Proteogenomics Reveals Orthologous Alternatively Spliced Proteoforms in the Same Human and Mouse Brain Regions with Differential Abundance in an Alzheimer’s Disease Mouse Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protein Sequence Database Setup
2.2. Database Search
2.3. Gene Orthology Assessment
2.4. Identification of AS Variants in Public RNA-Seq Data
2.5. Collection of Animal Samples
2.6. Quantitative Reverse Transcription Polymerase Chain Reaction (RT-qPCR)
3. Results
3.1. Protein Sequence Database Setup
3.2. Database Search and Orthology Assessment
3.3. Identification of AS Variants at the Transcriptome Level
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nesvizhskii, A.I. Proteogenomics: Concepts, applications and computational strategies. Nat. Methods 2014, 11, 1114–1125. [Google Scholar] [CrossRef]
- Verheggen, K.; Raeder, H.; Berven, F.S.; Martens, L.; Barsnes, H.; Vaudel, M. Anatomy and evolution of database search engines-a central component of mass spectrometry based proteomic workflows. Mass Spectrom. Rev. 2017. [Google Scholar] [CrossRef] [Green Version]
- Pathan, M.; Samuel, M.; Keerthikumar, S.; Mathivanan, S. Unassigned MS/MS Spectra: Who Am I? In Proteome Bioinformatics; Springer Nature: Cham, Switzerland, 2017; Volume 1549, pp. 67–74. ISBN 9781493967407. [Google Scholar]
- Sheynkman, G.M.; Shortreed, M.R.; Cesnik, A.J.; Smith, L.M. Proteogenomics: Integrating Next-Generation Sequencing and Mass Spectrometry to Characterize Human Proteomic Variation. Annu. Rev. Anal. Chem. 2016, 9, 521–545. [Google Scholar] [CrossRef] [Green Version]
- Smith, L.M.; Kelleher, N.L. Proteoform: A single term describing protein complexity. Nat. Methods 2013, 10, 186–187. [Google Scholar] [CrossRef] [Green Version]
- Proudfoot, N.J.; Furger, A.; Dye, M.J. Integrating mRNA processing with transcription. Cell 2002, 108, 501–512. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, J.; Huang, B.; Xu, Y.-M.; Li, J.; Huang, L.-F.; Lin, J.; Zhang, J.; Min, Q.-H.; Yang, W.-M.; et al. Mechanism of alternative splicing and its regulation. Biomed. Rep. 2015, 3, 152–158. [Google Scholar] [CrossRef] [Green Version]
- Pan, Q.; Shai, O.; Lee, L.J.; Frey, B.J.; Blencowe, B.J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 2008, 40, 1413–1415. [Google Scholar] [CrossRef]
- Blencowe, B.J. The Relationship between Alternative Splicing and Proteomic Complexity. Trends Biochem. Sci. 2017, 42, 407–408. [Google Scholar] [CrossRef] [Green Version]
- Tapial, J.; Ha, K.C.H.; Sterne-Weiler, T.; Gohr, A.; Braunschweig, U.; Hermoso-Pulido, A.; Quesnel-Vallières, M.; Permanyer, J.; Sodaei, R.; Marquez, Y.; et al. An atlas of alternative splicing profiles and functional associations reveals new regulatory programs and genes that simultaneously express multiple major isoforms. Genome Res. 2017, 27, 1759–1768. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, J.M.; Pozo, F.; Di Domenico, T.; Vazquez, J.; Tress, M.L. An analysis of tissue-specific alternative splicing at the protein level. PLoS Comput. Biol. 2020, 16, 1–24. [Google Scholar] [CrossRef]
- Makeyev, E.V.; Zhang, J.; Carrasco, M.A.; Maniatis, T. The MicroRNA miR-124 Promotes Neuronal Differentiation by Triggering Brain-Specific Alternative Pre-mRNA Splicing. Mol. Cell 2007, 27, 435–448. [Google Scholar] [CrossRef] [Green Version]
- Lipscombe, D. Neuronal proteins custom designed by alternative splicing. Curr. Opin. Neurobiol. 2005, 15, 358–363. [Google Scholar] [CrossRef]
- Furlanis, E.; Traunmüller, L.; Fucile, G.; Scheiffele, P. Landscape of ribosome-engaged transcript isoforms reveals extensive neuronal-cell-class-specific alternative splicing programs. Nat. Neurosci. 2019, 22, 1709–1717. [Google Scholar] [CrossRef]
- Yano, M.; Hayakawa-Yano, Y.; Mele, A.; Darnell, R.B. Nova2 Regulates Neuronal Migration through an RNA Switch in Disabled-1 Signaling. Neuron 2010, 66, 848–858. [Google Scholar] [CrossRef] [Green Version]
- Gehman, L.T.; Stoilov, P.; Maguire, J.; Damianov, A.; Lin, C.-H.; Shiue, L.; Ares, M.; Mody, I.; Black, D.L. The splicing regulator Rbfox1 (A2BP1) controls neuronal excitation in the mammalian brain. Nat. Genet. 2011, 43, 706–711. [Google Scholar] [CrossRef]
- Iijima, T.; Wu, K.; Witte, H.; Hanno-Iijima, Y.; Glatter, T.; Richard, S.; Scheiffele, P. SAM68 Regulates Neuronal Activity-Dependent Alternative Splicing of Neurexin-1. Cell 2011, 147, 1601–1614. [Google Scholar] [CrossRef] [Green Version]
- Aranda-Abreu, G.E.; Hernández Aguilar, M.E.; Durán, F.R.; Mestizo Gutiérrez, S.L.; Denes, J.M. Alternative Splicing in Alzheimer’s Disease. J. Park. Dis. Alzheimer’s Dis. 2015, 2, 39–50. [Google Scholar] [CrossRef]
- Merkin, J.; Russell, C.; Chen, P.; Burge, C.B. Evolutionary dynamics of gene and isoform regulation in Mammalian tissues. Science 2012, 338, 1593–1599. [Google Scholar] [CrossRef] [Green Version]
- Meyer, N.; Richter, N.; Fan, Z.; Siemonsmeier, G.; Pivneva, T.; Jordan, P.; Steinhäuser, C.; Semtner, M.; Nolte, C.; Kettenmann, H. Oligodendrocytes in the Mouse Corpus Callosum Maintain Axonal Function by Delivery of Glucose. Cell Rep. 2018, 22, 2455–2468. [Google Scholar] [CrossRef] [Green Version]
- Lodovichi, C.; Belluscio, L.; Katz, L.C. Functional topography of connections linking mirror-symmetric maps in the mouse olfactory bulb. Neuron 2003, 38, 265–276. [Google Scholar] [CrossRef] [Green Version]
- Ardekani, B.A.; Bachman, A.H.; Figarsky, K.; Sidtis, J.J. Corpus callosum shape changes in early Alzheimer’s disease: An MRI study using the OASIS brain database. Brain Struct. Funct. 2014, 219, 343–352. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Yang, H.; Tang, X. Deformation-based Statistical Shape Analysis of the Corpus Callosum in Mild Cognitive Impairment and Alzheimer’s Disease. Curr. Alzheimer Res. 2018, 1151–1160. [Google Scholar] [CrossRef]
- Biegon, A.; Richardson, B.C.; Selection, S. Human Corpus Callosum in Aging and Alzheimer’s Disease: A Magnetic Resonance Imaging Study. Neurobiol. Aging 1994, 15, 393–397. [Google Scholar] [CrossRef]
- Kaye, A.; Carper, R.A. Atrophy of the Corpus Callosum in Alzheimer’ s Disease Versus Healthy Aging. J. Am. Geriatr. Soc. 1996, 44, 798–803. [Google Scholar]
- Thomann, P.A.; Wüstenberg, T.; Pantel, J.; Essig, M.; Schröder, J. Structural changes of the corpus callosum in mild cognitive impairment and Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 2006, 21, 215–220. [Google Scholar] [CrossRef]
- Teipel, S.J.; Bayer, W.; Alexander, G.E.; Zebuhr, Y.; Teichberg, D.; Kulic, L.; Schapiro, M.B.; Möller, H.J.; Rapoport, S.I.; Hampel, H. Progression of corpus callosum atrophy in Alzheimer disease. Arch. Neurol. 2002, 59, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Chaim, T.M.; Duran, F.L.S.; Uchida, R.R.; Périco, C.A.M.; de Castro, C.C.; Busatto, G.F. Volumetric reduction of the corpus callosum in Alzheimer’ s disease in vivo as assessed with voxel-based morphometry. Psychiatry Res. Neuroimaging 2007, 154, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Ohm, T.G.; Braak, H. Olfactory bulb changes in Alzheimer’s disease. Acta Neuropathol. 1987, 73, 365–369. [Google Scholar] [CrossRef]
- Esiri, M.M.; Wilcock, G.K. The olfactory bulbs in Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 1984, 47, 56–60. [Google Scholar] [CrossRef] [Green Version]
- Struble, R.G.; Clark, H.B. Olfactory bulb lesions in alzheimer’s disease. Neurobiol. Aging 1992, 13, 469–473. [Google Scholar] [CrossRef]
- Lachén-montes, M.; González-morales, A.; Zelaya, M.V.; Pérez-valderrama, E.; Ausín, K.; Ferrer, I.; Fernández-irigoyen, J. Olfactory bulb neuroproteomics reveals a chronological perturbation of survival routes and a disruption of prohibitin complex during Alzheimer’ s disease progression. Sci. Rep. 2017, 1–15. [Google Scholar] [CrossRef]
- Treuting, P.M.; Dintzis, S.M.; Montine, K.S. Comparative Anatomy and Histology; Elsevier Inc.: Amsterdam, The Netherlands, 2012; ISBN 9780123813619. [Google Scholar]
- Perez-Riverol, Y.; Alpi, E.; Wang, R.; Hermjakob, H.; Vizcaíno, J.A. Making proteomics data accessible and reusable: Current state of proteomics databases and repositories. Proteomics 2015, 15, 930–950. [Google Scholar] [CrossRef] [Green Version]
- Tavares, R.; de Miranda Scherer, N.; Pauletti, B.A.; Araújo, E.; Folador, E.L.; Espindola, G.; Ferreira, C.G.; Paes Leme, A.F.; de Oliveira, P.S.L.; Passetti, F. SpliceProt: A protein sequence repository of predicted human splice variants. Proteomics 2014, 14, 181–185. [Google Scholar] [CrossRef]
- Yates, A.D.; Achuthan, P.; Akanni, W.; Allen, J.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Azov, A.G.; Bennett, R.; et al. Ensembl 2020. Nucleic Acids Res. 2019, 48, 682–688. [Google Scholar] [CrossRef]
- Hsu, M.K.; Lin, H.Y.; Chen, F.C. NMD Classifier: A reliable and systematic classification tool for nonsense-mediated decay events. PLoS ONE 2017, 12, e0174798. [Google Scholar] [CrossRef] [PubMed]
- Bateman, A. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2019, 47, D506–D515. [Google Scholar] [CrossRef] [Green Version]
- Tavares, R.; Wajnberg, G.; de Miranda Scherer, N.; Pauletti, B.A.; Cassoli, J.S.; Ferreira, C.G.; Paes Leme, A.F.; de Araujo-Souza, P.S.; Martins-de-Souza, D.; Passetti, F. Unveiling alterative splice diversity from human oligodendrocyte proteome data. J. Proteom. 2017, 151, 293–301. [Google Scholar] [CrossRef]
- Rice, P.; Longden, I.; Bleasby, A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 2000, 16, 276–277. [Google Scholar] [CrossRef]
- Uniprot What Is the Canonical Sequence? Are all Isoforms Described in One Entry? Available online: https://www.uniprot.org/help/canonical_and_isoforms (accessed on 10 December 2020).
- Kempf, S.J.; Metaxas, A.; Ibáñez-Vea, M.; Darvesh, S.; Finsen, B.; Larsen, M.R. An integrated proteomics approach shows synaptic plasticity changes in an APP/PS1 Alzheimer’s mouse model. Oncotarget 2016, 7, 33627–33648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, P.C.; Lima, D.B.; Leprevost, F.V.; Santos, M.D.M.; Fischer, J.S.G.; Aquino, P.F.; Moresco, J.J.; Yates, J.R.; Barbosa, V.C. Integrated analysis of shotgun proteomic data with PatternLab for proteomics 4.0. Nat. Protoc. 2016, 11, 102–117. [Google Scholar] [CrossRef]
- Martins-De-Souza, D.; Carvalho, P.C.; Schmitt, A.; Junqueira, M.; Nogueira, F.C.S.S.; Turck, C.W.; Domont, G.B. Deciphering the human brain proteome: Characterization of the anterior temporal lobe and corpus callosum as part of the chromosome 15-centric human proteome project. J. Proteome Res. 2014, 13, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Dammalli, M.; Dey, G.; Madugundu, A.K.; Kumar, M.; Rodrigues, B.; Gowda, H.; Siddaiah, B.G.; Mahadevan, A.; Shankar, S.K.; Prasad, T.S.K. Proteomic Analysis of the Human Olfactory Bulb. Omics A J. Integr. Biol. 2017, 21, 440–453. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Schmitt, S.; Bergner, C.G.; Tyanova, S.; Kannaiyan, N.; Manrique-Hoyos, N.; Kongi, K.; Cantuti, L.; Hanisch, U.-K.; Philips, M.-A.; et al. Cell type– and brain region–resolved mouse brain proteome. Nat. Neurosci. 2015, 18, 1819–1831. [Google Scholar] [CrossRef]
- Kruegger, F. Babraham Bioinformatics—Trim Galore! Available online: https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ (accessed on 10 August 2020).
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patro, R.; Duggal, G.; Love, M.I.; Irizarry, R.A.; Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 2017, 14, 417–419. [Google Scholar] [CrossRef] [Green Version]
- Trapnell, C.; Williams, B.A.; Pertea, G.; Mortazavi, A.; Kwan, G.; Van Baren, M.J.; Salzberg, S.L.; Wold, B.J.; Pachter, L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 2010, 28, 511–515. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Bhattacharya, A. Proteotypic Peptides. In Encyclopedia of Systems Biology; Dubitzky, W., Wolkenhauer, O., Cho, K.-H., Yokota, H., Eds.; Springer: New York, NY, USA, 2013; p. 1800. ISBN 978-1-4419-9863-7. [Google Scholar]
- Saito, E.R.; Miller, J.B.; Harari, O.; Cruchaga, C.; Mihindukulasuriya, K.A.; Kauwe, J.S.K.; Bikman, B.T. Alzheimer’s disease alters oligodendrocytic glycolytic and ketolytic gene expression. Alzheimer’s Dement. 2021, 1–13. [Google Scholar] [CrossRef]
- Chaudhary, A.; Kushwah, S.; Maurya, N.S.; Mani, A. Insights from RNA-Seq analysis of Alzheimer’s data suggest upregulation of GPCRs. Gene Rep. 2020, 21, 100921. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, K.; Tan, H.; Wu, Z.; Cho, J.H.; Han, X.; Sun, H.; Beach, T.G.; Peng, J. 27-Plex Tandem Mass Tag Mass Spectrometry for Profiling Brain Proteome in Alzheimer’s Disease. Anal. Chem. 2020, 92, 7162–7170. [Google Scholar] [CrossRef]
- Sathe, G.; Albert, M.; Darrow, J.; Saito, A.; Troncoso, J.; Pandey, A.; Moghekar, A. Quantitative proteomic analysis of the frontal cortex in Alzheimer’s disease. J. Neurochem. 2021, 156, 988–1002. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Karani, R.; Turner, R.L.; Dufresne, C.; Ferri, S.; Van Eyk, J.E.; Semba, R.D. The proteome of normal human retrobulbar optic nerve and sclera. Proteomics 2016, 16, 2592–2596. [Google Scholar] [CrossRef]
- Mcbride, A.; Chau, T.T.H.; Hong, N.T.T.; Mai, N.T.H.; Anh, N.T.; Thanh, T.T.; Van, T.T.H.; Xuan, L.T.; Sieu, T.P.M.; Thai, L.H.; et al. Angiostrongylus cantonensis is an important cause of eosinophilic meningitis in Southern Vietnam. Clin. Infect. Dis. 2017, 64, 1784–1787. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.; Tang, Q.; Maul, G.G.; Yuan, Y. Kaposi’s Sarcoma-Associated Herpesvirus ori-Lyt-Dependent DNA Replication: Involvement of Host Cellular Factors. J. Virol. 2008, 82, 2867–2882. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Bansal, G.; Narang, A.; Basak, T.; Abbas, T.; Dash, D. Integrating transcriptome and proteome profiling: Strategies and applications. Proteomics 2016, 16, 2533–2544. [Google Scholar] [CrossRef] [PubMed]
- Hamajima, N.; Matsuda, K.; Sakata, S.; Tamaki, N.; Sasaki, M.; Nonaka, M. A novel gene family defined by human dihydropyrimidinase and three related proteins with differential tissue distribution. Gene 1996, 180, 157–163. [Google Scholar] [CrossRef]
- Minturn, J.E.; Fryer, H.J.L.; Geschwind, D.H.; Hockfield, S. TOAD-64, a gene expressed early in neuronal differentiation in the rat, is related to unc-33, a C. elegans gene involved in axon outgrowth. J. Neurosci. 1995, 15, 6757–6766. [Google Scholar] [CrossRef]
- Goshima, Y.; Nakamura, F.; Strittmatter, P.; Strittmatter, S.M. Collapsin-induced growth cone collapse mediated by an intracellular protein related to UNC-33. Nature 1995, 376, 509–514. [Google Scholar] [CrossRef]
- Makihara, H.; Nakai, S.; Ohkubo, W.; Yamashita, N.; Nakamura, F.; Kiyonari, H.; Shioi, G.; Jitsuki-Takahashi, A.; Nakamura, H.; Tanaka, F.; et al. CRMP1 and CRMP2 have synergistic but distinct roles in dendritic development. Genes Cells 2016, 21, 994–1005. [Google Scholar] [CrossRef] [Green Version]
- McLean, C.K.; Narayan, S.; Lin, S.Y.; Rai, N.; Chung, Y.; Hipolito, M.M.S.; Cascella, N.G.; Nurnberger, J.I.; Ishizuka, K.; Sawa, A.S.; et al. Lithium-associated transcriptional regulation of CRMP1 in patient-derived olfactory neurons and symptom changes in bipolar disorder. Transl. Psychiatry 2018, 8. [Google Scholar] [CrossRef]
- Luo, J.; Zeng, K.; Zhang, C.; Fang, M.; Zhang, X.; Zhu, Q.; Wang, L.; Wang, W.; Wang, X.; Chen, G. Down-regulation of CRMP-1 in patients with epilepsy and a rat model. Neurochem. Res. 2012, 37, 1381–1391. [Google Scholar] [CrossRef]
- Qin, L.; Liu, X.; Liu, S.; Liu, Y.; Yang, Y.; Yang, H.; Chen, Y.; Chen, L. Differentially expressed proteins underlying childhood cortical dysplasia with epilepsy identified by iTRAQ proteomic profiling. PLoS ONE 2017, 12, e0172214. [Google Scholar] [CrossRef]
- Pan, S.H.; Chao, Y.C.; Chen, H.Y.; Hung, P.F.; Lin, P.Y.; Lin, C.W.; Chang, Y.L.; Wu, C.T.; Lee, Y.C.; Yang, S.C.; et al. Long form collapsin response mediator protein-1 (LCRMP-1) expression is associated with clinical outcome and lymph node metastasis in non-small cell lung cancer patients. Lung Cancer 2010, 67, 93–100. [Google Scholar] [CrossRef]
- Pan, S.; Chao, Y.; Hung, P.; Chen, H.; Yang, S. The ability of LCRMP-1 to promote cancer invasion by enhancing filopodia formation is antagonized by CRMP-1. J. Clin. Investig. 2011, 121, 3189–3205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, F.E.I.; Thiele, C.J.; Li, Z. Collapsin response mediator proteins: Potential diagnostic and prognostic biomarkers in cancers (Review). Oncol. Lett. 2014, 1, 1333–1340. [Google Scholar] [CrossRef]
- Furuno, T.; Ito, A.; Koma, Y.; Watabe, K.; Yokozaki, H.; Bienenstock, J.; Nakanishi, M.; Kitamura, Y. The Spermatogenic Ig Superfamily/Synaptic Cell Adhesion Molecule Mast-Cell Adhesion Molecule Promotes Interaction with Nerves. J. Immunol. 2005, 174, 6934–6942. [Google Scholar] [CrossRef] [Green Version]
- Biederer, T.; Sara, Y.; Mozhayeva, M.; Atasoy, D.; Liu, X.; Kavalali, E.T.; Südhof, T.C. SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science 2002, 297, 1525–1531. [Google Scholar] [CrossRef] [Green Version]
- Moiseeva, E.P.; Leyland, M.L.; Bradding, P. CADM1 isoforms differentially regulate human mast cell survival and homotypic adhesion. Cell. Mol. Life Sci. 2012, 69, 2751–2764. [Google Scholar] [CrossRef] [Green Version]
- Moiseeva, E.P.; Leyland, M.L.; Bradding, P. CADM1 is expressed as multiple alternatively spliced functional and dysfunctional isoforms in human mast cells. Mol. Immunol. 2013, 53, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Fujita, E.; Soyama, A.; Momoi, T. RA175, which is the mouse ortholog of TSLC1, a tumor suppressor gene in human lung cancer, is a cell adhesion molecule. Exp. Cell Res. 2003, 287, 57–66. [Google Scholar] [CrossRef]
- Kawakami, T.; Kawakami, Y.; Kitaura, J. Protein kinase Cβ (PKCβ): Nomal functions and dieases. J. Biochem. 2002, 132, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Ono, Y.; Kurokawa, T.; Fujii, T.; Kawahara, K.; Igarashi, K.; Kikkawa, U.; Ogita, K.; Nishizuka, Y. Two types of complementary DNAs of rat brain protein kinase C. Heterogeneity determined by alternative splicing. FEBS Lett. 1986, 206, 347–352. [Google Scholar] [CrossRef] [Green Version]
- Hung, A.Y.; Haass, C.; Nitsch, R.M.; Wei, Q.Q.; Citron, M.; Wurtman, R.J.; Growdon, J.H.; Selkoe, D.J. Activation of protein kinase C inhibits cellular production of the amyloid β-protein. J. Biol. Chem. 1993, 268, 22959–22962. [Google Scholar] [CrossRef]
- Gerschütz, A.; Heinsen, H.; Grünblatt, E.; Wagner, A.K.; Bartl, J.; Meissner, C.; Fallgatter, A.J.; Al-Sarraj, S.; Troakes, C.; Ferrer, I.; et al. Neuron-specific alterations in signal transduction pathways associated with Alzheimer’s Disease. J. Alzheimer’s Dis. 2014, 40, 135–142. [Google Scholar] [CrossRef]
- Zhou, Z.; Chen, F.; Zhong, S.; Zhou, Y.; Zhang, R.; Kang, K.; Zhang, X.; Xu, Y.; Zhao, M.; Zhao, C. Molecular identification of protein kinase C beta in Alzheimer’s disease. Aging Albany NY 2020, 12, 21798–21808. [Google Scholar] [CrossRef]
- Folci, A.; Mapelli, L.; Sassone, J.; Prestori, F.; D’Angelo, E.; Bassani, S.; Passafaro, M. Loss of hnRNP K impairs synaptic plasticity in hippocampal neurons. J. Neurosci. 2014, 34, 9088–9095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hutchins, E.J.; Szaro, B.G. C-jun N-terminal kinase phosphorylation of heterogeneous nuclear ribonucleoprotein K regulates vertebrate axon outgrowth via a posttranscriptional mechanism. J. Neurosci. 2013, 33, 14666–14680. [Google Scholar] [CrossRef] [Green Version]
- Au, P.Y.B.; You, J.; Caluseriu, O.; Schwartzentruber, J.; Majewski, J.; Bernier, F.P.; Ferguson, M.; Valle, D.; Parboosingh, J.S.; Sobreira, N.; et al. GeneMatcher Aids in the Identification of a New Malformation Syndrome with Intellectual Disability, Unique Facial Dysmorphisms, and Skeletal and Connective Tissue Abnormalities Caused by De Novo Variants in HNRNPK. Hum. Mutat. 2015, 36, 1009–1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, Y.; Nagata, K.; Suzuki, N.; Yokoyama, R.; Yamanaka, Y.; Kitamura, H.; Hirano, H.; Ohara, O. Characterization of multiple alternative forms of heterogeneous nuclear ribonucleoprotein K by phosphate-affinity electrophoresis. Proteomics 2010, 10, 3884–3895. [Google Scholar] [CrossRef]
- Barboro, P.; Ferrari, N.; Balbi, C. Emerging roles of heterogeneous nuclear ribonucleoprotein K (hnRNP K) in cancer progression. Cancer Lett. 2014, 352, 152–159. [Google Scholar] [CrossRef]
- Xiong, Y.; Lei, Q.Y.; Zhao, S.; Guan, K.L. Regulation of glycolysis and gluconeogenesis by acetylation of PKM and PEPCK. Cold Spring Harb. Symp. Quant. Biol. 2011, 76, 285–289. [Google Scholar] [CrossRef]
- Noguchi, T.; Inoue, H.; Tanaka, T. The M1- and M2-type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing. J. Biol. Chem. 1986, 261, 13807–13812. [Google Scholar] [CrossRef]
- Konno, M.; Ishii, H.; Koseki, J.; Tanuma, N.; Nishida, N.; Kawamoto, K.; Nishimura, T.; Nakata, A.; Matsui, H.; Noguchi, K.; et al. Pyruvate kinase M2, but not M1, allele maintains immature metabolic states of murine embryonic stem cells. Regen. Ther. 2015, 1, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Taniguchi, K.; Ito, Y.; Sugito, N.; Kumazaki, M.; Shinohara, H.; Yamada, N.; Nakagawa, Y.; Sugiyama, T.; Futamura, M.; Otsuki, Y.; et al. Organ-specific PTB1-associated microRNAs determine expression of pyruvate kinase isoforms. Sci. Rep. 2015, 5, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Martire, S.; Fuso, A.; Mosca, L.; Forte, E.; Correani, V.; Fontana, M.; Scarpa, S.; Maras, B.; D’Erme, M. Bioenergetic impairment in animal and cellular models of Alzheimer’s disease: PARP-1 inhibition rescues metabolic dysfunctions. J. Alzheimer’s Dis. 2016, 54, 307–324. [Google Scholar] [CrossRef] [PubMed]
- Sathe, G.; Na, C.H.; Renuse, S.; Madugundu, A.K.; Albert, M.; Moghekar, A.; Pandey, A. Quantitative Proteomic Profiling of Cerebrospinal Fluid to Identify Candidate Biomarkers for Alzheimer’s Disease. Proteom. Clin. Appl. 2019, 13, 1–12. [Google Scholar] [CrossRef]
- Johnson, E.C.B.; Dammer, E.B.; Duong, D.M.; Ping, L.; Zhou, M.; Yin, L.; Higginbotham, L.A.; Guajardo, A.; White, B.; Troncoso, J.C.; et al. Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat. Med. 2020, 26, 769–780. [Google Scholar] [CrossRef] [PubMed]
- Dayon, L.; Núñez Galindo, A.; Wojcik, J.; Cominetti, O.; Corthésy, J.; Oikonomidi, A.; Henry, H.; Kussmann, M.; Migliavacca, E.; Severin, I.; et al. Alzheimer disease pathology and the cerebrospinal fluid proteome. Alzheimer’s Res. Ther. 2018, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- David, C.J.; Chen, M.; Assanah, M.; Canoll, P.; Manley, J.L. HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 2010, 463, 364–368. [Google Scholar] [CrossRef]
- Clower, C.V.; Chatterjee, D.; Wang, Z.; Cantley, L.C.; Heidena, M.G.V.; Krainer, A.R. The alternative splicing repressors hnRNP A1/A2 and PTB influence pyruvate kinase isoform expression and cell metabolism. Proc. Natl. Acad. Sci. USA 2010, 107, 1894–1899. [Google Scholar] [CrossRef] [Green Version]
- Jiao, J.; He, M.; Port, S.A.; Baker, R.W.; Xu, Y.; Qu, H.; Xiong, Y.; Wang, Y.; Jin, H.; Eisemann, T.J.; et al. Munc18-1 catalyzes neuronal SNARE assembly by templating SNARE association. bioRxiv 2018, 1–32. [Google Scholar] [CrossRef]
- Garcia, E.P.; McPherson, P.S.; Chilcote, T.J.; Takei, K.; De Camilli, P. rbSec1A and B colocalize with syntaxin 1 and SNAP-25 throughout the axon, but are not in a stable complex with syntaxin. J. Cell Biol. 1995, 129, 105–120. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Miguel, A.; Hercher, C.; Beasley, C.L.; Barr, A.M.; Bayer, T.A.; Falkai, P.; Leurgans, S.E.; Schneider, J.A.; Bennett, D.A.; Honer, W.G. Loss of Munc18-1 long splice variant in GABAergic terminals is associated with cognitive decline and increased risk of dementia in a community sample. Mol. Neurodegener. 2015, 10, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chirinskaite, A.V.; Siniukova, V.A.; Velizhanina, M.E.; Sopova, J.V.; Belashova, T.A.; Zadorsky, S.P. STXBP1 forms amyloid-like aggregates in rat brain and demonstrates amyloid properties in bacterial expression system. Prion 2021, 15, 29–36. [Google Scholar] [CrossRef]
- Hardy, J.; Allsop, D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol. Sci. 1991, 12, 383–388. [Google Scholar] [CrossRef]
- Abramov, D.; Guiberson, N.G.L.; Burré, J. STXBP1 encephalopathies: Clinical spectrum, disease mechanisms, and therapeutic strategies. J. Neurochem. 2020, 1–14. [Google Scholar] [CrossRef]
- Behan, Á.T.; Byrne, C.; Dunn, M.J.; Cagney, G.; Cotter, D.R. Proteomic analysis of membrane microdomain-associated proteins in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder reveals alterations in LAMP, STXBP1 and BASP1 protein expression. Mol. Psychiatry 2009, 14, 601–613. [Google Scholar] [CrossRef] [Green Version]
- Urigüen, L.; Gil-Pisa, I.; Munarriz-Cuezva, E.; Berrocoso, E.; Pascau, J.; Soto-Montenegro, M.L.; Gutiérrez-Adán, A.; Pintado, B.; Madrigal, J.L.; Castro, E.; et al. Behavioral, neurochemical and morphological changes induced by the overexpression of munc18-1a in brain of mice: Relevance to schizophrenia. Transl. Psychiatry 2013, 3, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Korolev, I.O. Alzheimer’s Disease: A Clinical and Basic Science Review. Med. Stud. Res. J. 2014, 04, 24–33. [Google Scholar]
- Zhu, M.; Wang, X.; Gao, W.; Shi, C.; Ge, H.; Shen, H.; Lin, Z. Corpus callosum atrophy and cognitive decline in early Alzheimer’s disease: Longitudinal MRI study. Dement. Geriatr. Cogn. Disord. 2014, 37, 214–222. [Google Scholar] [CrossRef] [Green Version]
- Colgan, N.; Siow, B.; O’Callaghan, J.M.; Harrison, I.F.; Wells, J.A.; Holmes, H.E.; Ismail, O.; Richardson, S.; Alexander, D.C.; Collins, E.C.; et al. Application of neurite orientation dispersion and density imaging (NODDI) to a tau pathology model of Alzheimer’s disease. Neuroimage 2016, 125, 739–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attems, J.; Walker, L.; Jellinger, K.A. Olfactory bulb involvement in neurodegenerative diseases. Acta Neuropathol. 2014, 127, 459–475. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, E.M.G.; Santos, L.G.C.; de Oliveira, F.S.; Freitas, F.C.d.P.; Parreira, V.d.S.C.; dos Santos, H.G.; Tavares, R.; Carvalho, P.C.; Neves-Ferreira, A.G.d.C.; Haibara, A.S.; et al. Proteogenomics Reveals Orthologous Alternatively Spliced Proteoforms in the Same Human and Mouse Brain Regions with Differential Abundance in an Alzheimer’s Disease Mouse Model. Cells 2021, 10, 1583. https://doi.org/10.3390/cells10071583
da Silva EMG, Santos LGC, de Oliveira FS, Freitas FCdP, Parreira VdSC, dos Santos HG, Tavares R, Carvalho PC, Neves-Ferreira AGdC, Haibara AS, et al. Proteogenomics Reveals Orthologous Alternatively Spliced Proteoforms in the Same Human and Mouse Brain Regions with Differential Abundance in an Alzheimer’s Disease Mouse Model. Cells. 2021; 10(7):1583. https://doi.org/10.3390/cells10071583
Chicago/Turabian Styleda Silva, Esdras Matheus Gomes, Letícia Graziela Costa Santos, Flávia Santiago de Oliveira, Flávia Cristina de Paula Freitas, Vinícius da Silva Coutinho Parreira, Hellen Geremias dos Santos, Raphael Tavares, Paulo Costa Carvalho, Ana Gisele da Costa Neves-Ferreira, Andrea Siqueira Haibara, and et al. 2021. "Proteogenomics Reveals Orthologous Alternatively Spliced Proteoforms in the Same Human and Mouse Brain Regions with Differential Abundance in an Alzheimer’s Disease Mouse Model" Cells 10, no. 7: 1583. https://doi.org/10.3390/cells10071583
APA Styleda Silva, E. M. G., Santos, L. G. C., de Oliveira, F. S., Freitas, F. C. d. P., Parreira, V. d. S. C., dos Santos, H. G., Tavares, R., Carvalho, P. C., Neves-Ferreira, A. G. d. C., Haibara, A. S., de Araujo-Souza, P. S., Dias, A. A. M., & Passetti, F. (2021). Proteogenomics Reveals Orthologous Alternatively Spliced Proteoforms in the Same Human and Mouse Brain Regions with Differential Abundance in an Alzheimer’s Disease Mouse Model. Cells, 10(7), 1583. https://doi.org/10.3390/cells10071583