila, C.; Cánovas, F.M. Poplar trees for phytoremediation of high levels of nitrate and applications in bioenergy. Plant Biotech. J. 2016, 14, 299–312. [Google Scholar] [CrossRef] [PubMed]
- Jing, Z.P.; Gallardo, F.; Pascual, M.B.; Sampalo, R.; Romero, J.; de Navarra, A.T.; Canovas, F.M. Improved growth in a field trial of transgenic hybrid poplar overexpressing glutamine synthetase. New Phytol. 2004, 164, 137–145. [Google Scholar] [CrossRef]
- Coleman, H.D.; Mansfield, S.D.; Cánovas, F.M.; Man, H.; Kirby, E.G. Enhanced expression of glutamine synthetase (GS1a) confers altered fiber and wood chemistry in field grown hybrid poplar (Populus tremula × P. alba) (717-1B4). Plant Biotech. J. 2012, 10, 883–889. [Google Scholar] [CrossRef] [PubMed]
- Lebedev, V.G.; Schestibratov, K.A.; Shadrina, T.E.; Bulatova, I.V.; Abramochkin, D.G.; Miroshnikov, A.I. Cotransformation of aspen and birch with three T-DNA regions from two different replicons in one Agrobacterium tumefaciens strain. Russ. J. Genet. 2010, 46, 1282–1289. [Google Scholar] [CrossRef]
- Lebedev, V.; Salmova, M.; Schestibratov, K. Analysis of growth, morphology and biosafety of transgenic aspen and birch plants with pine glutamine synthetase gene. In Proceedings of the Plant Biology Congress 2012, Freiburg, Germany, 29 July–3 August 2012; p. 171. [Google Scholar]
- Lebedev, V.G.; Kovalenko, N.P.; Shestibratov, K.A. Influence of Nitrogen Availability on Growth of Two Transgenic Birch Species Carrying the Pine GS1a Gene. Plants 2017, 6, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belova, E.N.; Lebedev, V.G.; Shestibratov, K.A. Evaluation of the efficiency of nitrogen use by transgenic birch plants with the glutamine synthetase gene. In Proceedings of the 21st International Pushchino School-Conference of Young Scientists, Pushchino, Russia, 17–21 April 2017; pp. 250–251. (In Russian). [Google Scholar]
- Man, H.; Pollmann, S.; Weiler, E.W.; Kirby, E.G. Increased glutamine in leaves of poplar transgenic with pine GS1a caused greater anthranilate synthetase a-subunit (ASA1) transcript and protein abundances: An auxinrelated mechanism for enhanced growth in GS transgenics? J. Exp. Bot. 2011, 62, 4423–4431. [Google Scholar] [CrossRef] [Green Version]
- Lebedev, V.G.; Korobova, A.V.; Shendel, G.V.; Kudoyarova, G.R.; Schestibratov, K.A. Effect of glutamine synthetase gene overexpression in birch (Betula pubescens) plants on auxin content and rooting in vitro. Dokl. Biochem. Biophys. 2018, 480, 143–145. [Google Scholar] [CrossRef]
- Lin, W.; Hagen, E.; Fulcher, A.; Hren, M.T.; Cheng, Z.-M. Overexpressing the ZmDof1 gene in Populus does not improve growth and nitrogen assimilation under low-nitrogen conditions. Plant Cell Tiss. Organ. Cult. 2013, 113, 51–61. [Google Scholar] [CrossRef]
- Rueda-López, M.; Pascual, M.B.; Pallero, M.; Lasa, B.; Jauregui, I.; Aparicio-Tejo, P.; Cánovas, F.M.; Ávila, C. Overexpression of a pine Dof transcription factor in hybrid poplars: A comparative study in trees growing under controlled and natural conditions. PLoS ONE 2017, 12, e0174748. [Google Scholar] [CrossRef]
- An, Y.; Zhou, Y.; Han, X.; Shen, C.; Wang, S.; Liu, C.; Yin, W.; Xia, X. The GATA transcription factor GNC plays an important role inphotosynthesis and growth in poplar. J. Exp. Bot. 2020, 71, 1969–1984. [Google Scholar] [CrossRef]
- Pascual, M.B.; Molina-Rueda, J.J.; Cánovas, F.M.; Gallardo, F. Overexpression of a cytosolic NADP C-isocitrate dehydrogenase causes alterations in the vascular development of hybrid poplar. Tree Physiol. 2018, 38, 992–1005. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Lin, R.; Egekwu, C.; Blakeslee, J.; Lin, J.; Pettengill, E.; Murphy, A.S.; Peer, W.A.; Islam, N.; Benjamin, A.; et al. Seasonal nitrogen remobilization and the role of auxin transport in poplar trees. J. Exp. Bot. 2020, 71, 4512–4530. [Google Scholar] [CrossRef] [PubMed]
- Bittsánszky, A.; Pilinszky, K.; Gyulai, G.; Komives, T. Overcoming ammonium toxicity. Plant Sci. 2015, 231, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Hachiya, T.; Inaba, J.; Wakazaki, M.; Sato, M.; Toyooka, K.; Miyagi, A.; Kawai-Yamada, M.; Sugiura, D.; Nakagawa, T.; Kiba, T.; et al. Excessive ammonium assimilation by plastidic glutamine synthetase causes ammonium toxicity in Arabidopsis thaliana. Nat. Commun. 2021, 12, 4944. [Google Scholar] [CrossRef]
- Manderscheid, R.; Wild, A. Studies on the mechanism of inhibition by phosphinothricin of glutamine synthetase isolated from Triticum aestivum L. J. Plant Physiol. 1986, 123, 135–142. [Google Scholar] [CrossRef]
- Abdeen, A.; Miki, B. The pleiotropic effects of the bar gene and glufosinate on the Arabidopsis transcriptome. Plant Biotech. J. 2009, 7, 266–282. [Google Scholar] [CrossRef]
- James, D.; Borphukan, B.; Fartyal, D.; Ram, B.; Singh, J.; Manna, M.; Sheri, V.; Panditi, V.; Yadav, R.; Achary, V.M.M.; et al. Concurrent overexpression of OsGS1;1 and OsGS2 genes in transgenic rice (Oryza sativa L.): Impact on tolerance to abiotic stresses. Front. Plant Sci. 2018, 9, 786. [Google Scholar] [CrossRef]
- Ameziane, R.; Bernhard, K.; Lightfoot, D. Expression of the bacterial gdhA gene encoding a NADPH glutamate dehydrogenase in tobacco affects plant growth and development. Plant Soil 2000, 221, 47–57. [Google Scholar] [CrossRef]
- Nolte, S.A.; Young, B.G.; Mungur, R.; Lightfoot, D.A. The glutamate dehydrogenase gene gdhA increased the resistance of tobacco to glufosinate. Weed Res. 2004, 44, 335–339. [Google Scholar] [CrossRef]
- De Block, M. Factors influencing the tissue culture and the Agrobacterium tumefaciens-mediated transformation of hybrid aspen and poplar clones. Plant Physiol. 1990, 93, 1110–1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lebedev, V.G.; Faskhiev, V.N.; Kovalenko, N.P.; Schestibratov, K.A.; Miroshnikov, A.I. Testing transgenic aspen plants with bar gene for herbicide resistance under semi-natural conditions. Acta Nat. 2016, 8, 92–101. [Google Scholar] [CrossRef]
- Pascual, M.B.; Jing, Z.P.; Kirby, E.G.; Canovas, F.M.; Gallardo, F. Response of transgenic poplar overexpressing cytosolic glutamine synthetase to phosphinothricin. Phytochemistry 2008, 69, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Lebedev, V.; Faskhiev, V.; Shestibratov, K. Lack of correlation between ammonium accumulation and survival of transgenic birch plants with pine cytosolic glutamine synthetase gene after “Basta” herbicide treatment. J. Botany 2015, 2015, 749356. [Google Scholar] [CrossRef] [Green Version]
- Lebedev, V.G.; Krutovsky, K.V.; Shestibratov, K.A. Effect of phosphinothricin on transgenic downy birch (Betula pubescens Ehrh.) containing bar or GS1 genes. Forests 2019, 10, 1067. [Google Scholar] [CrossRef] [Green Version]
- Takano, H.K.; Beffa, R.; Preston, C.; Westra, P.; Dayan, F.E. Reactive oxygen species trigger the fast action of glufosinate. Planta 2019, 249, 1837–1849. [Google Scholar] [CrossRef]
- Esteban, R.; Ariz, I.; Cruz, C.; Moran, J.F. Mechanisms of ammonium toxicity and the quest for tolerance. Plant Sci. 2016, 248, 92–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ladics, G.S.; Bartholomaeus, A.; Bregitzer, P.; Doerrer, N.G.; Gray, A.; Holzhauser, T.; Jordan, M.; Keese, P.; Kok, E.; Macdonald, P.; et al. Genetic basis and detection of unintended effects in genetically modified crop plants. Transgenic Res. 2015, 24, 587–603. [Google Scholar] [CrossRef] [Green Version]
- Migge, A.; Carrayol, E.; Hirel, B.; Becker, T.W. Leaf-specific overexpression of plastidic glutamine synthetase stimulates the growth of transgenic tobacco seedlings. Planta 2000, 210, 252–260. [Google Scholar] [CrossRef]
- Seger, M.; Gebril, S.; Tabilona, J.; Peel, A.; Sengupta-Gopalan, C. Impact of concurrent overexpression of cytosolic glutamine synthetase (GS1) and sucrose phosphate synthase (SPS) on growth and development in transgenic tobacco. Planta 2015, 241, 69–81. [Google Scholar] [CrossRef]
- Beck, P.; Caudullo, G.; de Rigo, D.; Tinner, W. Betula pendula, Betula pubescens and other birches in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publications Office of the EU: Luxembourg, 2016; p. e010226. [Google Scholar]
- Lebedev, V.G.; Faskhiev, V.N.; Shestibratov, K.A. Effects of different nitrogen regimes on growth and characteristics of two transgenic Betula species with a pine GS1 gene. In Proceedings of the Plant Biology Europe EPSO/FESPB 2016 Congress, Prague, Czech Republic, 26–30 June 2016. [Google Scholar]
- Wang, W.; Hu, B.; Yuan, D.; Liu, Y.; Che, R.; Hu, Y.; Ou, S.; Liu, Y.; Zhang, Z.; Wang, H.; et al. Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice. Plant Cell 2018, 30, 638–651. [Google Scholar] [CrossRef] [Green Version]
- Suarez, R.; Marquez, J.; Shishkova, S.; Hernandez, G. Overexpression of alfalfa cytosolic glutamine synthetase in nodules and flowers of transgenic Lotus japonicus plants. Physiol. Plant. 2003, 117, 326–336. [Google Scholar] [CrossRef]
- Schoenbeck, M.A.; Temple, S.J.; Trepp, G.B.; Blumenthal, J.M.; Samac, D.A.; Gantt, J.S.; Hernandez, G.; Vance, C.P. Decreased NADH glutamate synthase activity in nodules and flowers of alfalfa (Medicago sativa L.) transformed with an antisense glutamate synthase transgene. J. Exp. Bot. 2000, 51, 29–39. [Google Scholar] [CrossRef]
- Lebedev, V.G.; Faskhiev, V.N.; Shestibratov, K.A. Effects of modified nitrogen metabolism in transgenic forest trees. In Proceedings of the VIII Congress of the Russian Society of Plant Physiologists “Plants under Global and Local Natural-Climatic and Human Impacts”, Petrozavodsk, Russia, 21–26 September 2015; p. 311. (In Russian). [Google Scholar]
- Lebedev, V.; Larionova, A.; Bykhovets, S.; Shanin, V.; Komarov, A.; Shestibratov, K. Model assessment of transgenic trees impact on nitrogen and carbon cycles in forest plantations. In Proceedings of the IUFRO Tree Biotechnology Conference 2015 “Forests: The importance to the planet and society”, Florence, Italy, 8–12 June 2015; pp. 186–188. [Google Scholar] [CrossRef]
- Lebedev, V.G.; Shestibratov, K.A. Manifestation of unintended effects in transgenic aspen and birch plants. In Proceedings of the Annual Meeting of the Russian Society of Plant Physiology and the Scientific Conference “Experimental Plant Biology: Fundamental and Applied Aspects”, Sudak, Russia, 18–24 September 2017; p. 216. (In Russian). [Google Scholar]
- ISAAA GM Approval Database. Available online: http://www.isaaa.org/gmapprovaldatabase/default.asp (accessed on 20 October 2021).
- El-Khatib, R.T.; Hamerlynck, E.P.; Gallardo, F.; Kirby, E.G. Transgenic poplar characterized by ectopic expression of a pine cytosolic glutamine synthetase gene exhibits enhanced tolerance to water stress. Tree Physiol. 2004, 24, 729–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoshida, H.; Tanaka, Y.; Hibino, T.; Hayashi, Y.; Tanaka, A.; Takabe, T.; Takabe, T. Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase. Plant Mol. Biol. 2000, 43, 103–111. [Google Scholar] [CrossRef]
- Lee, H.J.; Abdula, S.E.; Jang, D.W.; Park, S.-H.; Yoon, U.-H.; Jung, Y.J.; Kang, K.K.; Nou, I.S.; Cho, Y.-G. Overexpression of the glutamine synthetase gene modulates oxidative stress response in rice after exposure to cadmium stress. Plant Cell Rep. 2013, 32, 1521–1529. [Google Scholar] [CrossRef]
- Swift, J.; Adame, M.; Tranchina, D.; Henry, A.; Coruzzi, G.M. Water impacts nutrient dose responses genome-wide to affect crop production. Nat. Commun. 2019, 10, 1374. [Google Scholar] [CrossRef] [PubMed]
- Bloom, A.J.; Burger, M.; Kimball, B.A.; Pinter, J.P. Nitrate assimilation is inhibited by elevated CO2 in field-grown wheat. Nat. Clim. Chang. 2014, 4, 477–480. [Google Scholar] [CrossRef]
- Rubio-Asensio, J.S.; Bloom, A.J. Inorganic nitrogen form: A major player in wheat and Arabidopsis responses to elevated CO2. J. Exp. Bot. 2017, 68, 2611–2625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, G.N.; Maharjan, P.; Maphosa, L.; Vakani, J.; Thoday-Kennedy, E.; Kant, S. A robust automated image-based phenotyping method for rapid vegetative screening of wheat germplasm for nitrogen use efficiency. Front. Plant Sci. 2019, 10, 1372. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Zhang, Y.; Duan, A.; Liu, Z.; Xiao, J.; Liu, Z.; Qin, A.; Ning, D.; Li, S.; Ata-Ul-Karim, S.T. Estimating the growth indices and nitrogen status based on color digital image analysis during early growth period of winter wheat. Front. Plant Sci. 2021, 12, 619522. [Google Scholar] [CrossRef]
- Ding, Z.; Wang, C.; Chen, S.; Yu, S. Diversity and selective sweep in the OsAMT1;1 genomic region of rice. BMC Evol. Biol. 2011, 11, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lebedev, V.G.; Lebedeva, T.N.; Chernodubov, A.I.; Shestibratov, K.A. Genomic selection for forest tree improvement: Methods, achievements and perspectives. Forests 2020, 11, 1190. [Google Scholar] [CrossRef]
Gene | Gene Source | Promoter | Target Crop | Technology 1 | Growth Condition | N Condition | Type of NUE 2 | References |
---|---|---|---|---|---|---|---|---|
Nitrate transporters | ||||||||
NRT2.1 | rice | CaMV 35S | rice | over | hydroponic | 2 × 2 N levels | - | [55] |
NAR2.1 | rice | rice | RNAi | hydroponic | 3 N levels | - | [56] | |
pot | n.d. 3 | |||||||
PTR9 | rice | CaMV 35S | rice | over | hydroponic | 4 N levels | - | [57] |
Ubi-1 | RNAi | field | 6 N levels | |||||
PTR6 | rice | ubiquitin | rice | over | hydroponic | 5 N levels | NUE | [30] |
NRT1.1B | rice | CaMV 35S | rice | over | hydroponic | 3 NO3 levels | NUE | [58] |
NRT1.1b | field | 2 NO3 levels | ||||||
NRT2.3 | tomato | CaMV 35S | tomato | over | hydroponic | 3 NO3 levels | - | [59] |
NRT2.3a or NRT2.3b | rice | CaMV 35S | rice | over | hydroponic | 2 N levels | NUE | [60] |
ubiquitin | field | 4 urea levels | ||||||
NRT1.1a or NRT1.1b | rice | ubiquitin | rice | over | hydroponic | 6 N levels | - | [61] |
NRT2.1 | rice | ubiquitin | rice | over | field | 3 urea levels | ANUE, PNUE | [62] |
NAR2.1 | ||||||||
NAR2.1 | rice | NAR2.1 | rice | over | hydroponic | 3 N levels | ANUE, PNUE | [63] |
field | 1 N level | |||||||
NPF7.3 (PTR6) | rice | CaMV 35S | rice | over | hydroponic | 9 N levels | NUE | [64] |
Ubi-1 | RNAi | field | 1 N level | |||||
NPF7.7-1 or NPF7.7-2 | rice | CaMV 35S | rice | over | hydroponic | 9 N levels | NUtE | [65] |
Ubi-1 | RNAi | field | 4 NH4NO3 levels | |||||
NPF6.1 | rice | NPF6.1 | rice | over | field | 2 N levels | - | [66] |
editing | ||||||||
NPF4.5 | rice | ubiquitin | rice | over | hydroponic | 2 N levels | - | [67] |
editing | pot | |||||||
NPF1.11 | potato | CaMV 35S | potato | over | pot | 1 N level | - | [68] |
NAR2.1 | rice | CaMV 35S | rice | over | field | 2 N levels | ANUE, PNUE | [69] |
NRT2.3a | stacking | |||||||
NAR2.1+ NRT2.3a | ||||||||
NC4N (chimer.) | Arabidopsis | NRT1.7 | rice | over | hydroponic | n.d. | NUE | [70] |
field | 1 N level | |||||||
Ammonium transporters | ||||||||
AMT1.1 | rice | ubiquitin | rice | over | hydroponic | 2 NH4 levels | - | [71] |
AMT1-1 | rice | ubiquitin | rice | over | hydroponic | 3 N levels | - | [72] |
AMT1;1 | rice | ubiquitin | rice | over | hydroponic | 6 NH4 levels | - | [73] |
AMT1-3 | rice | CaMV 35S | rice | over | hydroponic | 4 NH4NO3 levels | - | [74] |
pot | 4 N levels | |||||||
AMT1;1a | maize | Ubi-1 | maize | over | hydroponic | 2 NH4 levels | [75] |
Gene | Gene Source | Promoter | Target Crop | Technology | Growth Condition | N Condition | Type of NUE | References |
---|---|---|---|---|---|---|---|---|
Nitrate and nitrite reductases | ||||||||
nia | tobacco | CaMV 35S | lettuce | over | pot | n.d. | - | [76] |
Nia2 | tobacco | CaMV 35S | potato | over | pot | 2 NH4 + NO3 levels | - | [77] |
Nia2 | tobacco | CaMV 35S | potato | over | field | 1 NH4 + NO3 level | - | [78] |
Nia2 | tobacco | CaMV 35S | potato | over | hydroponic | 1 NO3 level | - | [79] |
Nia2 | tobacco | CaMV 35S | lettuce | over | pot | 3 NO3 levels | - | [80] |
nia | tobacco | CaMV 35S | wheat | over | pot | 1 NO3 level | - | [81] |
NiR | Arabidopsis | CERV | tobacco | over | hydroponic | 2 NO3 levels | - | [82] |
Nia2 (2 variants) | tobacco | CaMV 35S | tobacco | over | hydroponic | 3 NO3 levels | - | [83] |
GS1 | tobacco | CaMV 35S | field | n.d. | ||||
GOGAT | Arabidopsis | CaMV 35S | ||||||
ICDH | tobacco | CaMV 35S | ||||||
NR2 | rice | NR2 | rice | over | field | 1 NO3 level | NUE | [84] |
Ubi | RNAi | |||||||
Nia2 | tobacco | CaMV 35S | tobacco | over | hydroponic | 2 NO3 levels | - | [85] |
field | 2 N levels | |||||||
Glutamine synthetase | ||||||||
GS15 | soybean | CaMV 35S | Lotus corniculatus | over | hydroponic | 2 NH4 levels | - | [86] |
GS15 | soybean | rolD | Lotus japonicus | over | hydroponic | 1 NO3 level | - | [87] |
GS1 | bean | rbcS | wheat | over | pot | n.d. | - | [88] |
GS (cytosolic) | Lotus japonicus | LBC3 | Lotus japonicus | antisense | hydroponic | 2 N levels | - | [89] |
GS15 | soybean | CaMV 35S | pea | over | hydroponic | 4 NO3 levels | [90] | |
LBC3 | ||||||||
rolD | ||||||||
GS1 | alfalfa | CaMV 35S | Lotus japonicus | over | pot | 2 N levels | [91] | |
GS15 | soybean | CaMV 35S | pea | over | hydroponic | 4 NH4 levels | [92] | |
LBC3 | ||||||||
rolD | ||||||||
Gln1-3 | maize | CsVMV | maize | over | hydroponic | 1 NO3 level | - | [93] |
pot | 1 NO3 level | |||||||
GS1;1 | rice | CaMV 35S | rice | over | hydroponic | 2 NH4NO3 levels | - | [94] |
GS1;2 | field | 1 N level | ||||||
glnA | E. coli | CaMV 35S | ||||||
GS1;2 | rice | ubiquitin | rice | over | pot | 3 N levels | NUtE | [95] |
GS1;1 | rice | CaMV 35S | rice | over | hydroponic | 4 NH4NO3 levels | - | [96] |
Gln1 | sorghum | ubiquitin | sorghum | over | pot | 2 N levels | - | [97] |
GS2 | Chinese cabbage | CaMV 35S | Chinese cabbage | over | hydroponic | 7 N levels | - | [98] |
GS2 | wheat | wheat | over | field | 2 urea levels | [99] | ||
GS1-1 | barley | GS1-1 | barley | over | pot | 3 NH4NO3 levels | NUE | [100] |
GS SPS | soybean maize | CaMV 35S | alfalfa | over | pot | n.d. | - | [101] |
GS1.1 | NA | wheat | editing | hydroponic | 3 N levels | NTE | [102] | |
field | 2 urea levels | |||||||
Gln1-3 (2 copies) | maize | CsVMV + Rbcs | maize | over | field | 1 urea level | - | [103] |
Glutamate synthase | ||||||||
NADH-GOGAT | rice | NADH-GOGAT | rice | over | hydroponic | n.d. | - | [104] |
AMT1;2 | rice | NA | rice | T-DNA tagging + | outdoor | 1 N level | NUE | [105] |
GOGAT1 | crossing | field | 1 N level | |||||
NADH-GOGAT | wheat | actin1 | maize | over | greenhouse | 1 NH4 + NO3 level | - | [106] |
GOGAT + IDH | sorghum | CsVMV | stacking | |||||
GOGAT + IDH + GDH | maize | actin1 | ||||||
GOGAT + IDH + GDH + GS1.3 | maize | CsVMV or RbcS | ||||||
Glutamate dehydrogenase | ||||||||
GDH | E. coli | ubiqutin | maize | over | field | 3 NH4NO3 levels | - | [107] |
GDH | Aspergillus niger | CaMV 35S | rice | over | hydroponic | 2 NH4 levels | - | [108] |
field | 1 N level | |||||||
GDH | Aspergillus nidulans | CaMV 35S | potato | over | pot | 2 N levels | NUE | [109] |
GDH | Sclerotinia sclerotiorum | ubiqutin | rice | over | hydroponic | 3 NH4NO3 levels | - | [110] |
GDH | Pleurotus cystidiosus | ubiqutin | rice | over | hydroponic | 3 NH4 levels | - | [111] |
field | 3 urea levels | |||||||
GDH | Cylindrocarpon ehrenbergii | ubiqutin | rice | over | hydroponic | 3 NH4 levels | - | [112] |
field | 2 urea levels | |||||||
GDH | Eurotium cheralieri | ubiqutin | rice | over | hydroponic | 2 NH4NO3 levels | - | [113] |
field | 3 N levels | |||||||
GDH | Trichurus | ubiqutin | rice | over | hydroponic | 3 NH4 levels | - | [114] |
field | 4 urea levels |
Gene | Gene Source | Promoter | Target Crop | Technology | Growth Condition | N Condition | Type of NUE | References |
---|---|---|---|---|---|---|---|---|
Asparagine synthetase | ||||||||
asnA | E. coli | rbcS | Lotus corniculatus | over | pot | n.d. | - | [115] |
plastocyanin | ||||||||
asnA | E. coli | CaMV 35S | oilseed rape | over | pot | 2 NO3 levels | - | [116] |
asnA | E. coli | MAC | lettuce | over | pot | 1 NH4 + NO3 level | - | [117] |
asnA | E. coli | Pcpea | tomato | over | hydroponic | 2 NH4 + NO3 levels | - | [118] |
ASN1 | rice | NA | rice | editing | hydroponic | 2 NH4 levels | - | [119] |
ASN1 | rice | ubiqutin | rice | over | field | 1 N level | - | [120] |
Alanine aminotransferase | ||||||||
AlaAT | barley | btg26 | canola | over | hydroponic | 1 NH4NO3 levels | - | [121] |
CaMV 35S | field | 4 N levels | ||||||
AlaAT | barley | Ant1 | rice | over | hydroponic | NH4 or NO3 | - | [122] |
AlaAT | barley | Ant1 | rice | over | hydroponic | 3 NH4 levels | NUpE | [123] |
AlaAT | barley | Ant1 | sugarcane | over | hydroponic | 4 N levels | NUpE, NUtE, NUE | [124] |
AlaAT | barley | Ant1 | rice | over | hydroponic | 2 NH4 levels | [125] | |
field | 3 N levels | |||||||
AlaAT | barley | Ant1 | wheat | over | hydroponic | 2 NO3 levels | - | [126] |
UBI4 | sorghum | field | 2 N levels | |||||
AlaAT | cucumber | Ant1 | rice | over | pot | 3 N levels | NUpE, ANUE | [127] |
AlaAT | barley | Ant1 | rice | over | hydroponic (rice) | 2 NH4 + NO3 levels | - | [128] |
barley | pot (all) | 1 or 2 N levels | ||||||
wheat | field (rice) | 1 urea level | ||||||
Aspartate aminotransferase | ||||||||
AAT1, AAT2, AAT3 | rice | CaMV 35S | rice | over | hydroponic | 1 N level | - | [129] |
AAT | E. coli | CaMV 35S | field | n.d. | ||||
AAT | alfalfa | btg26 | canola | over | hydroponic | 1 N level | - | [44] |
pot | 2 urea levels | |||||||
Amino acid transporters | ||||||||
AAP1 | potato | CaMV 35S | potato | antisense | pot | n.d. | - | [130] |
AAP1 | Vicia faba | LeB4 | Vicia narbonensis | over | pot | 1 NH4 + NO3 level | - | [131] |
pea | ||||||||
AAP1 | Vicia faba | LeB4 | pea | over | pot | n.d. | - | [132] |
field | n.d. | |||||||
MMP1 | yeast | AAP1 | pea | over | pot | 1 N level | - | [133] |
AAP6a | rice | CaMV 35S | rice | over | field | n.d. | - | [134] |
RNAi | ||||||||
AAP1 | pea | AAP1 | pea | over | pot | 1 N level | - | [135] |
AAP1 | pea | AAP1 | pea | over | pot | 3 NH4NO3 levels | NUpE, NUtE, NUE | [136] |
AAP3 | rice | CaMV 35S | rice | over | hydroponic | 5 NH4NO3 levels | - | [137] |
Ubi-1 | RNAi | field | n.d. | |||||
editing | ||||||||
AAP5 | rice | CaMV 35S | rice | over | hydroponic | n.d. | - | [138] |
Ubi-1 | RNAi | field | n.d. | |||||
editing | ||||||||
LHT1 | rice | NA | rice | editing | field | n.d. | - | [139] |
LHT1 | rice | NA | rice | editing | field | 1 N level | NUpE, NUtE | [140] |
AAP1 | rice | CaMV 35S | rice | over | hydroponic | 3 NH4NO3 levels | - | [141] |
Ubi-1 | RNAi | field | n.d. | |||||
editing | ||||||||
AAP4a or 4b | rice | CaMV 35S | rice | over | hydroponic | 1 NH4NO3 level | - | [142] |
AAP4 | Ubi-1 | RNAi | field | n.d. | ||||
editing | ||||||||
AAP13 | wheat | ub. or end.-sp. | wheat | over | pot | n.d. | - | [143] |
ubiquitin | RNAi | |||||||
AAP1 | pea | CaMV 35S | pea | over + crossing | pot | 1 N level | - | [144] |
SUT1 | pea | AAP1 |
Gene | Gene Source | Promoter | Target Crop | Technology | Growth Condition | N Condition | Type of NUE | References |
---|---|---|---|---|---|---|---|---|
CPK12 | rice | NA | rice | over | hydroponic | 2 NH4NO3 levels | - | [145] |
Dof1 | maize | Ubi-1 | rice | over | hydroponic | 6 N levels | - | [146] |
NAC2-5A | wheat | ubiquitin | wheat | over | hydroponic | 2 NO3 levels | - | [147] |
pot | 3 NO3 levels | |||||||
field | 2 urea levels | |||||||
NAC-S | wheat | ubiquitin | wheat | over | pot | n.d. | - | [148] |
Dof1 | maize | UBI4 | wheat | over | hydroponic | 2 NO3 levels | NUE | [149] |
rbcS1 | sorghum | field | 2 N levels | |||||
ESL4 | rice | NA | rice | over | greenhouse | 4 N levels | NUE | [150] |
field | 4 urea levels | |||||||
GRF4 | rice | actin | rice | over | hydroponic | 4 NH4NO3 levels | - | [151] |
GRF4 | wheat | RNAi | field | 1 urea level | ||||
CaMV 35S | editing | |||||||
nac7 | maize | ubiquitin | maize | RNAi | pot | 1 NO3 level | - | [152] |
field | n.d. | |||||||
bZIP60 | wheat | ubiquitin | wheat | over | hydroponic | 1 NO3 level | - | [153] |
GOGAT | RNAi | field | 1 urea level | |||||
CDF3 | Arabidopsis | CaMV 35S | tomato | over | hydroponic | 2 NO3 levels | NUE | [154] |
pot | 2 NO3 levels | |||||||
NLP1 | rice | NLP1 | rice | over | hydroponic | 5 N levels | - | [155] |
editing | field | 3 urea levels | ||||||
myb61 | rice | NA | rice | editing | field | 3 urea levels | NUE | [156] |
grf4 | ||||||||
NLP4 | rice | actin | rice | over | hydroponic | 3 NO3 + NH4 levels | - | [157] |
editing | field | 3 urea levels |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lebedev, V.G.; Popova, A.A.; Shestibratov, K.A. Genetic Engineering and Genome Editing for Improving Nitrogen Use Efficiency in Plants. Cells 2021, 10, 3303. https://doi.org/10.3390/cells10123303
Lebedev VG, Popova AA, Shestibratov KA. Genetic Engineering and Genome Editing for Improving Nitrogen Use Efficiency in Plants. Cells. 2021; 10(12):3303. https://doi.org/10.3390/cells10123303
Chicago/Turabian StyleLebedev, Vadim G., Anna A. Popova, and Konstantin A. Shestibratov. 2021. "Genetic Engineering and Genome Editing for Improving Nitrogen Use Efficiency in Plants" Cells 10, no. 12: 3303. https://doi.org/10.3390/cells10123303
APA StyleLebedev, V. G., Popova, A. A., & Shestibratov, K. A. (2021). Genetic Engineering and Genome Editing for Improving Nitrogen Use Efficiency in Plants. Cells, 10(12), 3303. https://doi.org/10.3390/cells10123303