Investigation of the Antifungal and Anticancer Effects of the Novel Synthesized Thiazolidinedione by Ion-Conductance Microscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate Modification and Yeast Cell Preparation
2.2. Cell Lines
2.3. Cytotoxicity Assay
2.4. Scanning Ion-Conductance Microscopy
2.5. Amperometric ROS Measurements in a Single Cell
3. Results and Discussion
3.1. Effect of the Drug L-173 on Candida spp.
3.2. Effects of Antimicrobials on Mammalian Cells
3.3. Intracellular ROS Level Measurement
3.4. Cytotoxicity Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO Fungal Priority Pathogens List to Guide Research, Development and Public Health Action. Available online: https://www.who.int/publications/i/item/9789240060241 (accessed on 25 October 2022).
- Raut, A.; Huy, N.T. Rising incidence of mucormycosis in patients with COVID-19: Another challenge for India amidst the second wave? Lancet Respir. Med. 2021, 9, e77. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.D.; Denning, D.W.; Gow, N.A.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden killers: Human fungal infections. Sci. Transl. Med. 2012, 4, 165rv13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denning, D.W. Antifungal drug resistance: An update. Eur. J. Hosp. Pharm. 2022, 29, 109–112. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A. Antifungal drug resistance: Mechanisms, epidemiology, and consequences for treatment. Am. J. Med. 2012, 125, S3–S13. [Google Scholar] [CrossRef]
- Linden, J.W.; Snelders, E.; Kampinga, G.A.; Rijnders, B.J.; Mattsson, E.; Debets-Ossenkopp, Y.J.; Kuijper, E.J.; Van Tiel, F.H.; Melchers, W.J.G.; Verweij, P.E. Clinical implications of azole resistance in aspergillus fumigatus, The Netherlands, 2007–2009. Emerg. Infect. Dis. 2011, 17, 1846–1854. [Google Scholar] [CrossRef]
- Kerns, E.; Di, L. Drug-like Properties: Concepts, Structure Design and Methods, 1st ed.; Elsevier: New York, NY, USA, 2008; ISBN 9780080557618. [Google Scholar]
- Avdeef, A. Solubility of sparingly-soluble ionizable drugs. Adv. Drug Deliv. Rev. 2007, 59, 568–590. [Google Scholar] [CrossRef]
- Meunier, B. Hybrid molecules with a dual mode of action: Dream or reality? Acc. Chem. Res. 2008, 41, 69–77. [Google Scholar] [CrossRef]
- Rossi, R.; Ciofalo, M. An updated review on the synthesis and antibacterial activity of molecular hybrids and conjugates bearing imidazole moiety. Molecules 2020, 25, 5133. [Google Scholar] [CrossRef]
- Bérubé, G. An overview of molecular hybrids in drug discovery. Expert Opin. Drug Discov. 2016, 11, 281–305. [Google Scholar] [CrossRef]
- Emami, S.; Ghobadi, E.; Saednia, S.; Hashemi, S.M. Current advances of triazole alcohols derived from fluconazole: Design, in vitro and in silico studies. Eur. J. Med. Chem. 2019, 170, 173–194. [Google Scholar] [CrossRef]
- Levshin, I.; Polshakov, V.; Simonov, A.; Grammatikova, N. Hybrid Amides Based on Triazole and Thiazolidine Having Antimicrobial Activity. RU Patent 2703997 C1, 23 October 2019. [Google Scholar]
- Levshin, I.; Sandulenko, Y.; Polyakova, M.; Grammatikova, N.; Vasilyeva, N.; Bogomolova, T. Hybrid Derivatives of (1h-1,2,4) Triazole and Sulphur-Containing Heterocycles: Derivatives of Thiazolidine-2,4-Dione, Thiomorpholine-3-One, and 1,4-Thiazepan-3-One, Exhibiting Antimicrobial Activity. RU Patent 2771027 C1, 25 April 2022. [Google Scholar]
- Volkova, T.; Levshin, I.; Perlovich, G. New antifungal compound: Solubility thermodynamics and partitioning processes in biologically relevant solvents. J. Mol. Liq. 2020, 310, 113148. [Google Scholar] [CrossRef]
- Volkova, T.V.; Perlovich, G.L. Comparative analysis of solubilization and complexation characteristics for new antifungal compound with cyclodextrins. Impact of cyclodextrins on distribution process. Eur. J. Pharm. Sci. 2020, 154, 105531. [Google Scholar] [CrossRef] [PubMed]
- Englund, G.; Lundquist, P.; Skogastierna, C.; Johansson, J.; Hoogstraate, J.; Afzelius, L.; Andersson, T.B.; Projean, D. Functional ATP-binding cassette drug efflux transporters in isolated human and rat hepatocytes significantly affect assessment of drug disposition. Drug Metab. Dispos. 2014, 42, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Genovese, I.; Ilari, A.; Assaraf, Y.G.; Fazi, F.; Colotti, G. Not only P-glycoprotein: Amplification of the ABCB1-containing chromosome region 7q21 confers multidrug resistance upon cancer cells by coordinated overexpression of an assortment of resistance-related proteins. Drug Resist. 2017, 32, 23–46. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.W.; Elbassiouny, M.; Elkhodary, D.A.; Shawki, M.A.; Saad, A.S. The effect of itraconazole on the clinical outcomes of patients with advanced non-small cell lung cancer receiving platinum-based chemotherapy: A randomized controlled study. Med. Oncol. 2021, 38, 23. [Google Scholar] [CrossRef]
- Takahashi, S.; Karayama, M.; Takahashi, M.; Watanabe, J.; Minami, H.; Yamamoto, N.; Kinoshita, I.; Lin, C.C.; Im, Y.H.; Achiwa, I.; et al. pharmacokinetics, safety, and efficacy of trastuzumab deruxtecan with concomitant ritonavir or itraconazole in patients with HER2-expressing advanced solid tumors. Clin. Cancer Res. 2021, 27, 5771–5780. [Google Scholar] [CrossRef]
- Lima, T.S.; Souza, L.O.; Iglesias-Gato, D.; Elversang, J.; Jørgensen, F.S.; Kallunki, T.; Røder, M.A.; Brasso, K.; Moreira, J.M. itraconazole reverts ABCB1-mediated docetaxel resistance in prostate cancer. Front. Pharmacol. 2022, 13, 869461. [Google Scholar] [CrossRef]
- Kumar, V.; Kaur, K.; Gupta, G.K.; Sharma, A.K. Pyrazole containing natural products: Synthetic preview and biological significance. Eur. J. Med. Chem. 2013, 69, 735–753. [Google Scholar] [CrossRef]
- Kaur, K.; Kumar, V.; Gupta, G.K. Trifluoromethylpyrazoles as anti-inflammatory and antibacterial agents: A review. J. Fluor. Chem. 2015, 178, 306–326. [Google Scholar] [CrossRef]
- Yan, L.; Zhang, J.D.; Cao, Y.B.; Gao, P.H.; Jiang, Y.Y. Proteomic Analysis Reveals a Metabolism Shift in a Laboratory Fluconazole-Resistant Candida albicans strain. J. Proteome Res. 2007, 6, 2248–2256. [Google Scholar] [CrossRef]
- Thevissen, K.; Ayscough, K.R.; Aerts, A.M.; Du, W.; De Brucker, K.; Meert, E.M.K.; Ausma, J.; Borgers, M.; Cammue, B.P.A.; François, I.E. Miconazole induces changes in actin cytoskeleton prior to reactive oxygen species induction in yeast. J. Biol. Chem. 2007, 282, 21592–21597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, L.; Li, M.; Cao, Y.; Gao, P.; Cao, Y.; Wang, Y.; Jiang, Y. The alternative oxidase of Candida albicans causes reduced fluconazole susceptibility. J. Antimicrob. Chemother. 2009, 64, 764–773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francois, I.; Cammue, B.; Borgers, M.; Ausma, J.; Dispersyn, G.D.; Thevissen, K. Azoles: Mode of antifungal action and resistance development. Effect of miconazole on endogenous reactive oxygen species production in Candida albicans. Antiinfect. Agents Med. Chem. 2006, 5, 3–13. [Google Scholar] [CrossRef]
- Kobayashi, D.; Kondo, K.; Uehara, N.; Otokozawa, S.; Tsuji, N.; Yagihashi, A.; Watanabe, N. Endogenous reactive oxygen species is an important mediator of miconazole antifungal effect. Antimicrob. Agents Chemother. 2002, 46, 3113–3117. [Google Scholar] [CrossRef] [Green Version]
- Savin, N.; Erofeev, A.; Kolmogorov, V.; Salikhov, S.; Efremov, Y.; Timashev, P.; Grammatikova, N.; Levshin, I.; Edwards, C.; Korchev, Y.; et al. Scanning ion-conductance microscopy technique for studying the topography and mechanical properties of Candida parapsilosis yeast microorganisms. Biomater. Sci. 2023, 11, 611–617. [Google Scholar] [CrossRef]
- Takahashi, Y.; Zhou, Y.; Miyamoto, T.; Higashi, H.; Nakamichi, N.; Takeda, Y.; Kato, Y.; Korchev, Y.; Fukuma, T. High-speed SICM for the visualization of nanoscale dynamic structural changes in hippocampal neurons. Anal. Chem. 2020, 92, 2159–2167. [Google Scholar] [CrossRef]
- Zhang, Y.; Takahashi, Y.; Hong, S.P.; Liu, F.; Bednarska, J.; Goff, P.S.; Novak, P.; Shevchuk, A.; Gopal, S.; Barozzi, I.; et al. High-resolution label-free 3D mapping of extracellular pH of single living cells. Nat. Commun. 2019, 10, 5610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, T.; Bednarska, J.; Vassilopoulos, S.; Tran, M.; Diakonov, I.A.; Ziyadeh-Isleem, A.; Guicheney, P.; Gorelik, J.; Korchev, Y.E.; Reilly, M.M.; et al. Correlative SICM-FCM reveals changes in morphology and kinetics of endocytic pits induced by disease-associated mutations in dynamin. FASEB J. 2019, 33, 8504–8518. [Google Scholar] [CrossRef] [Green Version]
- Rheinlaender, J.; Novak, P.; Korchev, Y.E.; Schäffer, T.E. Comparison of atomic force microscopy and scanning ion conductance microscopy for live cell imaging. Langmuir 2015, 31, 6807–6813. [Google Scholar] [CrossRef]
- Clarke, R.W.; Novak, P.; Zhukov, A.; Tyler, E.J.; Cano-Jaimez, M.; Drews, A.; Richards, O.; Volynski, K.; Bishopc, C.; Klenerman, D. Low stress ion conductance microscopy of sub-cellular stiffness. Soft Matter. 2016, 12, 7953–7958. [Google Scholar] [CrossRef] [Green Version]
- Kolmogorov, V.; Erofeev, A.; Woodcock, E.; Efremov, Y.M.; Iakovlev, A.P.; Savin, N.A.; Alova, A.V.; Lavrushkina, S.V.; Kireev, I.I.; Prelovskaya, A.O.; et al. Mapping mechanical properties of living cells at nanoscale using intrinsic nanopipette–sample force interactions. Nanoscale 2021, 13, 6558–6568. [Google Scholar] [CrossRef] [PubMed]
- Petrov, R.A.; Mefedova, S.R.; Yamansarov, E.Y.; Maklakova, S.Y.; Grishin, D.A.; Lopatukhina, E.V.; Burenina, O.Y.; Lopukhov, A.V.; Kovalev, S.V.; Timchenko, Y.V.; et al. New small-molecule glycoconjugates of docetaxel and GalNAc for targeted delivery to hepatocellular carcinoma. Mol. Pharm. 2021, 18, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Novotortsev, V.K.; Kukushkin, M.E.; Tafeenko, V.A.; Skvortsov, D.A.; Kalinina, M.A.; Timoshenko, R.V.; Chmelyuk, N.S.; Vasilyeva, L.A.; Tarasevich, B.N.; Gorelkin, P.V.; et al. Dispirooxindoles based on 2-selenoxo-imidazolidin-4-ones: Synthesis, cytotoxicity and ROS generation ability. Int. J. Mol. Sci. 2021, 22, 2613. [Google Scholar] [CrossRef] [PubMed]
- Novak, P.; Li, C.; Shevchuk, A.I.; Stepanyan, R.; Caldwell, M.; Hughes, S.; Smart, T.G.; Gorelik, J.; Ostanin, V.P.; Lab, M.J.; et al. Nanoscale live-cell imaging using hopping probe ion conductance microscopy. Nat. Methods 2009, 6, 279–281. [Google Scholar] [CrossRef] [Green Version]
- Levshin, I.; Simonov, A.; Lavrenov, S.; Panov, A.; Grammatikova, N.; Alexandrov, A.; Ghazy, E.; Savin, N.; Gorelkin, P.; Erofeev, A.; et al. Antifungal thiazolidines: Synthesis and biological evaluation of mycosidine congeners. Pharmaceuticals 2022, 15, 563. [Google Scholar] [CrossRef]
- Vaneev, A.N.; Gorelkin, P.V.; Garanina, A.S.; Lopatukhina, H.V.; Lopatukhina, H.V.; Vodopyanov, S.; Alova, A.; Ryabaya, O.; Akasov, R.; Zhang, Y.; et al. In vitro and in vivo electrochemical measurement of reactive oxygen species after treatment with anticancer drugs. Anal. Chem. 2020, 92, 8010–8014. [Google Scholar] [CrossRef]
- Erofeev, A.; Gorelkin, P.; Garanina, A.; Alova, A.; Efremova, M.; Vorobyeva, N.; Edwards, C.; Korchev, Y.; Majouga, A. Novel method for rapid toxicity screening of magnetic nanoparticles. Sci. Rep. 2018, 8, 7462. [Google Scholar] [CrossRef] [Green Version]
- Tsubamoto, H.; Ueda, T.; Inoue, K.; Sakata, K.; Shibahara, H.; Sonoda, T. Repurposing itraconazole as an anticancer agent. Oncol. Lett. 2017, 14, 1240–1246. [Google Scholar] [CrossRef] [Green Version]
- Abdelhameid, M.K.; Zaki, I.; Mohammed, M.R.; Mohamed, K.O. Design, synthesis, and cytotoxic screening of novel azole derivatives on hepatocellular carcinoma (HepG2 Cells). Bioorganic Chem. 2020, 101, 103995. [Google Scholar] [CrossRef]
- Yoshizumi, T.; Ohta, T.; Ninomiya, I.; Terada, I.; Fushida, S.; Fujimura, T.; Nishimura, G.; Shimizu, K.; Yi, S.; Miwa, K. Thiazolidinedione, a peroxisome proliferator-activated receptor-γ ligand, inhibits growth and metastasis of HT-29 human colon cancer cells through differentiation-promoting effects. Int. J. Oncol. 2004, 25, 631–639. [Google Scholar] [CrossRef] [Green Version]
- Tilekar, K.; Shelke, O.; Upadhyay, N.; Lavecchia, A.; Ramaa, C. Current status and future prospects of molecular hybrids with thiazolidinedione (TZD) scaffold in anticancer drug discovery. J. Mol. Struct. 2022, 1250, 131767. [Google Scholar] [CrossRef]
- Krasnovskaya, O.O.; Guk, D.A.; Naumov, A.E.; Nikitina, V.N.; Semkina, A.S.; Vlasova, K.Y.; Pokrovsky, V.; Ryabaya, O.O.; Karshieva, S.S.; Skvortsov, D.A.; et al. Novel Copper-Containing Cytotoxic Agents Based on 2-Thioxoimidazolones. J. Med. Chem. 2020, 63, 13031–13063. [Google Scholar] [CrossRef] [PubMed]
- Machulkin, A.; Uspenskaya, A.; Zyk, N.; Nimenko, E.; Ber, A.; Petrov, S.; Shafikov, R.; Skvortsov, D.; Smirnova, G.; Borisova, Y.; et al. PSMA-Targeted Small-Molecule Docetaxel Conjugate: Synthesis and Preclinical Evaluation. Eur. J. Med. Chem. 2021, 227, 113936. [Google Scholar] [CrossRef]
- Wang, W.; Dong, X.; Liu, Y.; Ni, B.; Sai, N.; You, L.; Sun, M.; Yao, Y.; Qu, C.; Yin, X.; et al. Itraconazole exerts anti-liver cancer potential through the Wnt, PI3K/AKT/mTOR, and ROS pathways. Biomed. Pharmacother. 2020, 131, 110661. [Google Scholar] [CrossRef] [PubMed]
- Perez-Ortiz, J.M.; Tranque, P.; Vaquero, C.F.; Domingo, B.; Molina, F.; Calvo, S.; Jordan, J.; Cena, V.; Llopis, J. Involvement of reactive oxygen species and peroxisome proliferator-activated receptor-γ*. J. Biol. Chem. 2004, 279, 8976–8985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ptaszynska, N.; Olkiewicz, K.; Okonska, J.; Gucwa, K.; Legowska, A.; Gitlin-Domagalska, A.; Debowski, D.; Lica, J.; Heldt, M.; Milewski, S.; et al. Peptide conjugates of lactoferricin analogues and antimicrobials—Design, chemical synthesis, and evaluation of antimicrobial activity and mammalian cytotoxicity. Peptides 2019, 117, 170079. [Google Scholar] [CrossRef]
Candida Species | Drug Concentration L-173, µg/mL | ||||
---|---|---|---|---|---|
1 | 5 | 10 | 20 | 40 | |
C. parapsilosis ATCC 22019 | 1 | 1 | 2 | 2 | 2 |
C. albicans 8R | 0 | 0 | 2 | 2 | 3 |
C. krusei 432M | 0 | 1 | 2 | 2 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savin, N.; Erofeev, A.; Timoshenko, R.; Vaneev, A.; Garanina, A.; Salikhov, S.; Grammatikova, N.; Levshin, I.; Korchev, Y.; Gorelkin, P. Investigation of the Antifungal and Anticancer Effects of the Novel Synthesized Thiazolidinedione by Ion-Conductance Microscopy. Cells 2023, 12, 1666. https://doi.org/10.3390/cells12121666
Savin N, Erofeev A, Timoshenko R, Vaneev A, Garanina A, Salikhov S, Grammatikova N, Levshin I, Korchev Y, Gorelkin P. Investigation of the Antifungal and Anticancer Effects of the Novel Synthesized Thiazolidinedione by Ion-Conductance Microscopy. Cells. 2023; 12(12):1666. https://doi.org/10.3390/cells12121666
Chicago/Turabian StyleSavin, Nikita, Alexander Erofeev, Roman Timoshenko, Alexander Vaneev, Anastasiia Garanina, Sergey Salikhov, Natalia Grammatikova, Igor Levshin, Yuri Korchev, and Petr Gorelkin. 2023. "Investigation of the Antifungal and Anticancer Effects of the Novel Synthesized Thiazolidinedione by Ion-Conductance Microscopy" Cells 12, no. 12: 1666. https://doi.org/10.3390/cells12121666
APA StyleSavin, N., Erofeev, A., Timoshenko, R., Vaneev, A., Garanina, A., Salikhov, S., Grammatikova, N., Levshin, I., Korchev, Y., & Gorelkin, P. (2023). Investigation of the Antifungal and Anticancer Effects of the Novel Synthesized Thiazolidinedione by Ion-Conductance Microscopy. Cells, 12(12), 1666. https://doi.org/10.3390/cells12121666