QTLs Related to Rice Callus Regeneration Ability: Localization and Effect Verification of qPRR3
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genetic Population
2.2. Tissue Culture
2.3. Investigation of Regeneration-Ability-Related Traits
2.4. Data Analysis and QTL Positioning
2.5. Construction of NIL
2.6. Effect Verification of QTL
2.7. RT-PCR and qRT-PCR
3. Results
3.1. Differences in Callus Regeneration Ability
3.2. QTL Mapping of Regeneration-Ability-Related Traits
3.3. Validation of qPRR3 Effect
3.4. qPRR3 Promotes the Formation of Regenerated Shoots
3.5. Candidate Genes of qPRR3
4. Discussion
4.1. From Tissue Culture to QTL Mapping
4.2. Tissue Culture Protocol
4.3. Evaluation of Callus Regeneration Ability
4.4. qPRR3 Enhances Rice Regeneration by Promoting Shoot Formation
4.5. Development of Indica Rice Varieties with Easy Tissue Culture Based on Japonica Rice Universal Medium Using qPRR3
4.6. Putative Candidate Genes in qPRR3
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
QTL | Quantitative trait locus |
RIL | Recombinant inbred line |
NIL | Near-isogenic line |
PRR | Plant regeneration rate |
TGPR | Total green plant rate |
PVE | Phenotypic variation explained |
SNP | Single-nucleotide polymorphism |
CIM | Composite interval left |
Nip | Nipponbare |
MAS | Molecular marker-assisted selection |
GWAS | Genome-wide association study |
CSSL | Chromosome segment replacement line |
References
- Chu, C.C.; Wang, C.S.; Sun, C.S.; Hsu, V.; Yin, K.C.; Chu, C.Y.; Bi, F.Y. Establishment of an efficient medium for anther culture of rice through experiments on the nitrogen source. Sci. Sin. 1975, 18, 659–668. [Google Scholar]
- Bajaj, S.; Mohanty, A. Recent advances in rice biotechnology-towards genetically superior transgenic rice. Plant Biotechnol. J. 2005, 3, 275–307. [Google Scholar] [CrossRef] [PubMed]
- Hiei, Y.; Komari, T. Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nat. Protoc. 2008, 3, 824–834. [Google Scholar] [CrossRef] [PubMed]
- Hiei, Y.; Ohta, S.; Komari, T.; Kumashiro, T. Efficient Transformation of Rice (Oryza-Sativa L.) Mediated by Agrobacterium and Sequence-Analysis of the Boundaries of the T-DNA. Plant J. 1994, 6, 271–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.; Jeon, H.; Kim, M. Optimization of a mature embryo-based in vitro culture system for high-frequency somatic embryogenic callus induction and plant regeneration from japonica rice cultivars. Plant Cell Tiss. Org. Cult. 2002, 71, 237–244. [Google Scholar] [CrossRef]
- Toki, S.; Hara, N.; Ono, K.; Onodera, H.; Tagiri, A.; Oka, S.; Tanaka, H. Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice. Plant J. 2006, 47, 969–976. [Google Scholar] [CrossRef]
- Yang, Y.S.; Zheng, Y.D.; Chen, Y.L.; Jian, Y.Y. Improvement of plant regeneration from long-term cultured calluses of Taipei 309, a model rice variety in in vitro studies. Plant Cell Tiss. Org. Cult. 1999, 57, 199–206. [Google Scholar] [CrossRef]
- Anjanappa, R.B.; Gruissem, W. Current progress and challenges in crop genetic transformation. J. Plant Physiol. 2021, 261, 153411. [Google Scholar] [CrossRef]
- Ge, X.J.; Chu, Z.H.; Lin, Y.J.; Wang, S.P. A tissue culture system for different germplasms of indica rice. Plant Cell Rep. 2006, 25, 392–402. [Google Scholar] [CrossRef]
- Kumar, K.K.; Maruthasalam, S.; Loganathan, M.; Sudhakar, D.; Balasubramanian, P. An improved Agrobacterium-mediated transformation protocol for recalcitrant elite indica rice cultivars. Plant Mol. Biol. Rep. 2005, 23, 67–73. [Google Scholar] [CrossRef]
- Lin, Y.J.; Zhang, Q.F. Optimising the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Rep. 2005, 23, 540–547. [Google Scholar] [CrossRef] [PubMed]
- Ming, N.G.J.; Mostafiz, S.B.; Johon, N.S.; Zulkifli, N.S.A.; Wagiran, A. Combination of Plant Growth Regulators, Maltose, and Partial Desiccation Treatment Enhance Somatic Embryogenesis in Selected Malaysian Rice Cultivar. Plants-Basel 2019, 8, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahoo, K.K.; Tripathi, A.K.; Pareek, A.; Sopory, S.K.; Singla-Pareek, S.L. An improved protocol for efficient transformation and regeneration of diverse indica rice cultivars. Plant Methods 2011, 7, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahoo, R.K.; Tuteja, N. Development of Agrobacterium-mediated transformation technology for mature seed-derived callus tissues of indica rice cultivar IR64. GM Crops Food 2012, 3, 123–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saika, H.; Toki, S. Mature seed-derived callus of the model indica rice variety Kasalath is highly competent in Agrobacterium-mediated transformation. Plant Cell Rep. 2010, 29, 1351–1364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaidi, M.A.; Narayanan, M.; Sardana, R.; Taga, I.; Postel, S.; Johns, R.; Mcnulty, M.; Mottiar, Y.; Mao, J.; Loit, E. Optimizing tissue culture media for efficient transformation of different indica rice genotypes. Agron. Res. 2006, 4, 563–575. [Google Scholar]
- Reisch, B.; Bingham, E.T. The Genetic-Control of Bud Formation from Callus-Cultures of Diploid Alfalfa. Plant Sci. Lett. 1980, 20, 71–77. [Google Scholar] [CrossRef]
- Lin, Z.; Hattori, K. Inheritance of high shoot regeneration ability from seed callus in a rice cultivar Joshu. Breed. Sci. 1998, 48, 41–44. [Google Scholar] [CrossRef] [Green Version]
- Schiantarelli, E.; De la Peña, A.; Candela, M. Use of recombinant inbred lines (RILs) to identify, locate and map major genes and quantitative trait loci involved with in vitro regeneration ability in Arabidopsis thaliana. Theor. Appl. Genet. 2001, 102, 335–341. [Google Scholar] [CrossRef]
- Li, S.J.; Yan, S.; Wang, A.H.; Zou, G.H.; Huang, X.H.; Han, B.; Qian, Q.; Tao, Y.Z. Identification of QTLs associated with tissue culture response through sequencing-based genotyping of RILs derived from 93-11 x Nipponbare in rice (Oryza sativa). Plant Cell Rep. 2013, 32, 103–116. [Google Scholar] [CrossRef]
- Paterson, A.H. Molecular Dissection of Quantitative Traits-Progress and Prospects. Genome Res. 1995, 5, 321–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lall, S.; Nettleton, D.; DeCook, R.; Che, P.; Howell, S.H. Quantitative trait loci associated with adventitious shoot formation in tissue culture and the program of shoot development in arabidopsis. Genetics 2004, 167, 1883–1892. [Google Scholar] [CrossRef] [PubMed]
- Motte, H.; Vercauteren, A.; Depuydt, S.; Landschoot, S.; Geelen, D.; Werbrouck, S.; Goormachtig, S.; Vuylsteke, M.; Vereecke, D. Combining linkage and association mapping identifies RECEPTOR-LIKE PROTEIN KINASE1 as an essential Arabidopsis shoot regeneration gene. Proc. Natl. Acad. Sci. USA 2014, 111, 8305–8310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armstrong, C.L.; Romeroseverson, J.; Hodges, T.K. Improved Tissue-Culture Response of an Elite Maize Inbred through Backcross Breeding, and Identification of Chromosomal Regions Important for Regeneration by Rflp Analysis. Theor. Appl. Genet. 1992, 84, 755–762. [Google Scholar] [CrossRef]
- Lowe, B.A.; Way, M.M.; Kumpf, J.M.; Rout, J.; Warner, D.; Johnson, R.; Armstrong, C.L.; Spencer, M.T.; Chomet, P.S. Marker assisted breeding for transformability in maize. Mol. Breed. 2006, 18, 229–239. [Google Scholar] [CrossRef]
- Bolibok, H.; Gruszczynska, A.; Hromada-Judycka, A.; Rakoczy-Trojanowska, M. The identification of QTLs associated with the in vitro response of rye (Secale cereale L.). Cell. Mol. Biol. Lett. 2007, 12, 523–535. [Google Scholar] [CrossRef] [PubMed]
- BenAmer, I.M.; Korzun, V.; Worland, A.J.; Borner, A. Genetic mapping of QTL controlling tissue-culture response on chromosome 2B of wheat (Triticum aestivum L.) in relation to major genes and RFLP markers. Theor. Appl. Genet. 1997, 94, 1047–1052. [Google Scholar] [CrossRef]
- Hisano, H.; Meints, B.; Moscou, M.J.; Cistue, L.; Echavarri, B.; Sato, K.; Hayes, P.M. Selection of transformation-efficient barley genotypes based on TFA (transformation amenability) haplotype and higher resolution mapping of the TFA loci. Plant Cell Rep. 2017, 36, 611–620. [Google Scholar] [CrossRef] [Green Version]
- Song, X.H.; Han, Y.P.; Teng, W.L.; Sun, G.L.; Li, W.B. Identification of QTL underlying somatic embryogenesis capacity of immature embryos in soybean (Glycine max (L.) Merr.). Plant Cell Rep. 2010, 29, 125–131. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Shen, L.H.; Lu, C.F.; Chen, Y.; Zhu, L.H. Analysis of quantitative trait loci which contribute to anther culturability in rice (Oryza sativa L.). Mol. Breed. 1998, 4, 165–172. [Google Scholar] [CrossRef]
- Nishimura, A.; Ashikari, M.; Lin, S.; Takashi, T.; Angeles, E.R.; Yamamoto, T.; Matsuoka, M. Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems. Proc. Natl. Acad. Sci. USA 2005, 102, 11940–11944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.N.; Zhou, H.J.; Lu, L.X.; Liu, L.; Li, X.H.; Lin, Y.J.; Yu, S.B. Identification of quantitative trait loci controlling rice mature seed culturability using chromosomal segment substitution lines. Plant Cell Rep. 2009, 28, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.Z.; Zhang, C.J.; Ge, X.Y.; Wang, N.; Zhou, K.H.; Yang, X.J.; Wu, Z.X.; Zhang, X.Y.; Liu, C.L.; Yang, Z.R.; et al. Construction of a high-density linkage map and mapping quantitative trait loci for somatic embryogenesis using leaf petioles as explants in upland cotton (Gossypium hirsutum L.). Plant Cell Rep. 2015, 34, 1177–1187. [Google Scholar] [CrossRef]
- Li, Z.; Duan, S.H.; Kong, J.; Li, S.Q.; Li, Y.S.; Zhu, Y.G. A single genetic locus in chromosome 1 controls conditional browning during the induction of calli from mature seeds of Oryza sativa ssp indica. Plant Cell Tiss. Org. Cult. 2007, 89, 237–245. [Google Scholar] [CrossRef]
- Ozawa, K.; Kawahigashi, H. Positional cloning of the nitrite reductase gene associated with good growth and regeneration ability of calli and establishment of a new selection system for Agrobacterium-mediated transformation in rice (Oryza sativa L.). Plant Sci. 2006, 170, 384–393. [Google Scholar] [CrossRef]
- Taguchi-Shiobara, F.; Yamamoto, T.; Yano, M.; Oka, S. Mapping QTLs that control the performance of rice tissue culture and evaluation of derived near-isogenic lines. Theor. Appl. Genet. 2006, 112, 968–976. [Google Scholar] [CrossRef]
- Takeuchi, Y.; Abe, T.; Sasahara, T. RFLP mapping of QTLs influencing shoot regeneration from mature seed-derived calli in rice. Crop Sci. 2000, 40, 245–247. [Google Scholar] [CrossRef]
- Zhang, K.; Su, J.; Xu, M.; Zhou, Z.; Zhu, X.; Ma, X.; Hou, J.; Tan, L.; Zhu, Z.; Cai, H.; et al. A common wild rice-derived BOC1 allele reduces callus browning in indica rice transformation. Nat. Commun. 2020, 11, 443. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.Y.; Zhao, H.; Li, W.; Wu, J.M.; Zhou, Z.H.; Zhou, F.; Chen, H.; Lin, Y.J. Genome-wide association study of callus induction variation to explore the callus formation mechanism of rice. J. Integr. Plant Biol. 2019, 61, 1134–1150. [Google Scholar] [CrossRef]
- Taguchi-Shiobara, F.; Lin, S.Y.; Tanno, K.; Komatsuda, T.; Yano, M.; Sasaki, T.; Oka, S. Mapping quantitative trait loci associated with regeneration ability of seed callus in rice, Oryza sativa L. Theor. Appl. Genet. 1997, 95, 828–833. [Google Scholar] [CrossRef]
- Mohamed, G.M.; Amer, A.M.; Osman, N.H.; Sedikc, M.Z.; Hussein, M.H. Effects of different gelling agents on the different stages of rice regeneration in two rice cultivars. Saudi J. Biol. Sci. 2021, 28, 5738–5744. [Google Scholar] [CrossRef] [PubMed]
- Solanki, M.; Sinha, A.; Shukla, L.I. Optimization of in vitro culture media for improvement in yield of Navara ancient Indian medicinal rice. 3 Biotech 2019, 9, 326. [Google Scholar] [CrossRef] [PubMed]
- Yaqoob, U.; Kaul, T.; Nawchoo, I.A. In vitro plant regeneration of some recalcitrant indica rice (Oryza sativa L.) varieties. Vegetos 2021, 34, 102–106. [Google Scholar] [CrossRef]
- Wang, S.; Basten, C.J.; Zeng, Z.B. Windows QTL Catergrapher 2.5 Department of Statistics. North Carolina State University, Raleigh, NC. 2012, WinQTLCart version 2.5. Available online: http://statgen.ncsu.edu/qtlcart/WQTLCart.htm (accessed on 6 December 2022).
- Churchill, G.A.; Doerge, R.W. Empirical threshold values for quantitative trait mapping. Genetics 1994, 138, 963–971. [Google Scholar] [CrossRef]
- McCouch, S.R.; Cooperative, R.G. Gene Nomenclature System for Rice. Rice 2008, 1, 72–84. [Google Scholar] [CrossRef] [Green Version]
- Henry, Y.; Vain, P.; Debuyser, J. Genetic-Analysis of in-Vitro Plant-Tissue Culture Responses and Regeneration Capacities. Euphytica 1994, 79, 45–58. [Google Scholar] [CrossRef]
- Kwon, Y.S.; Kim, K.; Kim, K.M.; Eun, M.Y.; Sohn, J.K. Quantitative trait loci mapping associated with plant regeneration ability from seed derived calli in rice (Oryza sativa L.). Mol. Cells 2001, 11, 64–67. [Google Scholar]
- Skoog, F.; Miller, C.O. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exp. Biol. 1957, 11, 118–130. [Google Scholar]
- Hnatuszko-Konka, K.; Gerszberg, A.; Weremczuk-Jezyna, I.; Grzegorczyk-Karolak, I. Cytokinin Signaling and De Novo Shoot Organogenesis. Genes-Basel 2021, 12, 265. [Google Scholar] [CrossRef]
- Gordon, S.P.; Heisler, M.G.; Reddy, G.V.; Ohno, C.; Das, P.; Meyerowitz, E.M. Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development 2007, 134, 3539–3548. [Google Scholar] [CrossRef] [Green Version]
- Ikeuchi, M.; Ogawa, Y.; Iwase, A.; Sugimoto, K. Plant regeneration: Cellular origins and molecular mechanisms. Development 2016, 143, 1442–1451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motte, H.; Vereecke, D.; Geelen, D.; Werbrouck, S. The molecular path to in vitro shoot regeneration. Biotechnol. Adv. 2014, 32, 107–121. [Google Scholar] [CrossRef] [PubMed]
- Dixon, R.A.; Paiva, N.L. Stress-Induced Phenylpropanoid Metabolism. Plant Cell 1995, 7, 1085–1097. [Google Scholar] [CrossRef]
- Dreger, M.; Mol, R.; Deja, A.; Raj, E.; Mankowska, G.; Wielgus, K. Improved plant regeneration in callus cultures of Sorghum bicolor (L.) Moench. In Vitro Cell Dev.-Pl. 2019, 55, 190–198. [Google Scholar] [CrossRef]
- Teixeira, J.B.; Sondahl, M.R.; Kirby, E.G. Somatic Embryogenesis from Immature Inflorescences of Oil Palm. Plant Cell Rep. 1994, 13, 247–250. [Google Scholar] [CrossRef] [PubMed]
- Thomas, T.D. The role of activated charcoal in plant tissue culture. Biotechnol. Adv. 2008, 26, 618–631. [Google Scholar] [CrossRef] [PubMed]
QTL | Chr | LOD | Add 1 | PVE (%) | Bin Marker | Physical Interval (Mb) | Confidence Interval (cM) |
---|---|---|---|---|---|---|---|
qPRR3 | 3 | 7.395 | 0.101 | 13.402 | Bin653–655 | 2.75–3.00 | 17.08–17.25 |
qPRR5 | 5 | 3.890 | 0.073 | 6.730 | Bin1218–1219 | 4.95–5.25 | 25.10–25.43 |
qTGPR3 | 3 | 9.520 | 0.798 | 17.066 | Bin653–655 | 2.75–3.00 | 17.08–17.25 |
Gene ID | CDS Coordinates (5’–3’) | Expression Level | Gene Product Name |
---|---|---|---|
LOC_Os03g05540 | 2757582–2762244 | Nip↓ 1 | tetratricopeptide repeat-containing protein, putative, expressed |
LOC_Os03g05550 | 2767839–2768531 | Nip↑ 2 | expressed protein |
LOC_Os03g05560 | 2772434–2771187 | Extremely low | zinc finger, C3HC4-type domain-containing protein, expressed |
LOC_Os03g05570 | 2777769–2776612 | Nip↑ | RING-H2 finger protein ATL3F, putative, expressed |
LOC_Os03g05580 | 2793544–2794224 | Not expressed | expressed protein |
LOC_Os03g05590 | 2800290–2800924 | Extremely low | AP2 domain-containing protein, expressed |
LOC_Os03g05600 | 2802871–2803283 | Not expressed | hypothetical protein |
LOC_Os03g05610 | 2804141–2805943 | Extremely low | inorganic phosphate transporter, putative, expressed |
LOC_Os03g05620 | 2809678–2807555 | Nip↓ | inorganic phosphate transporter, putative, expressed |
LOC_Os03g05630 | 2811738–2814268 | No significant difference | expressed protein |
LOC_Os03g05640 | 2817367–2815438 | Nip↓ | inorganic phosphate transporter, putative, expressed |
LOC_Os03g05650 | 2818997–2820125 | Extremely low | expressed protein |
LOC_Os03g05660 | 2828096–2822929 | Nip↓ | appr-1-p processing enzyme family protein, putative, expressed |
LOC_Os03g05680 | 2833133–2837273 | Nip↑ | histone demethylase JARID1C, putative, expressed |
LOC_Os03g05690 | 2838772–2841691 | Nip↑ | ZOS3-03—C2H2 zinc finger protein, expressed |
LOC_Os03g05700 | 2842391–2841790 | Nip↑ | expressed protein |
LOC_Os03g05710 | 2844831–2843447 | Nip↑ | acetyltransferase, GNAT family, putative, expressed |
LOC_Os03g05720 | 2845709–2851689 | No significant difference | WD domain, G-beta repeat-domain-containing protein, expressed |
LOC_Os03g05730 | 2856682–2852293 | No significant difference | cell-division control protein 48 homolog E, putative, expressed |
LOC_Os03g05740 | 2860232–2857125 | No significant difference | ras-related protein, putative, expressed |
LOC_Os03g05750 | 2868242–2866315 | Nip↑ | heavy-metal-associated domain-containing protein, putative, expressed |
LOC_Os03g05760 | 2870362–2875430 | Nip↑ | transcription factor Dp, putative, expressed |
LOC_Os03g05770 | 2878828–2880890 | Extremely low | peroxidase precursor, putative, expressed |
LOC_Os03g05780 | 2887922–2883005 | Nip↑ | 4-coumarate—CoA ligase-like 7, putative, expressed |
LOC_Os03g05800 | 2900285–2897476 | Nip↓ | expressed protein |
LOC_Os03g05806 | 2901596–2906614 | No significant difference | pseudouridine synthase family protein, putative, expressed |
LOC_Os03g05812 | 2907108–2912670 | Nip↓ | expressed protein |
Title 1 | Previous Studies | |||||
---|---|---|---|---|---|---|
QTL Number | Chr. Code Involved | Population Type | Population Size | Mapping Parents 1 | References | |
Regenerated shoots | 5 | 1, 2, 4 | BC1F5 | 98 | Nipponbare (J), Kasalath (I) | [40] |
4 | 3, 7, 12 | RIL | 150 | Nipponbare (J), 93-11 (I) | [20] | |
Regeneration rate | 4 | 2, 4 | BC1F5 | 98 | Nipponbare (J), Kasalath (I) | [40] |
6 | 1, 4, 6, 8, 10, 12 | CSSL | 139 | Nipponbare (J), Zhenshan 97B (I) | [32] | |
4 | 2, 3, 11 | RI (F13:F14) | 164 | Milyang23 (tongil), Gihobyeo (J) | [48] | |
4 | 1, 2, 3, 6 | BC1F2 | 180 | Nipponbare (J), Kasalath (I) | [31] | |
2 | 2, 4 | F2 | 79 | Norin 1 (J), Tadukan (I) | [37] | |
4 | 2, 3, 7, 12 | RIL | 150 | Nipponbare (J), 93-11 (I) | [20] | |
no | no | BC1F3 | 183 | Koshihikari, Kasalath | [36] | |
Callus browning | 1 | 3 | F2 | 198 | Teqing (I), Yuanjiang (Wild) | [38] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Chang, X.; Li, C.; Zhang, Z.; Zhang, J.; Yin, C.; Ma, W.; Chen, H.; Zhou, F.; Lin, Y. QTLs Related to Rice Callus Regeneration Ability: Localization and Effect Verification of qPRR3. Cells 2022, 11, 4125. https://doi.org/10.3390/cells11244125
Wu J, Chang X, Li C, Zhang Z, Zhang J, Yin C, Ma W, Chen H, Zhou F, Lin Y. QTLs Related to Rice Callus Regeneration Ability: Localization and Effect Verification of qPRR3. Cells. 2022; 11(24):4125. https://doi.org/10.3390/cells11244125
Chicago/Turabian StyleWu, Jiemin, Xinlei Chang, Chuanhong Li, Zhaoyang Zhang, Jianguo Zhang, Changxi Yin, Weihua Ma, Hao Chen, Fei Zhou, and Yongjun Lin. 2022. "QTLs Related to Rice Callus Regeneration Ability: Localization and Effect Verification of qPRR3" Cells 11, no. 24: 4125. https://doi.org/10.3390/cells11244125