Platelets in Fetal Growth Restriction: Role of Reactive Oxygen Species, Oxygen Metabolism, and Aggregation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Platelet Count and Volume
2.3. Assessment of Oxidative Metabolism and Oxidative Stress
2.3.1. Platelet Isolation
2.3.2. Assessment of Intracellular Reactive Oxygen Species in Platelets
2.3.3. Assessment of Oxygen Consumption in Platelets
2.3.4. Assessment of Intraplatelet Oxygen Level
2.4. Impedance Aggregometry (Multiplate®)
2.5. Calculations and Statistical Analyses
3. Results
3.1. Demographic Characteristics
3.2. Assessment of Aerobic Metabolism and Oxidative Stress in Platelets
ROS Levels, Oxygen Consumption, and Intracellular Oxygen Deficit in Platelets
3.3. Impendence Aggregometry
3.4. Correlation between FGR Grade and ROS Levels, Oxygen Consumption, Intracellular Oxygen Deficit, and Aggrometric Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gagnon, R. Placental Insufficiency and Its Consequences. Eur. J. Obstet. Gynecol. Reprod. Biol. 2003, 11 (Suppl. S1), 99–107. [Google Scholar] [CrossRef]
- Figueras, F.; Gratacós, E. Update on the Diagnosis and Classification of Fetal Growth Restriction and Proposal of a Stage-Based Management Protocol. Fetal Diagn. Ther. 2014, 36, 86–98. [Google Scholar] [CrossRef] [PubMed]
- American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins—Obstetrics and the Society forMaternal-FetalMedicin. ACOG Practice Bulletin No. 204: Fetal Growth Restriction. Obstet. Gynecol. 2019, 133, e97–e109. [Google Scholar] [CrossRef] [PubMed]
- Salafia, C.M.; Minior, V.K.; Pezzullo, J.C.; Popek, E.J.; Rosenkrantz, T.S.; Vintzileos, A.M. Intrauterine Growth Restriction in Infants of Less than Thirty-Two Weeks’ Gestation: Associated Placental Pathologic Features. Am. J. Obstet. Gynecol. 1995, 173, 1049–1057. [Google Scholar] [CrossRef]
- Doppler Studies in Fetal Hypoxemic Hypoxia. Available online: https://sonoworld.com/client/fetus/html/doppler/capitulos-html/chapter_04.htm (accessed on 4 February 2022).
- Brosens, I.; Dixon, H.G.; Robertson, W.B. Fetal Growth Retardation and the Arteries of the Placental Bed. Br. J. Obstet. Gynaecol. 1977, 84, 656–663. [Google Scholar] [CrossRef]
- Khong, T.; Wolf, F.D.; Robertson, W.B.; Brosens, I. Inadequate Maternal Vascular Response to Placentation in Pregnancies Complicated by Pre-Eclampsia and by Small-for-Gestational Age Infants. Br. J. Obstet. Gynaecol. 1986, 93, 1049–1059. [Google Scholar] [CrossRef]
- Giles, W.B.; Trudinger, B.J.; Baird, P.J. Fetal Umbilical Artery Flow Velocity Waveforms and Placental Resistance: Pathological Correlation. Br. J. Obstet. Gynaecol. 1985, 92, 31–38. [Google Scholar] [CrossRef]
- Sheppard, B.L.; Bonnar, J. An Ultrastructural Study of Utero-Placental Spiral Arteries in Hypertensive and Normotensive Pregnancy and Fetal Growth Retardation. Br. J. Obstet. Gynaecol. 1981, 88, 695–705. [Google Scholar] [CrossRef]
- Norris, L.A.; Sheppard, B.L.; Burke, G.; Bonnar, J. Platelet Activation in Normotensive and Hypertensive Pregnancies Complicated by Intrauterine Growth Retardation. Br. J. Obstet. Gynaecol. 1994, 101, 209–214. [Google Scholar] [CrossRef]
- Burton, G.J.; Jauniaux, E. Pathophysiology of Placental-Derived Fetal Growth Restriction. Am. J. Obstet. Gynecol. 2018, 218, S745–S761. [Google Scholar] [CrossRef] [Green Version]
- Ellison, P.T.; Jasienska, G. Constraint, Pathology, and Adaptation: How Can We Tell Them Apart? Am. J. Hum. Biol. 2007, 19, 622–630. [Google Scholar] [CrossRef]
- Gardosi, J.; Madurasinghe, V.; Williams, M.; Malik, A.; Francis, A. Maternal and Fetal Risk Factors for Stillbirth: Population Based Study. BMJ 2013, 346, f108. [Google Scholar] [CrossRef] [Green Version]
- Klinger, M.H.F.; Jelkmann, W. Role of Blood Platelets in Infection and Inflammation. J. Interferon Cytokine Res. 2002, 22, 913–922. [Google Scholar] [CrossRef]
- Sugimura, M.; Kobayashi, T.; Shu, F.; Kanayama, N.; Terao, T. Annexin V Inhibits Phosphatidylserine-Induced Intrauterine Growth Restriction in Mice. Placenta 1999, 20, 555–560. [Google Scholar] [CrossRef]
- Gordijn, S.J.; Beune, I.M.; Thilaganathan, B.; Papageorghiou, A.; Baschat, A.A.; Baker, P.N.; Silver, R.M.; Wynia, K.; Ganzevoort, W. Consensus Definition of Fetal Growth Restriction: A Delphi Procedure. Ultrasound Obstet. Gynecol. 2016, 48, 333–339. [Google Scholar] [CrossRef]
- Lewandowska, M.; Sajdak, S.; Więckowska, B.; Manevska, N.; Lubiński, J. The Influence of Maternal BMI on Adverse Pregnancy Outcomes in Older Women. Nutrients 2020, 12, 2838. [Google Scholar] [CrossRef]
- Komosa, A.; Rzymski, P.; Perek, B.; Ropacka-Lesiak, M.; Lesiak, M.; Siller-Matula, J.M.; Poniedziałek, B. Platelets Redox Balance Assessment: Current Evidence and Methodological Considerations. Vasc. Pharmacol. 2017, 93–95, 6–13. [Google Scholar] [CrossRef]
- Gomes, A.; Fernandes, E.; Lima, J.L.F.C. Fluorescence Probes Used for Detection of Reactive Oxygen Species. J. Biochem. Biophys. Methods 2005, 65, 45–80. [Google Scholar] [CrossRef]
- Dikalov, S.I.; Harrison, D.G. Methods for Detection of Mitochondrial and Cellular Reactive Oxygen Species. Antioxid. Redox Signal. 2014, 20, 372–382. [Google Scholar] [CrossRef] [Green Version]
- Poniedziałek, B.; Nowaczyk, J.; Ropacka-Lesiak, M.; Niedzielski, P.; Komosa, A.; Pańczak, K.; Rzymski, P. The Altered Platelet Mineral Ratios in Pregnancy Complicated with Intrauterine Growth Restriction. Reprod. Toxicol. 2018, 76, 46–52. [Google Scholar] [CrossRef]
- Barker, D.J.; Osmond, C.; Law, C.M. The Intrauterine and Early Postnatal Origins of Cardiovascular Disease and Chronic Bronchitis. J. Epidemiol. Community Health 1989, 43, 237–240. [Google Scholar] [CrossRef] [Green Version]
- de Jong, M.; Cranendonk, A.; van Weissenbruch, M.M. Components of the Metabolic Syndrome in Early Childhood in Very-Low-Birth-Weight Infants and Term Small and Appropriate for Gestational Age Infants. Pediatr. Res. 2015, 78, 457–461. [Google Scholar] [CrossRef] [Green Version]
- Kesavan, K.; Devaskar, S.U. Intrauterine Growth Restriction: Postnatal Monitoring and Outcomes. Pediatr. Clin. N. Am. 2019, 66, 403–423. [Google Scholar] [CrossRef]
- Schoots, M.H.; Gordijn, S.J.; Scherjon, S.A.; van Goor, H.; Hillebrands, J.-L. Oxidative Stress in Placental Pathology. Placenta 2018, 69, 153–161. [Google Scholar] [CrossRef]
- Burton, G.J.; Jauniaux, E. Oxidative Stress. Best Pract. Res. Clin. Obstet. Gynaecol. 2011, 25, 287–299. [Google Scholar] [CrossRef] [Green Version]
- Theilen, L.H.; Campbell, H.D.; Mumford, S.L.; Purdue-Smithe, A.C.; Sjaarda, L.A.; Perkins, N.J.; Radoc, J.G.; Silver, R.M.; Schisterman, E.F. Platelet Activation and Placenta-Mediated Adverse Pregnancy Outcomes: An Ancillary Study to the Effects of Aspirin in Gestation and Reproduction Trial. Am. J. Obstet. Gynecol. 2020, 223, 741.e1–741.e12. [Google Scholar] [CrossRef]
- Krötz, F.; Sohn, H.-Y.; Pohl, U. Reactive Oxygen Species: Players in the Platelet Game. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 1988–1996. [Google Scholar] [CrossRef]
- Wachowicz, B.; Olas, B.; Zbikowska, H.M.; Buczyński, A. Generation of Reactive Oxygen Species in Blood Platelets. Platelets 2002, 13, 175–182. [Google Scholar] [CrossRef]
- Pratico, D.; Iuliano, L.; Pulcinelli, F.M.; Bonavita, M.S.; Gazzaniga, P.P.; Violi, F. Hydrogen Peroxide Triggers Activation of Human Platelets Selectively Exposed to Nonaggregating Concentrations of Arachidonic Acid and Collagen. J. Lab. Clin. Med. 1992, 119, 364–370. [Google Scholar]
- Irani, K.; Pham, Y.; Coleman, L.D.; Roos, C.; Cooke, G.E.; Miodovnik, A.; Karim, N.; Wilhide, C.C.; Bray, P.F.; Goldschmidt-Clermont, P.J. Priming of Platelet AlphaIIbbeta3 by Oxidants Is Associated with Tyrosine Phosphorylation of Beta3. Arterioscler. Thromb. Vasc. Biol. 1998, 18, 1698–1706. [Google Scholar] [CrossRef] [Green Version]
- Leo, R.; Praticò, D.; Iuliano, L.; Pulcinelli, F.M.; Ghiselli, A.; Pignatelli, P.; Colavita, A.R.; FitzGerald, G.A.; Violi, F. Platelet Activation by Superoxide Anion and Hydroxyl Radicals Intrinsically Generated by Platelets That Had Undergone Anoxia and Then Reoxygenated. Circulation 1997, 95, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Yamagishi, S.I.; Edelstein, D.; Du, X.L.; Brownlee, M. Hyperglycemia Potentiates Collagen-Induced Platelet Activation through Mitochondrial Superoxide Overproduction. Diabetes 2001, 50, 1491–1494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krötz, F.; Sohn, H.Y.; Gloe, T.; Zahler, S.; Riexinger, T.; Schiele, T.M.; Becker, B.F.; Theisen, K.; Klauss, V.; Pohl, U. NAD(P)H Oxidase-Dependent Platelet Superoxide Anion Release Increases Platelet Recruitment. Blood 2002, 100, 917–924. [Google Scholar] [CrossRef] [PubMed]
- Clutton, P.; Miermont, A.; Freedman, J.E. Regulation of Endogenous Reactive Oxygen Species in Platelets Can Reverse Aggregation. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Oparka, M.; Walczak, J.; Malinska, D.; van Oppen, L.M.P.E.; Szczepanowska, J.; Koopman, W.J.H.; Wieckowski, M.R. Quantifying ROS Levels Using CM-H2DCFDA and HyPer. Methods 2016, 109, 3–11. [Google Scholar] [CrossRef]
- Ravera, S.; Panfoli, I. Platelet Aerobic Metabolism: New Perspectives. J. Unexplor. Med. Data 2019, 2019, 7. [Google Scholar] [CrossRef]
- Perry, C.G.R.; Kane, D.A.; Lanza, I.R.; Neufer, P.D. Methods for Assessing Mitochondrial Function in Diabetes. Diabetes 2013, 62, 1041–1053. [Google Scholar] [CrossRef] [Green Version]
- Dmitriev, R.I.; Zhdanov, A.V.; Jasionek, G.; Papkovsky, D.B. Assessment of Cellular Oxygen Gradients with a Panel of Phosphorescent Oxygen-Sensitive Probes. Anal. Chem. 2012, 84, 2930–2938. [Google Scholar] [CrossRef]
- Somkhit, J.; Loyant, R.; Brenet, A.; Hassan-Abdi, R.; Yanicostas, C.; Porceddu, M.; Borgne-Sanchez, A.; Soussi-Yanicostas, N. A Fast, Simple, and Affordable Technique to Measure Oxygen Consumption in Living Zebrafish Embryos. Zebrafish 2020, 17, 268–270. [Google Scholar] [CrossRef]
- Hynes, J.; Marroquin, L.D.; Ogurtsov, V.I.; Christiansen, K.N.; Stevens, G.J.; Papkovsky, D.B.; Will, Y. Investigation of Drug-Induced Mitochondrial Toxicity Using Fluorescence-Based Oxygen-Sensitive Probes. Toxicol. Sci. 2006, 92, 186–200. [Google Scholar] [CrossRef] [Green Version]
- Will, Y.; Hynes, J.; Ogurtsov, V.I.; Papkovsky, D.B. Analysis of Mitochondrial Function Using Phosphorescent Oxygen-Sensitive Probes. Nat. Protoc. 2006, 1, 2563–2572. [Google Scholar] [CrossRef]
- Kondrashina, A.V.; Ogurtsov, V.I.; Papkovsky, D.B. Comparison of the Three Optical Platforms for Measurement of Cellular Respiration. Anal. Biochem. 2015, 468, 1–3. [Google Scholar] [CrossRef]
- Fercher, A.; Borisov, S.M.; Zhdanov, A.V.; Klimant, I.; Papkovsky, D.B. Intracellular O2 Sensing Probe Based on Cell-Penetrating Phosphorescent Nanoparticles. ACS Nano 2011, 5, 5499–5508. [Google Scholar] [CrossRef]
- Fercher, A.; O’Riordan, T.C.; Zhdanov, A.V.; Dmitriev, R.I.; Papkovsky, D.B. Imaging of Cellular Oxygen and Analysis of Metabolic Responses of Mammalian Cells. Methods Mol. Biol. 2010, 591, 257–273. [Google Scholar] [CrossRef]
- Rumsey, W.L.; Vanderkooi, J.M.; Wilson, D.F. Imaging of Phosphorescence: A Novel Method for Measuring Oxygen Distribution in Perfused Tissue. Science 1988, 241, 1649–1651. [Google Scholar] [CrossRef]
- O’Riordan, T.C.; Fitzgerald, K.; Ponomarev, G.V.; Mackrill, J.; Hynes, J.; Taylor, C.; Papkovsky, D.B. Sensing Intracellular Oxygen Using Near-Infrared Phosphorescent Probes and Live-Cell Fluorescence Imaging. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292, R1613–R1620. [Google Scholar] [CrossRef]
- Melchinger, H.; Jain, K.; Tyagi, T.; Hwa, J. Role of Platelet Mitochondria: Life in a Nucleus-Free Zone. Front. Cardiovasc. Med. 2019, 6, 153. [Google Scholar] [CrossRef]
- Valera, M.-C.; Parant, O.; Vayssiere, C.; Arnal, J.-F.; Payrastre, B. Physiologic and Pathologic Changes of Platelets in Pregnancy. Platelets 2010, 21, 587–595. [Google Scholar] [CrossRef]
- Kanat-Pektas, M.; Yesildager, U.; Tuncer, N.; Arioz, D.T.; Nadirgil-Koken, G.; Yilmazer, M. Could Mean Platelet Volume in Late First Trimester of Pregnancy Predict Intrauterine Growth Restriction and Pre-Eclampsia? J. Obstet. Gynaecol. Res. 2014, 40, 1840–1845. [Google Scholar] [CrossRef]
- Manten, G.T.R.; Sikkema, M.J.; Voorbij, H.A.M.; Visser, G.H.A.; Bruinse, H.W.; Franx, A. Risk Factors for Cardiovascular Disease in Women with a History of Pregnancy Complicated by Preeclampsia or Intrauterine Growth Restriction. Hypertens. Pregnancy 2007, 26, 39–50. [Google Scholar] [CrossRef]
- Bujold, E.; Roberge, S.; Lacasse, Y.; Bureau, M.; Audibert, F.; Marcoux, S.; Forest, J.-C.; Giguère, Y. Prevention of Preeclampsia and Intrauterine Growth Restriction with Aspirin Started in Early Pregnancy: A Meta-Analysis. Obstet. Gynecol. 2010, 116, 402–414. [Google Scholar] [CrossRef]
- Blomqvist, L.R.F.; Strandell, A.M.; Baghaei, F.; Hellgren, M.S.E. Platelet Aggregation in Healthy Women during Normal Pregnancy—A Longitudinal Study. Platelets 2019, 30, 438–444. [Google Scholar] [CrossRef]
- Can, M.M.; Kaymaz, C.; Can, E.; Tanboğa, I.H.; Api, O.; Kars, B.; Ceren Tokgoz, H.; Turkyilmaz, E.; Akgun, T.; Sonmez, K.; et al. Whole Blood Platelet Aggregation Failed to Detect Differences between Preeclampsia and Normal Pregnancy. Platelets 2010, 21, 496–497. [Google Scholar] [CrossRef]
- Navaratnam, K.; Alfirevic, A.; Jorgensen, A.; Alfirevic, Z. Aspirin Non-Responsiveness in Pregnant Women at High-Risk of Pre-Eclampsia. Eur. J. Obstet. Gynecol. Reprod. Biol. 2018, 221, 144–150. [Google Scholar] [CrossRef]
- Norris, L.A.; Gleeson, N.; Sheppard, B.L.; Bonnar, J. Whole Blood Platelet Aggregation in Moderate and Severe Pre-Eclampsia. BJOG Int. J. Obstet. Gynaecol. 1993, 100, 684–688. [Google Scholar] [CrossRef] [PubMed]
- Lam, F.W.; Vijayan, K.V.; Rumbaut, R.E. Platelets and Their Interactions with Other Immune Cells. Compr. Physiol. 2015, 5, 1265–1280. [Google Scholar] [CrossRef] [Green Version]
- Tsoupras, A.; Zabetakis, I.; Lordan, R. Platelet Aggregometry Assay for Evaluating the Effects of Platelet Agonists and Antiplatelet Compounds on Platelet Function in Vitro. MethodsX 2019, 6, 63–70. [Google Scholar] [CrossRef]
FGR (n = 44) | Uncomplicated Pregnancy (n = 67) | p-Value | |
---|---|---|---|
Age (years), mean ± SD | 28.6 ± 5.1 | 30.39 ± 5.01 | 0.075 |
Number of pregnancies, mean ± SD | 1.5 ± 0.85 | 2.1 ± 1.2 | 0.001 |
BMI (kg/m2), mean ± SD | 27.7 ± 5.7 | 26.7 ± 3.3 | 0.298 |
Delivery (week of pregnancy), mean ± SD | 35.8 ± 3.7 | 39.2 ± 1.0 | <0.001 |
Preterm birth (%) | 34.9 | 3.1 | <0.001 |
Spontaneous labor (%) | 30.2 | 52.3 | |
Cesarean section (%) | 67.4 | 35.4 | 0.003 |
Vacuum extractor/forceps surgery (%) | 2.3 | 12.3 | |
Cesarean section for urgent indications (%) | 44.0 | 4.3 | 0.002 |
Platelet count (G/L), mean ± SD | 220.6 ± 50.3 | 212.6 ± 50.6 | 0.422 |
MPV (fL), mean ± SD | 11.3 ± 0.9 | 10.9 ± 1.2 | 0.086 |
Non-Pregnant Control (n = 24) | FGR (n = 44) | Uncomplicated Pregnancy (n = 67) | |||||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | p-Value | |
ROS (FU) | 173.1 | 60.1 | 292.1 | 32.8 | 240.3 | 33.1 | <0.001 |
Oxygen consumption (FU) | 35,818.3 | 2730.8 | 26,191.8 | 4925.7 | 36,722.9 | 4525.5 | <0.001 |
Intracellular oxygen deficit (FU) | 949.2 | 119.8 | 1131.0 | 248.2 | 980.5 | 104.1 | 0.002 |
FGR (n = 44) | Uncomplicated Pregnancy (n = 67) | ||||
---|---|---|---|---|---|
Mean | SD | Mean | SD | p-Value | |
min) | 252.62 | 161.37 | 217.60 | 117.25 | 0.330 |
min) | 434.79 | 212.62 | 403.23 | 162.87 | 0.534 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowaczyk, J.; Poniedziałek, B.; Rzymski, P.; Sikora, D.; Ropacka-Lesiak, M. Platelets in Fetal Growth Restriction: Role of Reactive Oxygen Species, Oxygen Metabolism, and Aggregation. Cells 2022, 11, 724. https://doi.org/10.3390/cells11040724
Nowaczyk J, Poniedziałek B, Rzymski P, Sikora D, Ropacka-Lesiak M. Platelets in Fetal Growth Restriction: Role of Reactive Oxygen Species, Oxygen Metabolism, and Aggregation. Cells. 2022; 11(4):724. https://doi.org/10.3390/cells11040724
Chicago/Turabian StyleNowaczyk, Joanna, Barbara Poniedziałek, Piotr Rzymski, Dominika Sikora, and Mariola Ropacka-Lesiak. 2022. "Platelets in Fetal Growth Restriction: Role of Reactive Oxygen Species, Oxygen Metabolism, and Aggregation" Cells 11, no. 4: 724. https://doi.org/10.3390/cells11040724
APA StyleNowaczyk, J., Poniedziałek, B., Rzymski, P., Sikora, D., & Ropacka-Lesiak, M. (2022). Platelets in Fetal Growth Restriction: Role of Reactive Oxygen Species, Oxygen Metabolism, and Aggregation. Cells, 11(4), 724. https://doi.org/10.3390/cells11040724