Role of Spectrin in Endocytosis
Abstract
:1. Introduction
2. Erythroid Cells and Endocytosis
3. Erythroid Spectrin
4. Nonerythroid Spectrin
4.1. Epithelial Cells
4.2. Fibroblasts
4.3. Neurons
5. Evolution of Spectrin and Endocytosis
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UniProt Consortium. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [Google Scholar] [CrossRef]
- Goodman, S.R.; Chapa, R.P.; E Zimmer, W. Spectrin’s chimeric E2/E3 enzymatic activity. Exp. Biol. Med. 2015, 240, 1039–1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winkelmann, J.C.; Forget, B.G. Erythroid and nonerythroid spectrins. Blood 1993, 81, 3173–3185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machnicka, B.; Grochowalska, R.; Bogusławska, D.M.; Sikorski, A.F.; Lecomte, M.C. Spectrin-based skeleton as an actor in cell signaling. Experientia 2011, 69, 191–201. [Google Scholar] [CrossRef] [Green Version]
- Tse, W.T.; Lux, S.E. Red blood cell membrane disorders. Br. J. Haematol. 1999, 104, 2–13. [Google Scholar] [CrossRef]
- Bennett, V.; Healy, J. Membrane domains based on ankyrin and spectrin associated with cell-cell interactions. Cold Spring Harb. Perspect. Biol. 2009, 1, a003012. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.C.; Derick, L.H.; Palek, J. Visualization of the hexagonal lattice in the erythrocyte membrane skeleton. J. Cell Biol. 1987, 104, 527–536. [Google Scholar] [CrossRef] [Green Version]
- Lux, S.E., IV. Anatomy of the red cell membrane skeleton: Unanswered questions. Blood 2016, 127, 187–199. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.; Yan, R.; Li, W.; Xu, K. Super-resolution microscopy reveals the native ultrastructure of the erythrocyte cytoskeleton. Cell Rep. 2018, 22, 1151–1158. [Google Scholar] [CrossRef] [Green Version]
- Pielage, J.; Cheng, L.; Fetter, R.D.; Carlton, P.; Sedat, J.W.; Davis, G.W. A presynaptic giant ankyrin stabilizes the NMJ through regulation of presynaptic microtubules and transsynaptic cell adhesion. Neuron 2008, 58, 195–209. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Zhong, G.; Zhuang, X. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 2013, 339, 452–456. [Google Scholar] [CrossRef] [Green Version]
- Hsu, Y.J.; Goodman, S.R. Spectrin and ubiquitination: A review. Cell Mol. Biol. 2005, 51, OL801–OL807. [Google Scholar]
- Chakrabarti, A.; Kelkar, D.; Chattopadhyay, A. Spectrin organization and dynamics: New insights. Biosci. Rep. 2006, 26, 369–386. [Google Scholar] [CrossRef]
- Bose, D.; Chakrabarti, A. Localizing the chaperone activity of erythroid spectrin. Cytoskeleton 2019, 76, 383–397. [Google Scholar] [CrossRef]
- Bhattacharyya, M.; Ray, S.; Bhattacharya, S.; Chakrabarti, A. Chaperone activity and Prodan binding at the self-associating domain of erythroid spectrin. J. Biol. Chem. 2004, 279, 55080–55088. [Google Scholar] [CrossRef] [Green Version]
- Chakrabarti, A.; Bhattacharya, S.; Ray, S.; Bhattacharyya, M. Binding of a denatured heme protein and ATP to erythroid spectrin. Biochem. Biophys. Res. Commun. 2001, 282, 1189–1193. [Google Scholar] [CrossRef]
- Baskin, G.S.; Langdon, R.G. A spectrin-dependent ATPase of the human erythrocyte membrane. J. Biol. Chem. 1981, 256, 5428–5435. [Google Scholar] [CrossRef]
- Bennett, V.; Healy, J. Organizing the fluid membrane bilayer: Diseases linked to spectrin and ankyrin. Trends Mol. Med. 2008, 14, 28–36. [Google Scholar] [CrossRef]
- Wu, S.; Sangerman, J.; Li, M.; Brough, G.H.; Goodman, S.R.; Stevens, T. Essential control of an endothelial cell ISOC by the spectrin membrane skeleton. J. Cell Biol. 2001, 154, 1225–1234. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Zhang, C.; Zhao, Q.; Li, D. Spectrin: Structure, function and disease. Sci. China Life Sci. 2013, 56, 1076–1085. [Google Scholar] [CrossRef] [Green Version]
- De Matteis, M.; Morrow, J. Spectrin tethers and mesh in the biosynthetic pathway. J. Cell Sci. 2000, 113, 2331–2343. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.K.; Coyne, R.S.; Dubreuil, R.R.; Goldstein, L.S.; Branton, D. Cell shape and interaction defects in alpha-spectrin mutants of Drosophila melanogaster. J. Cell Biol. 1993, 123, 1797–1809. [Google Scholar] [CrossRef] [PubMed]
- Metral, S.; Machnicka, B.; Bigot, S.; Colin, Y.; Dhermy, D.; Lecomte, M.C. αII-spectrin is critical for cell adhesion and cell cycle. J. Biol. Chem. 2009, 284, 2409–2418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, S.J.; O’Brien, G.A.; Nishioka, W.K.; McGahon, A.J.; Mahboubi, A.; Saido, T.C.; Green, D.R. Proteolysis of fodrin (non-erythroid spectrin) during apoptosis. J. Biol. Chem. 1995, 270, 6425–6428. [Google Scholar] [CrossRef] [Green Version]
- Nath, R.; Huggins, M.; Glantz, S.B.; Morrow, J.S.; McGinnis, K.; Nadimpalli, R.; Wang, K.K. Development and characterization of antibodies specific to caspase-3-produced alpha II-spectrin 120 kDa breakdown product: Marker for neuronal apoptosis. Neurochem. Int. 2000, 37, 351–361. [Google Scholar] [CrossRef]
- Devarajan, P.; Stabach, P.R.; De Matteis, M.A.; Morrow, J.S. Na,K-ATPase transport from endoplasmic reticulum to Golgi requires the Golgi spectrin-ankyrin G119 skeleton in Madin Darby canine kidney cells. Proc. Natl. Acad. Sci. USA 1997, 94, 10711–10716. [Google Scholar] [CrossRef] [Green Version]
- Lambert, M.W. Spectrin and its interacting partners in nuclear structure and function. Exp. Biol. Med. 2018, 243, 507–524. [Google Scholar] [CrossRef]
- Stankewich, M.C.; Tse, W.T.; Peters, L.L.; Ch’Ng, Y.; John, K.M.; Stabach, P.R.; Devarajan, P.; Morrow, J.S.; Lux, S.E. A widely expressed βIII spectrin associated with Golgi and cytoplasmic vesicles. Proc. Natl. Acad. Sci. USA 1998, 95, 14158–14163. [Google Scholar] [CrossRef] [Green Version]
- Gu, F.; Crump, C.; Thomas, G. Trans-Golgi network sorting. Experientia 2001, 58, 1067–1084. [Google Scholar] [CrossRef] [Green Version]
- Bennett, V.; Baines, A. Spectrin and ankyrin-based pathways: Metazoan inventions for integrating cells into tissues. Physiol. Rev. 2001, 81, 1353–1392. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Liu, T.; Li, K.; Bai, X.; Xi, K.; Chai, X.; Mi, L.; Li, J. Spectrins and human diseases. Transl. Res. 2021, 243, 78–88. [Google Scholar] [CrossRef]
- Fowler, V.M. The human erythrocyte plasma membrane: A Rosetta Stone for decoding membrane-cytoskeleton structure. Curr. Top. Membr. 2013, 72, 39–88. [Google Scholar] [CrossRef]
- Narla, J.; Mohandas, N. Red cell membrane disorders. Int. J. Lab. Hematol. 2017, 39 (Suppl. S1), 47–52. [Google Scholar] [CrossRef] [Green Version]
- Mohandas, N.; Gallagher, P.G. Red cell membrane: Past, present, and future. Blood 2008, 112, 3939–3948. [Google Scholar] [CrossRef] [Green Version]
- Villa, C.H.; Anselmo, A.; Mitragotri, S.; Muzykantov, V. Red blood cells: Supercarriers for drugs, biologicals, and nanoparticles and inspiration for advanced delivery systems. Adv. Drug Deliv. Rev. 2016, 106, 88–103. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Raza, F.; Liu, Y.; Wei, Y.; Rong, R.; Zheng, M.; Yuan, W.; Su, J.; Qiu, M. Clinical progress and advanced research of red blood cells based drug delivery system. Biomaterials 2021, 279, 121202. [Google Scholar] [CrossRef]
- Ben-Bassat, I.; Bensch, K.G.; Schrier, S.L. Drug-induced erythrocyte membrane internalization. J. Clin. Investig. 1972, 51, 1833–1844. [Google Scholar] [CrossRef] [Green Version]
- Schrier, S.L.; Hardy, B.; Bensch, K.G. Endocytosis in erythrocytes and their ghosts. Prog. Clin. Biol. Res. 1979, 30, 437–449. [Google Scholar]
- Koleva, L.; Bovt, E.; Ataullakhanov, F.; Sinauridze, E. Erythrocytes as carriers: From drug delivery to biosensors. Pharmaceutics 2020, 12, 276. [Google Scholar] [CrossRef] [Green Version]
- Ihler, G.M.; Tsang, H.C.-W. Hypotonic hemolysis methods for entrapment of agents in resealed erythrocytes. Methods Enzymol. 1987, 149, 221–229. [Google Scholar] [CrossRef]
- Kruse, C.A.; Mierau, G.W.; James, G.T. Methotrexate loading of red cell carriers by osmotic stress and electric-pulse methods: Ultrastructural observations. Biotechnol. Appl. Biochem. 1989, 11, 571–580. [Google Scholar]
- Ellinger, I.; Pietschmann, P. Endocytosis in health and disease—A thematic issue dedicated to Renate Fuchs. Wiener Medizinische Wochenschrift 2016, 166, 193–195. [Google Scholar] [CrossRef]
- Tagliatti, E.; Cortese, K. Imaging endocytosis dynamics in health and disease. Membranes 2022, 12, 393. [Google Scholar] [CrossRef]
- Bainton, D.F. The discovery of lysosomes. J. Cell Biol. 1981, 91, 66s–76s. [Google Scholar] [CrossRef] [Green Version]
- Sabatini, D.D.; Adesnik, M. Christian de Duve: Explorer of the cell who discovered new organelles by using a centrifuge. Proc. Natl. Acad. Sci. USA 2013, 110, 13234–13235. [Google Scholar] [CrossRef] [Green Version]
- Cooper, G.M. Endocytosis. In The Cell: A Molecular Approach, 2nd ed.; Cooper, G.M., Ed.; Sinauer Associates: Sunderland, MA, USA, 2000. [Google Scholar]
- Lewis, W.H. Pinocytosis. Bull. Johns Hopkins Hosp. 1931, 49, 17–23. [Google Scholar]
- Kaksonen, M.; Roux, A. Mechanisms of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 2018, 19, 313–326. [Google Scholar] [CrossRef]
- Schrier, S.L. Drug-induced endocytosis and entrapment in red cells and ghosts. Methods Enzymol. 1987, 149, 260–270. [Google Scholar] [CrossRef]
- Verma, P.S.; Agarwal, V.K. Cell Biology, Genetics, Molecular Biology, Evolution and Ecology; S. Chand & Company Ltd.: New Delhi, India, 2005. [Google Scholar]
- Penniston, J.T.; Green, D. The conformational basis of energy transformations in membrane systems: IV. Energized states and pinocytosis in erythrocyte ghosts. Arch. Biochem. Biophys. 1968, 128, 339–350. [Google Scholar] [CrossRef]
- Marchesi, V.T.; Palade, G.E. The localization of Mg-Na-K-activated adenosine triphosphatase on red cell ghost membranes. J. Cell Biol. 1967, 35, 385–404. [Google Scholar] [CrossRef] [Green Version]
- Schrier, S.L.; Junga, I.; Seeger, M. Vacuole formation in human erythrocyte ghosts. Exp. Biol. Med. 1973, 143, 565–567. [Google Scholar] [CrossRef] [PubMed]
- Penniston, J.T. Endocytosis by erythrocyte ghosts; dependence upon ATP hydrolysis. Arch. Biochem. Biophys. 1972, 153, 410–412. [Google Scholar] [CrossRef]
- Katsumata, Y.; Asai, J. Ultrastructural changes of erythrocyte ghosts having no connection with hydrolysis of ATP. Arch. Biochem. Biophys. 1972, 150, 330–332. [Google Scholar] [CrossRef]
- Hardy, B.; Schrier, S.L. The role of spectrin in erythrocyte ghost endocytosis. Biochem. Biophys. Res. Commun. 1978, 81, 1153–1161. [Google Scholar] [CrossRef]
- Zarkowsky, H.; Rinehart, J. Endocytosis in adenosine triphosphate-depleted erythrocytes. Biochim. Biophys. Acta Gen. Subj. 1979, 584, 242–245. [Google Scholar] [CrossRef]
- Ginn, F.L.; Hochstein, P.; Trump, B.F. Membrane alterations in hemolysis: Internalization of plasmalemma induced by primaquine. Science 1969, 164, 843–845. [Google Scholar] [CrossRef]
- Holroyde, C.P.; Oski, F.A.; Gardner, F.H. The pocked erythrocyte. N. Engl. J. Med. 1969, 281, 516–520. [Google Scholar] [CrossRef]
- Schekman, R.; Singer, S.J. Clustering and endocytosis of membrane receptors can be induced in mature erythrocytes of neonatal but not adult humans. Proc. Natl. Acad. Sci. USA 1976, 73, 4075–4079. [Google Scholar] [CrossRef] [Green Version]
- Tokuyasu, K.; Schekman, R.; Singer, S. Domains of receptor mobility and endocytosis in the membranes of neonatal human erythrocytes in the membranes of neonatal human erythrocytes and reticulocytes are deficient in spectrin. J. Cell Biol. 1979, 80, 481–486. [Google Scholar] [CrossRef] [Green Version]
- Thatte, H.S.; Schrier, S.L. Comparison of transferrin receptor-mediated endocytosis and drug-induced endocytosis in human neonatal and adult RBCs. Blood 1988, 72, 1693–1700. [Google Scholar] [CrossRef]
- Haberman, S.; Blanton, P.; Martin, J. Some observations on the ABO antigen sites of the erythrocyte membranes of adults and newborn infants. J. Immunol. 1967, 98, 150–160. [Google Scholar]
- Colin, F.C.; Schrier, S.L. Myosin content and distribution in human neonatal erythrocytes are different from adult erythrocytes. Blood 1991, 78, 3052–3055. [Google Scholar] [CrossRef] [Green Version]
- Colin, F.C.; Schrier, S.L. Spontaneous endocytosis in human neonatal and adult red blood cells: Comparison to drug-induced endocytosis and to receptor-mediated endocytosis. Am. J. Hematol. 1991, 37, 34–40. [Google Scholar] [CrossRef]
- Schrier, S.L.; Junga, I.; Ma, L. Studies on the effect of vanadate on endocytosis and shape changes in human red blood cells and ghosts. Blood 1986, 68, 1008–1014. [Google Scholar] [CrossRef] [Green Version]
- van Renswoude, J.; Bridges, K.R.; Harford, J.B.; Klausner, R.D. Receptor-mediated endocytosis of transferrin and the uptake of fe in K562 cells: Identification of a nonlysosomal acidic compartment. Proc. Natl. Acad. Sci. USA 1982, 79, 6186–6190. [Google Scholar] [CrossRef] [Green Version]
- Young, S.P.; Bomford, A. Iterative endocytosis of transferrin by K562 cells. Biochem. J. 1994, 298, 165–170. [Google Scholar] [CrossRef] [Green Version]
- Schrier, S.L.; Ben-Bassat, I.; Bensch, K.; Seeger, M.; Junga, I. Erythrocyte membrane vacuole formation in hereditary spherocytosis. Br. J. Haematol. 1974, 26, 59–69. [Google Scholar] [CrossRef]
- Matovcik, L.M.; Junga, I.G.; Schrier, S.L. Drug-induced endocytosis of neonatal erythrocytes. Blood 1985, 65, 1056–1063. [Google Scholar] [CrossRef] [Green Version]
- Engqvist-Goldstein, Å.E.Y.; Drubin, D.G. Actin assembly and endocytosis: From yeast to mammals. Annu. Rev. Cell. Dev. Biol. 2003, 19, 287–332. [Google Scholar] [CrossRef] [Green Version]
- Schrier, S.L.; Junga, I.; Ma, L. Endo- and exovesiculation and the structure of the human red cell membrane. J. Lab. Clin. Med. 1986, 108, 265–271. [Google Scholar]
- Tilney, L.G.; Detmers, P. Actin in erythrocyte ghosts and its association with spectrin. Evidence for a nonfilamentous form of these two molecules in situ. J. Cell Biol. 1975, 66, 508–520. [Google Scholar] [CrossRef] [Green Version]
- Lux, S.E.; John, K.M.; Karnovsky, M.J. Irreversible deformation of the spectrin-actin lattice in irreversibly sickled cells. J. Clin. Investig. 1976, 58, 955–963. [Google Scholar] [CrossRef] [Green Version]
- Hardy, B.; Bensch, K.G.; Schrier, S.L. Spectrin rearrangement early in erythrocyte ghost endocytosis. J. Cell Biol. 1979, 82, 654–663. [Google Scholar] [CrossRef]
- Saxton, M. The spectrin network as a barrier to lateral diffusion in erythrocytes. A percolation analysis. Biophys. J. 1989, 55, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Schrier, S.L.; Junga, I. Analysis of human erythrocyte membrane vesicles produced by shearing. J. Supramol. Struct. 1980, 13, 1–13. [Google Scholar] [CrossRef]
- Gao, X.; Yue, T.; Tian, F.; Liu, Z.; Zhang, X. Erythrocyte membrane skeleton inhibits nanoparticle endocytosis. AIP Adv. 2017, 7, 065303. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, D.L.; Pasqualini, P. Erythrocyte membrane proteins of premature and full-term newborn infants. Pediatr. Res. 1978, 12, 176–178. [Google Scholar] [CrossRef] [Green Version]
- Lawler, J.; Liu, S.C.; Palek, J.; Prchal, J. A molecular defect of spectrin in a subset of patients with hereditary elliptocytosis. Alterations in the alpha-subunit domain involved in spectrin self-association. J. Clin. Investig. 1984, 73, 1688–1695. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.-C.; Palek, J. Spectrin tetramer–dimer equilibrium and the stability of erythrocyte membrane skeletons. Nature 1980, 285, 586–588. [Google Scholar] [CrossRef]
- Zweig, S.; Singer, S.J. Concanavalin A-induced endocytosis in rabbit reticulocytes, and its decrease with reticulocyte maturation. J. Cell Biol. 1979, 80, 487–491. [Google Scholar] [CrossRef] [Green Version]
- Vogl, A.W.; Vaid, K.S.; Guttman, J.A. The Sertoli cell cytoskeleton. Adv. Exp. Med. Biol. 2009, 636, 186–211. [Google Scholar] [CrossRef]
- Segretain, D.; Fiorini, C.; Decrouy, X.; Defamie, N.; Prat, J.; Pointis, G. A proposed role for ZO-1 in targeting connexin 43 gap junctions to the endocytic pathway. Biochimie 2004, 86, 241–244. [Google Scholar] [CrossRef] [PubMed]
- Larsen, W.J.; Tung, H.-N.; Murray, S.A.; A Swenson, C. Evidence for the participation of actin microfilaments and bristle coats in the internalization of gap junction membrane. J. Cell Biol. 1979, 83, 576–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toyofuku, T.; Yabuki, M.; Otsu, K.; Kuzuya, T.; Hori, M.; Tada, M. Direct association of the gap junction protein connexin-43 with ZO-1 in cardiac myocytes. J. Biol. Chem. 1998, 273, 12725–12731. [Google Scholar] [CrossRef] [Green Version]
- Pellikka, M.; Tanentzapf, G.; Pinto, M.; Smith, C.T.; McGlade, C.J.; Ready, D.F.; Tepass, U. Crumbs, the Drosophila homologue of human CRB1/RP12, is essential for photoreceptor morphogenesis. Nature 2002, 416, 143–149. [Google Scholar] [CrossRef]
- Williams, J.A.; MacIver, B.; Klipfell, E.A.; Thomas, G.H. The C-terminal domain of Drosophila βHeavy-spectrin exhibits autonomous membrane association and modulates membrane area. J. Cell Sci. 2004, 117, 771–782. [Google Scholar] [CrossRef] [Green Version]
- Phillips, M.D.; Thomas, G.H. Brush border spectrin is required for early endosome recycling in Drosophila. J. Cell Sci. 2006, 119, 1361–1370. [Google Scholar] [CrossRef] [Green Version]
- Apodaca, G. Role of polarity proteins in the generation and organization of apical surface protrusions. Cold Spring Harb. Perspect. Biol. 2017, 10, a027813. [Google Scholar] [CrossRef] [Green Version]
- Hirokawa, N.; Cheney, R.E.; Willard, M. Location of a protein of the fodrin-spectrin-TW260/240 family in the mouse intestinal brush border. Cell 1983, 32, 953–965. [Google Scholar] [CrossRef]
- Crawley, S.W.; Mooseker, M.S.; Tyska, M.J. Shaping the intestinal brush border. J. Cell Biol. 2014, 207, 441–451. [Google Scholar] [CrossRef] [Green Version]
- Danielsen, E.M.; Hansen, G.H. Small molecule pinocytosis and clathrin-dependent endocytosis at the intestinal brush border: Two separate pathways into the enterocyte. Biochim. Biophys. Acta Biomembr. 2016, 1858, 233–243. [Google Scholar] [CrossRef]
- Kamal, A.; Ying, Y.-S.; Anderson, R.G.W. Annexin VI-mediated loss of spectrin during coated pit budding is coupled to delivery of LDL to lysosomes. J. Cell Biol. 1998, 142, 937–947. [Google Scholar] [CrossRef]
- Michaely, P.; Kamal, A.; Anderson, R.G.W.; Bennett, V. A requirement for ankyrin binding to clathrin during coated pit budding. J. Biol. Chem. 1999, 274, 35908–35913. [Google Scholar] [CrossRef] [Green Version]
- Wigge, P.; Vallis, Y.; McMahon, H.T. Inhibition of receptor-mediated endocytosis by the amphiphysin SH3 domain. Curr. Biol. 1997, 7, 554–560. [Google Scholar] [CrossRef] [Green Version]
- Ghisleni, A.; Galli, C.; Monzo, P.; Ascione, F.; Fardin, M.-A.; Scita, G.; Li, Q.; Maiuri, P.; Gauthier, N.C. Complementary mesoscale dynamics of spectrin and acto-myosin shape membrane territories during mechanoresponse. Nat. Commun. 2020, 11, 5108. [Google Scholar] [CrossRef]
- Parton, R.; Dotti, C.G. Cell biology of neuronal endocytosis. J. Neurosci. Res. 1993, 36, 1–9. [Google Scholar] [CrossRef]
- Leshchyns’Ka, I.; Sytnyk, V.; Richter, M.; Andreyeva, A.; Puchkov, D.; Schachner, M. The adhesion molecule CHL1 regulates uncoating of clathrin-coated synaptic vesicles. Neuron 2006, 52, 1011–1025. [Google Scholar] [CrossRef] [Green Version]
- Gong, Q.; Huntsman, C.; Ma, D. Membrane trafficking review series: Clathrin-independent internalization and recycling. J. Cell Mol. Med. 2007, 12, 126–144. [Google Scholar] [CrossRef] [Green Version]
- Tian, N.; Leshchyns’Ka, I.; Welch, J.H.; Diakowski, W.; Yang, H.; Schachner, M.; Sytnyk, V. Lipid raft-dependent endocytosis of close homolog of adhesion molecule L1 (CHL1) promotes neuritogenesis. J. Biol. Chem. 2012, 287, 44447–44463. [Google Scholar] [CrossRef] [Green Version]
- Puchkov, D.; Leshchyns’Ka, I.; Nikonenko, A.G.; Schachner, M.; Sytnyk, V. NCAM/spectrin complex disassembly results in PSD perforation and postsynaptic endocytic zone formation. Cereb. Cortex 2011, 21, 2217–2232. [Google Scholar] [CrossRef] [Green Version]
- Baines, A. Evolution of the spectrin-based membrane skeleton. Transfus. Clin. Biol. 2010, 17, 95–103. [Google Scholar] [CrossRef]
- Broderick, M.; Winder, S. Spectrin, α-actinin, and dystrophin. Adv. Protein Chem. 2005, 70, 203–246. [Google Scholar] [CrossRef]
- Letunic, I.; Khedkar, S.; Bork, P. SMART: Recent updates, new developments and status in 2020. Nucleic Acids Res. 2020, 49, D458–D460. [Google Scholar] [CrossRef]
- Jeng, R.L.; Welch, M.D. Cytoskeleton: Actin and endocytosis—No longer the weakest link. Curr. Biol. 2001, 11, R691–R694. [Google Scholar] [CrossRef] [Green Version]
- Dragwidge, J.M.; Van Damme, D. Visualising endocytosis in plants: Past, present, and future. J. Microsc. 2020, 280, 104–110. [Google Scholar] [CrossRef]
- Cram, W.J. Pinocytosis in plants. New Phytol. 1980, 84, 1–17. [Google Scholar] [CrossRef]
- Fan, L.; Li, R.; Pan, J.; Ding, Z.; Lin, J. Endocytosis and its regulation in plants. Trends Plant Sci. 2015, 20, 388–397. [Google Scholar] [CrossRef]
- Goode, B.L.; Eskin, J.A.; Wendland, B. Actin and endocytosis in budding yeast. Genetics 2015, 199, 315–358. [Google Scholar] [CrossRef] [Green Version]
- Kaksonen, M.; Sun, Y.; Drubin, D.G. A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell 2003, 115, 475–487. [Google Scholar] [CrossRef] [Green Version]
- Smythe, E.; Ayscough, K.R. Actin regulation in endocytosis. J. Cell Sci. 2006, 119, 4589–4598. [Google Scholar] [CrossRef] [Green Version]
- Addario, B.; Sandblad, L.; Persson, K.; Backman, L. Characterisation of Schizosaccharomyces pombe α-actinin. PeerJ 2016, 4, e1858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dejonghe, W.; Kuenen, S.; Mylle, E.; Vasileva, M.; Keech, O.; Viotti, C.; Swerts, J.; Fendrych, M.; Ortiz-Morea, F.A.; Mishev, K.; et al. Mitochondrial uncouplers inhibit clathrin-mediated endocytosis largely through cytoplasmic acidification. Nat. Commun. 2016, 7, 11710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D. Role of Spectrin in Endocytosis. Cells 2022, 11, 2459. https://doi.org/10.3390/cells11152459
Li D. Role of Spectrin in Endocytosis. Cells. 2022; 11(15):2459. https://doi.org/10.3390/cells11152459
Chicago/Turabian StyleLi, Donghai. 2022. "Role of Spectrin in Endocytosis" Cells 11, no. 15: 2459. https://doi.org/10.3390/cells11152459
APA StyleLi, D. (2022). Role of Spectrin in Endocytosis. Cells, 11(15), 2459. https://doi.org/10.3390/cells11152459