Combining Nanopore and Illumina Sequencing Permits Detailed Analysis of Insertion Mutations and Structural Variations Produced by PEG-Mediated Transformation in Ostreococcus tauri
Abstract
:1. Introduction
2. Materials and Methods
2.1. Algal and Viral Culture Conditions
2.2. Transformation and Screening for Host Susceptibility or Resistance to Prasinoviruses
2.3. Illumina and Oxford Nanopore Technologies (ONT) Sequencing
2.4. Long-Read Assembly
2.5. Analysis of Insertion Sites Using Illumina Short-Read Sequencing
2.6. Analysis of Insertion Sites in ONT Long-Read Assemblies
2.7. Confirmation of Structural Variations Flanking the Insertion Using PCR
2.8. Bioluminescence Assay
2.9. Data Availability
3. Results
3.1. Illumina Paired-End Sequencing Data and Mapping to Wild-Type and Transformed Lines
3.2. The Integrity of the Transgene in Each Line Is Variable
3.3. Most of the Transformants (4 out of 5) Carried One Copy of the Transforming DNA
3.4. Vector Insertions Occurred at a Single Genomic Location in Each Transformant
3.5. Vector Integration Is Associated with Structural Variation at the Insertion Site
3.6. Inserted DNA Is Transcribed in Transformed Lines
4. Discussion
4.1. What Could Be the Mechanism Underlying the Random Insertion of DNA by PEG-Mediated Transformation?
4.2. Does the Integration of the Inserted DNA Have an Impact on the Deregulation of Gene Expression?
4.3. PEG-Mediated Transformation as a Robust and Powerful Biomolecular Tool
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhattacharya, A.; Leprohon, P.; Bigot, S.; Padmanabhan, P.K.; Mukherjee, A.; Roy, G.; Gingras, H.; Mestdagh, A.; Papadopoulou, B.; Ouellette, M. Coupling Chemical Mutagenesis to next Generation Sequencing for the Identification of Drug Resistance Mutations in Leishmania. Nat. Commun. 2019, 10, 5627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosey, M.; Douchi, D.; Knoshaug, E.P.; Laurens, L.M.L. Methodological Review of Genetic Engineering Approaches for Non-Model Algae. Algal. Res. 2021, 54, 102221. [Google Scholar] [CrossRef]
- Cullen, B.R. RNA Interference: Antiviral Defense and Genetic Tool. Nat. Immunol. 2002, 3, 597–599. [Google Scholar] [CrossRef]
- Alsford, S.; Turner, D.J.; Obado, S.O.; Sanchez-Flores, A.; Glover, L.; Berriman, M.; Hertz-Fowler, C.; Horn, D. High-Throughput Phenotyping Using Parallel Sequencing of RNA Interference Targets in the African Trypanosome. Genome Res. 2011, 21, 915–924. [Google Scholar] [CrossRef] [Green Version]
- Specht, E.; Miyake-Stoner, S.; Mayfield, S. Micro-Algae Come of Age as a Platform for Recombinant Protein Production. Biotechnol. Lett. 2010, 32, 1373–1383. [Google Scholar] [CrossRef] [Green Version]
- Moresco, E.M.Y.; Li, X.; Beutler, B. Going Forward with Genetics: Recent Technological Advances and Forward Genetics in Mice. Am. J. Pathol. 2013, 182, 1462–1473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faktorová, D.; Nisbet, R.E.R.; Fernández Robledo, J.A.; Casacuberta, E.; Sudek, L.; Allen, A.E.; Ares, M.; Aresté, C.; Balestreri, C.; Barbrook, A.C.; et al. Genetic Tool Development in Marine Protists: Emerging Model Organisms for Experimental Cell Biology. Nat. Methods 2020, 17, 481–494. [Google Scholar] [CrossRef] [Green Version]
- Pazour, G.J.; Witman, G.B. Forward and Reverse Genetic Analysis of Microtubule Motors in Chlamydomonas. Methods 2000, 22, 285–298. [Google Scholar] [CrossRef]
- Kumar, G.; Shekh, A.; Jakhu, S.; Sharma, Y.; Kapoor, R.; Sharma, T.R. Bioengineering of Microalgae: Recent Advances, Perspectives, and Regulatory Challenges for Industrial Application. Front. Bioeng. Biotechnol. 2020, 8. [Google Scholar] [CrossRef]
- Courties, C.; Vaquer, A.; Troussellier, M.; Lautier, J.; Chrétiennot-Dinet, M.J.; Neveux, J.; Machado, C.; Claustre, H. Smallest Eukaryotic Organism. Nature 1994, 370, 255. [Google Scholar] [CrossRef]
- Tragin, M.; Vaulot, D. Green Microalgae in Marine Coastal Waters: The Ocean Sampling Day (OSD) Dataset. Sci. Rep. 2018, 8, 14020. [Google Scholar] [CrossRef] [Green Version]
- Derelle, E.; Ferraz, C.; Rombauts, S.; Rouzé, P.; Worden, A.Z.; Robbens, S.; Partensky, F.; Degroeve, S.; Echeynié, S.; Cooke, R.; et al. Genome Analysis of the Smallest Free-Living Eukaryote Ostreococcus tauri Unveils Many Unique Features. Proc. Natl. Acad. Sci. USA 2006, 103, 11647–11652. [Google Scholar] [CrossRef] [Green Version]
- Van Ooijen, G.; Knox, K.; Kis, K.; Bouget, F.-Y.; Millar, A.J. Genomic Transformation of the Picoeukaryote Ostreococcus tauri. J. Vis. Exp. 2012, e4074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lozano, J.-C.; Schatt, P.; Botebol, H.; Vergé, V.; Lesuisse, E.; Blain, S.; Carré, I.A.; Bouget, F.-Y. Efficient Gene Targeting and Removal of Foreign DNA by Homologous Recombination in the Picoeukaryote Ostreococcus. Plant. J. 2014, 78, 1073–1083. [Google Scholar] [CrossRef]
- Sanchez, F.; Geffroy, S.; Norest, M.; Yau, S.; Moreau, H.; Grimsley, N. Simplified Transformation of Ostreococcus tauri Using Polyethylene Glycol. Genes 2019, 10, 399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paszkowski, J.; Shillito, R.D.; Saul, M.; Mandák, V.; Hohn, T.; Hohn, B.; Potrykus, I. Direct Gene Transfer to Plants. EMBO J. 1984, 3, 2717–2722. [Google Scholar] [CrossRef] [PubMed]
- Ito, H.; Fukuda, Y.; Murata, K.; Kimura, A. Transformation of Intact Yeast Cells Treated with Alkali Cations. J. Bacteriol. 1983, 153, 163–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bibb, M.J.; Ward, J.M.; Hopwood, D.A. Transformation of Plasmid DNA into Streptomyces at High Frequency. Nature 1978, 274, 398–400. [Google Scholar] [CrossRef]
- Klebe, R.J.; Harriss, J.V.; Sharp, Z.D.; Douglas, M.G. A General Method for Polyethylene-Glycol-Induced Genetic Transformation of Bacteria and Yeast. Gene 1983, 25, 333–341. [Google Scholar] [CrossRef]
- Abel, S.; Theologis, A. Transient Transformation of Arabidopsis Leaf Protoplasts: A Versatile Experimental System to Study Gene Expression. Plant. J. 1994, 5, 421–427. [Google Scholar] [CrossRef]
- Rasmussen, J.O.; Rasmussen, O.S. PEG Mediated DNA Uptake and Transient GUS Expression in Carrot, Rapeseed and Soybean Protoplasts. Plant. Sci. 1993, 89, 199–207. [Google Scholar] [CrossRef]
- Liu, Y.-C.; Vidali, L. Efficient Polyethylene Glycol (PEG) Mediated Transformation of the Moss Physcomitrella patens. J. Vis. Exp. 2011. [Google Scholar] [CrossRef] [Green Version]
- Ohnuma, M.; Yokoyama, T.; Inouye, T.; Sekine, Y.; Tanaka, K. Polyethylene Glycol (PEG)-Mediated Transient Gene Expression in a Red Alga, Cyanidioschyzon merolae 10D. Plant. Cell Physiol. 2008, 49, 117–120. [Google Scholar] [CrossRef]
- Ohnuma, M.; Yokoyama, T.; Inouye, T.; Sekine, Y.; Kuroiwa, T.; Tanaka, K. Optimization of Polyethylene Glycol (PEG)-Mediated DNA Introduction Conditions for Transient Gene Expression in the Unicellular Red Alga Cyanidioschyzon merolae. J. Gen. Appl. Microbiol. 2014, 60, 156–159. [Google Scholar] [CrossRef] [Green Version]
- Kathir, P.; LaVoie, M.; Brazelton, W.J.; Haas, N.A.; Lefebvre, P.A.; Silflow, C.D. Molecular Map of the Chlamydomonas reinhardtii Nuclear Genome. Eukaryot. Cell 2003, 2, 362–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tam, L.W.; Lefebvre, P.A. Cloning of Flagellar Genes in Chlamydomonas reinhardtii by DNA Insertional Mutagenesis. Genetics 1993, 135, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Dent, R.M.; Haglund, C.M.; Chin, B.L.; Kobayashi, M.C.; Niyogi, K.K. Functional Genomics of Eukaryotic Photosynthesis Using Insertional Mutagenesis of Chlamydomonas reinhardtii. Plant. Physiol. 2005, 137, 545–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Ballester, D.; de Montaigu, A.; Higuera, J.J.; Galván, A.; Fernández, E. Functional Genomics of the Regulation of the Nitrate Assimilation Pathway in Chlamydomonas. Plant. Physiol. 2005, 137, 522–533. [Google Scholar] [CrossRef] [Green Version]
- Meslet-Cladière, L.; Vallon, O. A New Method to Identify Flanking Sequence Tags in Chlamydomonas Using 3′-RACE. Plant. Methods 2012, 8, 21. [Google Scholar] [CrossRef] [Green Version]
- González-Ballester, D.; de Montaigu, A.; Galván, A.; Fernández, E. Restriction Enzyme Site-Directed Amplification PCR: A Tool to Identify Regions Flanking a Marker DNA. Anal. Biochem. 2005, 340, 330–335. [Google Scholar] [CrossRef]
- Pollock, S.V.; Mukherjee, B.; Bajsa-Hirschel, J.; Machingura, M.C.; Mukherjee, A.; Grossman, A.R.; Moroney, J.V. A Robust Protocol for Efficient Generation, and Genomic Characterization of Insertional Mutants of Chlamydomonas reinhardtii. Plant. Methods 2017, 13, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Plecenikova, A.; Slaninova, M.; Riha, K. Characterization of DNA Repair Deficient Strains of Chlamydomonas reinhardtii Generated by Insertional Mutagenesis. PLoS ONE 2014, 9, e0105482. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Patena, W.; Armbruster, U.; Gang, S.S.; Blum, S.R.; Jonikas, M.C. High-Throughput Genotyping of Green Algal Mutants Reveals Random Distribution of Mutagenic Insertion Sites and Endonucleolytic Cleavage of Transforming DNA. Plant. Cell 2014, 26, 1398–1409. [Google Scholar] [CrossRef] [Green Version]
- Schouten, H.J.; vande Geest, H.; Papadimitriou, S.; Bemer, M.; Schaart, J.G.; Smulders, M.J.M.; Perez, G.S.; Schijlen, E. Re-Sequencing Transgenic Plants Revealed Rearrangements at T-DNA Inserts, and Integration of a Short T-DNA Fragment, but No Increase of Small Mutations Elsewhere. Plant. Cell Rep. 2017, 36, 493–504. [Google Scholar] [CrossRef] [Green Version]
- Jupe, F.; Rivkin, A.C.; Michael, T.P.; Zander, M.; Motley, S.T.; Sandoval, J.P.; Slotkin, R.K.; Chen, H.; Castanon, R.; Nery, J.R.; et al. The Complex Architecture and Epigenomic Impact of Plant T-DNA Insertions. PLoS Genet. 2019, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Li, Y.; Li, S.; Hu, N.; He, Y.; Pong, R.; Lin, D.; Lu, L.; Law, M. Comparison of Next-Generation Sequencing Systems. Available online: https://www.hindawi.com/journals/bmri/2012/251364/ (accessed on 8 October 2020).
- Guttikonda, S.K.; Marri, P.; Mammadov, J.; Ye, L.; Soe, K.; Richey, K.; Cruse, J.; Zhuang, M.; Gao, Z.; Evans, C.; et al. Molecular Characterization of Transgenic Events Using Next Generation Sequencing Approach. PLoS ONE 2016, 11, e0149515. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Woo, H.-J.; Shin, K.-S.; Lim, M.-H.; Cho, H.-S.; Lee, S.-K. Flanking Sequence and Copy-Number Analysis of Transformation Events by Integrating Next-Generation Sequencing Technology with Southern Blot Hybridization. Plant. Breed. Biotech. 2017, 5, 269–281. [Google Scholar] [CrossRef]
- Abel, H.J.; Duncavage, E.J. Detection of Structural DNA Variation from next Generation Sequencing Data: A Review of Informatic Approaches. Cancer Genet. 2013, 206, 432–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodwin, L.O.; Splinter, E.; Davis, T.L.; Urban, R.; He, H.; Braun, R.E.; Chesler, E.J.; Kumar, V.; van Min, M.; Ndukum, J.; et al. Large-Scale Discovery of Mouse Transgenic Integration Sites Reveals Frequent Structural Variation and Insertional Mutagenesis. Genome Res. 2019, 29, 494–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clerissi, C.; Desdevises, Y.; Grimsley, N. Prasinoviruses of the Marine Green Alga Ostreococcus tauri Are Mainly Species Specific. J. Virol. 2012, 86, 4611–4619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winnepenninckx, B.; Backeljau, T.; De Wachter, R. Extraction of High Molecular Weight DNA from Molluscs. Trends Genet. 1993, 9, 407. [Google Scholar] [CrossRef] [PubMed]
- Kolmogorov, M.; Yuan, J.; Lin, Y.; Pevzner, P.A. Assembly of Long, Error-Prone Reads Using Repeat Graphs. Nat. Biotechnol. 2019, 37, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Zimin, A.V.; Marçais, G.; Puiu, D.; Roberts, M.; Salzberg, S.L.; Yorke, J.A. The MaSuRCA Genome Assembler. Bioinformatics 2013, 29, 2669–2677. [Google Scholar] [CrossRef] [Green Version]
- Zimin, A.V.; Puiu, D.; Luo, M.-C.; Zhu, T.; Koren, S.; Marçais, G.; Yorke, J.A.; Dvořák, J.; Salzberg, S.L. Hybrid Assembly of the Large and Highly Repetitive Genome of Aegilops tauschii, a Progenitor of Bread Wheat, with the MaSuRCA Mega-Reads Algorithm. Genome Res. 2017, 27, 787–792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Durbin, R. Fast and Accurate Short Read Alignment with Burrows-Wheeler Transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanc-Mathieu, R.; Verhelst, B.; Derelle, E.; Rombauts, S.; Bouget, F.-Y.; Carré, I.; Château, A.; Eyre-Walker, A.; Grimsley, N.; Moreau, H.; et al. An Improved Genome of the Model Marine Alga Ostreococcus tauri Unfolds by Assessing Illumina de Novo Assemblies. BMC Genom. 2014, 15, 1103. [Google Scholar] [CrossRef] [Green Version]
- Blanc-Mathieu, R.; Krasovec, M.; Hebrard, M.; Yau, S.; Desgranges, E.; Martin, J.; Schackwitz, W.; Kuo, A.; Salin, G.; Donnadieu, C.; et al. Population Genomics of Picophytoplankton Unveils Novel Chromosome Hypervariability. Sci. Adv. 2017, 3, e1700239. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Wang, C.; Holst-Jensen, A.; Morisset, D.; Lin, Y.; Zhang, D. Characterization of GM Events by Insert Knowledge Adapted Re-Sequencing Approaches. Sci. Rep. 2013, 3, 2839. [Google Scholar] [CrossRef] [Green Version]
- Piganeau, G.; Grimsley, N.; Moreau, H. Genome Diversity in the Smallest Marine Photosynthetic Eukaryotes. Res. Microbiol. 2011, 162, 570–577. [Google Scholar] [CrossRef]
- Subirana, L.; Péquin, B.; Michely, S.; Escande, M.-L.; Meilland, J.; Derelle, E.; Marin, B.; Piganeau, G.; Desdevises, Y.; Moreau, H.; et al. Morphology, Genome Plasticity, and Phylogeny in the Genus Ostreococcus Reveal a Cryptic Species, O. mediterraneus Sp. Nov. (Mamiellales, Mamiellophyceae). Protist 2013, 164, 643–659. [Google Scholar] [CrossRef]
- Yau, S.; Hemon, C.; Derelle, E.; Moreau, H.; Piganeau, G.; Grimsley, N. A Viral Immunity Chromosome in the Marine Picoeukaryote, Ostreococcus tauri. PLoS Pathog. 2016, 12, e1005965. [Google Scholar] [CrossRef] [Green Version]
- Yau, S.; Krasovec, M.; Benites, L.F.; Rombauts, S.; Groussin, M.; Vancaester, E.; Aury, J.-M.; Derelle, E.; Desdevises, Y.; Escande, M.-L.; et al. Virus-Host Coexistence in Phytoplankton through the Genomic Lens. Sci. Adv. 2020, 6, eaay2587. [Google Scholar] [CrossRef] [Green Version]
- Jaehning, J.A. The Paf1 Complex: Platform or Player in RNA Polymerase II Transcription? Biochim. Biophys. Acta 2010, 1799, 379–388. [Google Scholar] [CrossRef] [Green Version]
- Kovács, E.; Keresztes, Á. Effect of Gamma and UV-B/C Radiation on Plant Cells. Micron 2002, 33, 199–210. [Google Scholar] [CrossRef]
- Zhou, B.-B.S.; Elledge, S.J. The DNA Damage Response: Putting Checkpoints in Perspective. Nature 2000, 408, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Sancar, A.; Lindsey-Boltz, L.A.; Unsal-Kaçmaz, K.; Linn, S. Molecular Mechanisms of Mammalian DNA Repair and the DNA Damage Checkpoints. Annu. Rev. Biochem. 2004, 73, 39–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onozawa, M.; Zhang, Z.; Kim, Y.J.; Goldberg, L.; Varga, T.; Bergsagel, P.L.; Kuehl, W.M.; Aplan, P.D. Repair of DNA Double-Strand Breaks by Templated Nucleotide Sequence Insertions Derived from Distant Regions of the Genome. Proc. Natl. Acad. Sci. USA 2014, 111, 7729–7734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pâques, F.; Haber, J.E. Multiple Pathways of Recombination Induced by Double-Strand Breaks in Saccharomyces Cerevisiae. Microbiol. Mol. Biol Rev. 1999, 63, 349–404. [Google Scholar] [CrossRef] [Green Version]
- Shrivastav, M.; De Haro, L.P.; Nickoloff, J.A. Regulation of DNA Double-Strand Break Repair Pathway Choice. Cell Res. 2008, 18, 134–147. [Google Scholar] [CrossRef] [Green Version]
- Nagaria, P.; Robert, C.; Rassool, F.V. DNA Double-Strand Break Response in Stem Cells: Mechanisms to Maintain Genomic Integrity. Biochim. Biophys. Acta 2013, 1830, 2345–2353. [Google Scholar] [CrossRef]
- Mayerhofer, R.; Koncz-Kalman, Z.; Nawrath, C.; Bakkeren, G.; Crameri, A.; Angelis, K.; Redei, G.P.; Schell, J.; Hohn, B.; Koncz, C. T-DNA Integration: A Mode of Illegitimate Recombination in Plants. EMBO J. 1991, 10, 697–704. [Google Scholar] [CrossRef]
- Cenkci, B.; Petersen, J.L.; Small, G.D. REX1, a Novel Gene Required for DNA Repair. J. Biol. Chem. 2003, 278, 22574–22577. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, N.; Lemaire, S.; Wu-Scharf, D.; Issakidis-Bourguet, E.; Cerutti, H. Functional Specialization of Chlamydomonas reinhardtii Cytosolic Thioredoxin H1 in the Response to Alkylation-Induced DNA Damage. Eukaryot. Cell 2005, 4, 262–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boiteux, S.; Guillet, M. Abasic Sites in DNA: Repair and Biological Consequences in Saccharomyces cerevisiae. DNA Repair 2004, 3, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kelley, M.R.; Kow, Y.W.; Wilson, D.M. Disparity between DNA Base Excision Repair in Yeast and Mammals: Translational Implications. Cancer Res. 2003, 63, 549–554. [Google Scholar] [PubMed]
- Heitzeberg, F.; Chen, I.-P.; Hartung, F.; Orel, N.; Angelis, K.J.; Puchta, H. The Rad17 Homologue of Arabidopsis Is Involved in the Regulation of DNA Damage Repair and Homologous Recombination. Plant. J. 2004, 38, 954–968. [Google Scholar] [CrossRef]
- Van Kregten, M.; de Pater, S.; Romeijn, R.; van Schendel, R.; Hooykaas, P.J.J.; Tijsterman, M. T-DNA Integration in Plants Results from Polymerase-θ-Mediated DNA Repair. Nat. Plants 2016, 2, 1–6. [Google Scholar] [CrossRef]
- Gallego, M.E.; Bleuyard, J.-Y.; Daoudal-Cotterell, S.; Jallut, N.; White, C.I. Ku80 Plays a Role in Non-Homologous Recombination but Is Not Required for T-DNA Integration in Arabidopsis. Plant. J. 2003, 35, 557–565. [Google Scholar] [CrossRef]
- Friesner, J.; Britt, A.B. Ku80- and DNA Ligase IV-Deficient Plants Are Sensitive to Ionizing Radiation and Defective in T-DNA Integration. Plant. J. 2003, 34, 427–440. [Google Scholar] [CrossRef] [Green Version]
- van Attikum, H.; Bundock, P.; Hooykaas, P.J. Non-Homologous End-Joining Proteins Are Required for Agrobacterium T-DNA Integration. EMBO J. 2001, 20, 6550–6558. [Google Scholar] [CrossRef] [Green Version]
- Daley, J.M.; Palmbos, P.L.; Wu, D.; Wilson, T.E. Nonhomologous End Joining in Yeast. Annu. Rev. Genet. 2005, 39, 431–451. [Google Scholar] [CrossRef]
- Van Bel, M.; Diels, T.; Vancaester, E.; Kreft, L.; Botzki, A.; Van de Peer, Y.; Coppens, F.; Vandepoele, K. PLAZA 4.0: An Integrative Resource for Functional, Evolutionary and Comparative Plant Genomics. Nucleic Acids Res. 2018, 46, D1190–D1196. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, M.; Ohnishi, S.; Ito, T. Osmoelastic Coupling in Biological Structures: Decrease in Membrane Fluidity and Osmophobic Association of Phospholipid Vesicles in Response to Osmotic Stress. Biochemistry 1989, 28, 3710–3715. [Google Scholar] [CrossRef] [PubMed]
- Kawai, S.; Phan, T.A.; Kono, E.; Harada, K.; Okai, C.; Fukusaki, E.; Murata, K. Transcriptional and Metabolic Response in Yeast Saccharomyces cerevisiae Cells during Polyethylene Glycol-Dependent Transformation. J. Basic Microbiol. 2009, 49, 73–81. [Google Scholar] [CrossRef]
- D’souza, A.A.; Shegokar, R. Polyethylene Glycol (PEG): A Versatile Polymer for Pharmaceutical Applications. Expert Opin. Drug Deliv. 2016, 13, 1257–1275. [Google Scholar] [CrossRef] [PubMed]
- Hansen, G.; Wright, M.S. Recent Advances in the Transformation of Plants. Trends Plant. Sci. 1999, 4, 226–231. [Google Scholar] [CrossRef]
- Yau, S.; Caravello, G.; Fonvieille, N.; Desgranges, É.; Moreau, H.; Grimsley, N. Rapidity of Genomic Adaptations to Prasinovirus Infection in a Marine Microalga. Viruses 2018, 10, 441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Does, M.P.; Dekker, B.M.; de Groot, M.J.; Offringa, R. A Quick Method to Estimate the T-DNA Copy Number in Transgenic Plants at an Early Stage after Transformation, Using Inverse PCR. Plant. Mol. Biol. 1991, 17, 151–153. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.V.; Misquitta, R.W.; Reddy, V.S.; Rao, B.J.; Rajam, M.V. Genetic Transformation of the Green Alga—Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant. Sci. 2004, 166, 731–738. [Google Scholar] [CrossRef]
- Gan, L.; Ladinsky, M.S.; Jensen, G.J. Chromatin in a Marine Picoeukaryote Is a Disordered Assemblage of Nucleosomes. Chromosoma 2013, 122, 377–386. [Google Scholar] [CrossRef] [Green Version]
- Radakovits, R.; Jinkerson, R.E.; Fuerstenberg, S.I.; Tae, H.; Settlage, R.E.; Boore, J.L.; Posewitz, M.C. Draft Genome Sequence and Genetic Transformation of the Oleaginous Alga Nannochloropsis gaditana. Nat. Commun. 2012, 3, 686. [Google Scholar] [CrossRef] [Green Version]
- Scranton, M.A.; Ostrand, J.T.; Fields, F.J.; Mayfield, S.P. Chlamydomonas as a Model for Biofuels and Bio-Products Production. Plant. J. 2015, 82, 523–531. [Google Scholar] [CrossRef] [Green Version]
- Das, S.K.; Sathish, A.; Stanley, J. Production of Biofuel and Bioplastic from Chlorella pyrenoidosa. Mater. Today Proc. 2018, 5, 16774–16781. [Google Scholar] [CrossRef]
- Smallwood, C.R.; Chrisler, W.; Chen, J.-H.; Patello, E.; Thomas, M.; Boudreau, R.; Ekman, A.; Wang, H.; McDermott, G.; Evans, J.E. Ostreococcus tauri Is a High-Lipid Content Green Algae That Extrudes Clustered Lipid Droplets. bioRxiv 2018, 249052. [Google Scholar] [CrossRef] [Green Version]
- Goff, M.L.; Delbrut, A.; Quinton, M.; Pradelles, R.; Bescher, M.; Burel, A.; Schoefs, B.; Sergent, O.; Lagadic-Gossmann, D.; Ferrec, E.L.; et al. Protective Action of Ostreococcus tauri and Phaeodactylum tricornutum Extracts towards Benzo[a]Pyrene-Induced Cytotoxicity in Endothelial Cells. Mar. Drugs 2019, 18, 3. [Google Scholar] [CrossRef] [Green Version]
- Sunagawa, S.; Coelho, L.P.; Chaffron, S.; Kultima, J.R.; Labadie, K.; Salazar, G.; Djahanschiri, B.; Zeller, G.; Mende, D.R.; Alberti, A.; et al. Structure and Function of the Global Ocean Microbiome. Science 2015, 348. [Google Scholar] [CrossRef] [Green Version]
- Leconte, J.; Benites, L.F.; Vannier, T.; Wincker, P.; Piganeau, G.; Jaillon, O. Genome Resolved Biogeography of Mamiellales. Genes 2020, 11, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demory, D.; Baudoux, A.-C.; Monier, A.; Simon, N.; Six, C.; Ge, P.; Rigaut-Jalabert, F.; Marie, D.; Sciandra, A.; Bernard, O.; et al. Picoeukaryotes of the Micromonas Genus: Sentinels of a Warming Ocean. ISME J. 2019, 13, 132–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaum, C.-E.; Rost, B.; Collins, S. Environmental Stability Affects Phenotypic Evolution in a Globally Distributed Marine Picoplankton. ISME J. 2016, 10, 75–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Clones | Total Raw Reads | Total Lengths of the Mapped Reads (bp) | Average Genome Coverage * (×) | Read Pairs Mapped | Proper Pairs Mapped | Mapped Reads ** (%) | Average Insert Size |
---|---|---|---|---|---|---|---|
NT1 | 90,144,988 | 9,104,643,788 | 617 | 62,018,612 | 61,681,022 | 68.8 | 249.7 |
NT10 | 98,800,514 | 9,978,851,914 | 676 | 75,700,644 | 75,183,524 | 76.6 | 275.3 |
T3 | 122,387,308 | 12,361,118,108 | 837 | 112,843,908 | 111,677,142 | 92.2 | 267.5 |
T6 | 75,540,256 | 7,629,565,856 | 517 | 70,533,906 | 69,873,506 | 93.4 | 265.7 |
T12 | 86,367,696 | 8,723,137,296 | 591 | 66,928,772 | 66,494,262 | 77.5 | 250.1 |
T14 | 79,501,816 | 8,029,683,416 | 544 | 66,065,344 | 65,680,576 | 83.1 | 260.7 |
T16 | 100,660,452 | 10,166,705,652 | 688 | 85,058,636 | 84,481,042 | 84.5 | 277.6 |
Clone | Sequence Feature | Total Lengths of the Mapped Reads (bp) | Average Coverage* (×) | Average Copy Number ** |
---|---|---|---|---|
T3 | Vector G418 gene | 680,437 | 841 | 1.01 |
Housekeeping gene | 2,944,554 | 835 | ||
T6 | Vector G418 gene | 441,673 | 546 | 1.06 |
Housekeeping gene | 1,813,960 | 514 | ||
T12 | Vector G418 gene | 1,833,049 | 2266 | 4.68 |
Housekeeping gene | 1,707,102 | 484 | ||
T14 | Vector G418 gene | 389,557 | 482 | 0.99 |
Housekeeping gene | 1,718,919 | 487 | ||
T16 | Vector G418 gene | 512,979 | 634 | 1.04 |
Housekeeping gene | 2,143,927 | 608 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomy, J.; Sanchez, F.; Gut, M.; Cruz, F.; Alioto, T.; Piganeau, G.; Grimsley, N.; Yau, S. Combining Nanopore and Illumina Sequencing Permits Detailed Analysis of Insertion Mutations and Structural Variations Produced by PEG-Mediated Transformation in Ostreococcus tauri. Cells 2021, 10, 664. https://doi.org/10.3390/cells10030664
Thomy J, Sanchez F, Gut M, Cruz F, Alioto T, Piganeau G, Grimsley N, Yau S. Combining Nanopore and Illumina Sequencing Permits Detailed Analysis of Insertion Mutations and Structural Variations Produced by PEG-Mediated Transformation in Ostreococcus tauri. Cells. 2021; 10(3):664. https://doi.org/10.3390/cells10030664
Chicago/Turabian StyleThomy, Julie, Frederic Sanchez, Marta Gut, Fernando Cruz, Tyler Alioto, Gwenael Piganeau, Nigel Grimsley, and Sheree Yau. 2021. "Combining Nanopore and Illumina Sequencing Permits Detailed Analysis of Insertion Mutations and Structural Variations Produced by PEG-Mediated Transformation in Ostreococcus tauri" Cells 10, no. 3: 664. https://doi.org/10.3390/cells10030664
APA StyleThomy, J., Sanchez, F., Gut, M., Cruz, F., Alioto, T., Piganeau, G., Grimsley, N., & Yau, S. (2021). Combining Nanopore and Illumina Sequencing Permits Detailed Analysis of Insertion Mutations and Structural Variations Produced by PEG-Mediated Transformation in Ostreococcus tauri. Cells, 10(3), 664. https://doi.org/10.3390/cells10030664