Establishment of a Murine Chronic Anorexia Nervosa Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Study Design
2.3. Locomotor Activity Determination
2.4. Estrous Cycle Determination
2.5. Brain Volume Measurement
2.6. Nestling Test
2.7. Measurement of Corticosterone Metabolites and Blood Sugar Levels
2.8. Statistics
3. Results
3.1. Acute Starvation Does Not Lead to Both AN-Related Symptoms, Id Est, Hyperactivity and Amenorrhea
3.2. Chronic Starvation in Early Adolescent Mice Induces Hyperactivity and Amenorrhea
3.3. Chronic Starvation with 25% Weight Reduction Induces a Brain Atrophy
3.4. Starvation Leads to a Change in Nestling Behavior, an Increase in Corticosterone Metabolites, and a Decrease in Blood Glucose Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- van Eeden, A.E.; van Hoeken, D.; Hoek, H.W. Incidence, prevalence and mortality of anorexia nervosa and bulimia nervosa. Curr. Opin. Psychiatry 2021, 34, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Herpertz-Dahlmann, B. Adolescent eating disorders: Update on definitions, symptomatology, epidemiology, and comorbidity. Child. Adolesc. Psychiatr. Clin. N. Am. 2015, 24, 177–196. [Google Scholar] [CrossRef]
- Seitz, J.; Buhren, K.; von Polier, G.G.; Heussen, N.; Herpertz-Dahlmann, B.; Konrad, K. Morphological changes in the brain of acutely ill and weight-recovered patients with anorexia nervosa. A meta-analysis and qualitative review. Z. Kinder Jugendpsychiatr. Psychother. 2014, 42, 7–17; quiz 17–18. [Google Scholar] [CrossRef] [PubMed]
- Castro-Fornieles, J.; Caldu, X.; Andres-Perpina, S.; Lazaro, L.; Bargallo, N.; Falcon, C.; Plana, M.T.; Junque, C. A cross-sectional and follow-up functional MRI study with a working memory task in adolescent anorexia nervosa. Neuropsychologia 2010, 48, 4111–4116. [Google Scholar] [CrossRef]
- McCormick, L.M.; Keel, P.K.; Brumm, M.C.; Bowers, W.; Swayze, V.; Andersen, A.; Andreasen, N. Implications of starvation-induced change in right dorsal anterior cingulate volume in anorexia nervosa. Int. J. Eat. Disord. 2008, 41, 602–610. [Google Scholar] [CrossRef] [Green Version]
- Joos, A.; Hartmann, A.; Glauche, V.; Perlov, E.; Unterbrink, T.; Saum, B.; Tuscher, O.; Tebartz van Elst, L.; Zeeck, A. Grey matter deficit in long-term recovered anorexia nervosa patients. Eur. Eat. Disord. Rev. 2011, 19, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Scharner, S.; Stengel, A. Animal Models for Anorexia Nervosa-A Systematic Review. Front. Hum. Neurosci. 2020, 14, 596381. [Google Scholar] [CrossRef]
- Schalla, M.A.; Stengel, A. Activity Based Anorexia as an Animal Model for Anorexia Nervosa-A Systematic Review. Front. Nutr. 2019, 6, 69. [Google Scholar] [CrossRef] [Green Version]
- Spadini, S.; Ferro, M.; Lamanna, J.; Malgaroli, A. Activity-based anorexia animal model: A review of the main neurobiological findings. J. Eat. Disord. 2021, 9, 123. [Google Scholar] [CrossRef]
- Routtenberg, A.; Kuznesof, A.W. Self-starvation of rats living in activity wheels on a restricted feeding schedule. J. Comp. Physiol. Psychol. 1967, 64, 414–421. [Google Scholar] [CrossRef]
- Han, E.S.; Evans, T.R.; Shu, J.H.; Lee, S.; Nelson, J.F. Food restriction enhances endogenous and corticotropin-induced plasma elevations of free but not total corticosterone throughout life in rats. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, B391–B397. [Google Scholar] [CrossRef] [Green Version]
- Sabatino, F.; Masoro, E.J.; McMahan, C.A.; Kuhn, R.W. Assessment of the role of the glucocorticoid system in aging processes and in the action of food restriction. J. Gerontol. 1991, 46, B171–B179. [Google Scholar] [CrossRef] [PubMed]
- Wan, R.; Camandola, S.; Mattson, M.P. Intermittent food deprivation improves cardiovascular and neuroendocrine responses to stress in rats. J. Nutr. 2003, 133, 1921–1929. [Google Scholar] [CrossRef] [Green Version]
- Burden, V.R.; White, B.D.; Dean, R.G.; Martin, R.J. Activity of the hypothalamic-pituitary-adrenal axis is elevated in rats with activity-based anorexia. J. Nutr. 1993, 123, 1217–1225. [Google Scholar] [CrossRef]
- Frintrop, L.; Trinh, S.; Liesbrock, J.; Paulukat, L.; Kas, M.J.; Tolba, R.; Konrad, K.; Herpertz-Dahlmann, B.; Beyer, C.; Seitz, J. Establishment of a chronic activity-based anorexia rat model. J. Neurosci. Methods 2018, 293, 191–198. [Google Scholar] [CrossRef] [Green Version]
- Frintrop, L.; Liesbrock, J.; Paulukat, L.; Johann, S.; Kas, M.J.; Tolba, R.; Heussen, N.; Neulen, J.; Konrad, K.; Herpertz-Dahlmann, B.; et al. Reduced astrocyte density underlying brain volume reduction in activity-based anorexia rats. World J. Biol. Psychiatry 2018, 19, 225–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galmiche, M.; Dechelotte, P.; Lambert, G.; Tavolacci, M.P. Prevalence of eating disorders over the 2000–2018 period: A systematic literature review. Am. J. Clin. Nutr. 2019, 109, 1402–1413. [Google Scholar] [CrossRef]
- Keski-Rahkonen, A.; Mustelin, L. Epidemiology of eating disorders in Europe: Prevalence, incidence, comorbidity, course, consequences, and risk factors. Curr. Opin. Psychiatry 2016, 29, 340–345. [Google Scholar] [CrossRef]
- Silen, Y.; Keski-Rahkonen, A. Worldwide prevalence of DSM-5 eating disorders among young people. Curr. Opin. Psychiatry 2022, 35, 362–371. [Google Scholar] [CrossRef]
- Jagielska, G.; Kacperska, I. Outcome, comorbidity and prognosis in anorexia nervosa. Psychiatr. Pol. 2017, 51, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Deacon, R. Assessing burrowing, nest construction, and hoarding in mice. J. Vis. Exp. 2012, 59, e2607. [Google Scholar] [CrossRef] [Green Version]
- Abdelrahman, A.; Kumstel, S.; Zhang, X.; Liebig, M.; Wendt, E.H.U.; Eichberg, J.; Palme, R.; Thum, T.; Vollmar, B.; Zechner, D. A novel multi-parametric analysis of non-invasive methods to assess animal distress during chronic pancreatitis. Sci. Rep. 2019, 9, 14084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palme, R. Non-invasive measurement of glucocorticoids: Advances and problems. Physiol. Behav. 2019, 199, 229–243. [Google Scholar] [CrossRef] [PubMed]
- Touma, C.; Palme, R.; Sachser, N. Analyzing corticosterone metabolites in fecal samples of mice: A noninvasive technique to monitor stress hormones. Horm. Behav. 2004, 45, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Touma, C.; Sachser, N.; Mostl, E.; Palme, R. Effects of sex and time of day on metabolism and excretion of corticosterone in urine and feces of mice. Gen. Comp. Endocrinol. 2003, 130, 267–278. [Google Scholar] [CrossRef]
- Beeler, J.A.; Mourra, D.; Zanca, R.M.; Kalmbach, A.; Gellman, C.; Klein, B.Y.; Ravenelle, R.; Serrano, P.; Moore, H.; Rayport, S.; et al. Vulnerable and Resilient Phenotypes in a Mouse Model of Anorexia Nervosa. Biol. Psychiatry 2021, 90, 829–842. [Google Scholar] [CrossRef]
- Beeler, J.A.; Burghardt, N.S. Activity-based Anorexia for Modeling Vulnerability and Resilience in Mice. Bio-Protocol 2021, 11, e4009. [Google Scholar] [CrossRef]
- Gabloffsky, T.; Gill, S.; Staffeld, A.; Salomon, R.; Power Guerra, N.; Joost, S.; Hawlitschka, A.; Kipp, M.; Frintrop, L. Food Restriction in Mice Induces Food-Anticipatory Activity and Circadian-Rhythm-Related Activity Changes. Nutrients 2022, 14, 5252. [Google Scholar] [CrossRef]
- Lewis, D.Y.; Brett, R.R. Activity-based anorexia in C57/BL6 mice: Effects of the phytocannabinoid, Delta9-tetrahydrocannabinol (THC) and the anandamide analogue, OMDM-2. Eur. Neuropsychopharmacol. 2010, 20, 622–631. [Google Scholar] [CrossRef]
- Speakman, J.R. Measuring energy metabolism in the mouse—Theoretical, practical, and analytical considerations. Front. Physiol. 2013, 4, 34. [Google Scholar] [CrossRef] [Green Version]
- Fraga, A.; Rial-Pensado, E.; Nogueiras, R.; Ferno, J.; Dieguez, C.; Gutierrez, E.; Lopez, M. Activity-Based Anorexia Induces Browning of Adipose Tissue Independent of Hypothalamic AMPK. Front. Endocrinol. (Lausanne) 2021, 12, 669980. [Google Scholar] [CrossRef]
- Himmerich, H.; Lewis, Y.D.; Conti, C.; Mutwalli, H.; Karwautz, A.; Sjoegren, J.M.; Isaza, M.M.U.; Tyszkiewicz-Nwafor, M.; Aigner, M.; McElroy, S.L.; et al. World Federation of Societies of Biological Psychiatry (WFSBP) guidelines update 2023 on the pharmacological treatment of eating disorders. World J. Biol. Psychia 2023, 12, 400–443. [Google Scholar] [CrossRef]
- Klenotich, S.J.; Seiglie, M.P.; McMurray, M.S.; Roitman, J.D.; Le Grange, D.; Dugad, P.; Dulawa, S.C. Olanzapine, but not fluoxetine, treatment increases survival in activity-based anorexia in mice. Neuropsychopharmacology 2012, 37, 1620–1631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kooij, K.L.; Luijendijk, M.C.M.; Drost, L.; Platenburg, G.; van Elburg, A.; Adan, R.A.H. Intranasal administration of olanzapine has beneficial outcome in a rat activity-based anorexia model. Eur. Neuropsychopharmacol. 2023, 71, 65–74. [Google Scholar] [CrossRef]
- Klenotich, S.J.; Ho, E.V.; McMurray, M.S.; Server, C.H.; Dulawa, S.C. Dopamine D2/3 receptor antagonism reduces activity-based anorexia. Transl. Psychiatry 2015, 5, e613. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.W.; Sherpa, A.D.; Aoki, C. Single injection of ketamine during mid-adolescence promotes long-lasting resilience to activity-based anorexia of female mice by increasing food intake and attenuating hyperactivity as well as anxiety-like behavior. Int. J. Eat. Disord. 2018, 51, 1020–1025. [Google Scholar] [CrossRef]
- Foldi, C.J.; Liknaitzky, P.; Williams, M.; Oldfield, B.J. Rethinking Therapeutic Strategies for Anorexia Nervosa: Insights From Psychedelic Medicine and Animal Models. Front. Neurosci. 2020, 14, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Exner, C.; Hebebrand, J.; Remschmidt, H.; Wewetzer, C.; Ziegler, A.; Herpertz, S.; Schweiger, U.; Blum, W.F.; Preibisch, G.; Heldmaier, G.; et al. Leptin suppresses semi-starvation induced hyperactivity in rats: Implications for anorexia nervosa. Mol. Psychiatry 2000, 5, 476–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hillebrand, J.J.; Koeners, M.P.; de Rijke, C.E.; Kas, M.J.; Adan, R.A. Leptin treatment in activity-based anorexia. Biol. Psychiatry 2005, 58, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Frintrop, L.; Trinh, S.; Liesbrock, J.; Leunissen, C.; Kempermann, J.; Etdoger, S.; Kas, M.J.; Tolba, R.; Heussen, N.; Neulen, J.; et al. The reduction of astrocytes and brain volume loss in anorexia nervosa-the impact of starvation and refeeding in a rodent model. Transl. Psychiatry 2019, 9, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frintrop, L.; Trinh, S.; Seitz, J.; Kipp, M. The Role of Glial Cells in Regulating Feeding Behavior: Potential Relevance to Anorexia Nervosa. J. Clin. Med. 2021, 11, 186. [Google Scholar] [CrossRef] [PubMed]
Animal Group | Hyperactivity | Amenorrhea | Brain Atrophy |
---|---|---|---|
20% weight reduction; 4 weeks old mice; acute starvation | - | - | - |
25% weight reduction; 4 weeks old mice; acute starvation | - | - | - |
20% weight reduction; 8 weeks old mice; acute starvation | - | + | - |
25% weight reduction; 8 weeks old mice; acute starvation | + | - | - |
20% weight reduction; 4 weeks old mice; chronic starvation | + | + | - |
25% weight reduction; 4 weeks old mice; chronic starvation | + | + | + |
20% weight reduction; 8 weeks old mice; chronic starvation | - | + | - |
25% weight reduction; 8 weeks old mice; chronic starvation | + | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Staffeld, A.; Gill, S.; Zimmermann, A.; Böge, N.; Schuster, K.; Lang, S.; Kipp, M.; Palme, R.; Frintrop, L. Establishment of a Murine Chronic Anorexia Nervosa Model. Cells 2023, 12, 1710. https://doi.org/10.3390/cells12131710
Staffeld A, Gill S, Zimmermann A, Böge N, Schuster K, Lang S, Kipp M, Palme R, Frintrop L. Establishment of a Murine Chronic Anorexia Nervosa Model. Cells. 2023; 12(13):1710. https://doi.org/10.3390/cells12131710
Chicago/Turabian StyleStaffeld, Anna, Sadaf Gill, Annelie Zimmermann, Natalie Böge, Katharina Schuster, Stephan Lang, Markus Kipp, Rupert Palme, and Linda Frintrop. 2023. "Establishment of a Murine Chronic Anorexia Nervosa Model" Cells 12, no. 13: 1710. https://doi.org/10.3390/cells12131710
APA StyleStaffeld, A., Gill, S., Zimmermann, A., Böge, N., Schuster, K., Lang, S., Kipp, M., Palme, R., & Frintrop, L. (2023). Establishment of a Murine Chronic Anorexia Nervosa Model. Cells, 12(13), 1710. https://doi.org/10.3390/cells12131710