Unraveling the Role of Toll-like Receptors in the Immunopathogenesis of Selected Primary and Secondary Immunodeficiencies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Material and Characteristics of Patients Included in The study
2.2. Peripheral Blood Immunophenotype Analysis
2.3. Evaluation of the Concentration of Soluble Forms of the Tested TLRs in the Serum of Patients Included in the Study
2.4. Statistical Analysis of the Results Obtained
3. Results
3.1. The Importance of Peripheral Blood Counts and Immunoglobulin Levels in Immunodeficient Patients Compared to Healthy Volunteers
3.2. Analysis of the Immunophenotype in the Course of Immunodeficiency in Patients with CVID and CLL in Relation to Healthy Volunteers
3.3. Investigation of the Percentage of Selected Subpopulations of Peripheral Blood Lymphocytes Showing Positive Expression of Tested TLRs in Immunodeficient Patients Compared to Healthy Volunteers
3.4. Quantitative Analysis of Soluble Forms of TLRs (sTLRs) in the Serum of Immunodeficient Patients in Relation to Healthy Volunteers
3.5. The Role of Tested TLRs in the Immunopathogenesis of Immunodeficiencies—Analysis of Correlations
3.6. The Potential of TLRs as Predictive Biomarkers for the Detection of Immunodeficiencies—ROC Curve Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Long, A.; Kleiner, A.; Looney, R.J. Immune Dysregulation. J. Allergy Clin. Immunol. 2023, 151, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Ballow, M.; Sánchez-Ramón, S.; Walter, J.E. Secondary Immune Deficiency and Primary Immune Deficiency Crossovers: Hematological Malignancies and Autoimmune Diseases. Front. Immunol. 2022, 13, 928062. [Google Scholar] [CrossRef] [PubMed]
- Justiz Vaillant, A.A.; Qurie, A. Immunodeficiency. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- McCusker, C.; Upton, J.; Warrington, R. Primary Immunodeficiency. Allergy Asthma Clin. Immunol. 2018, 14, 61. [Google Scholar] [CrossRef]
- Tuano, K.S.; Seth, N.; Chinen, J. Secondary Immunodeficiencies: An Overview. Ann. Allergy Asthma Immunol. 2021, 127, 617–626. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, T.; Kawai, T. Toll-Like Receptor Signaling Pathways. Front. Immunol. 2014, 5, 461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medzhitov, R. Toll-like Receptors and Innate Immunity. Nat. Rev. Immunol. 2001, 1, 135–145. [Google Scholar] [CrossRef]
- El-Zayat, S.R.; Sibaii, H.; Mannaa, F.A. Toll-like Receptors Activation, Signaling, and Targeting: An Overview. Bull. Natl. Res. Cent. 2019, 43, 187. [Google Scholar] [CrossRef] [Green Version]
- Sameer, A.S.; Nissar, S. Toll-Like Receptors (TLRs): Structure, Functions, Signaling, and Role of Their Polymorphisms in Colorectal Cancer Susceptibility. Biomed. Res. Int. 2021, 2021, 1157023. [Google Scholar] [CrossRef]
- Montero Vega, M.T.; de Andrés Martín, A. The Significance of Toll-like Receptors in Human Diseases. Allergol. Immunopathol. 2009, 37, 252–263. [Google Scholar] [CrossRef]
- Goulopoulou, S.; McCarthy, C.G.; Webb, R.C. Toll-like Receptors in the Vascular System: Sensing the Dangers Within. Pharmacol. Rev. 2016, 68, 142–167. [Google Scholar] [CrossRef]
- Lara-Reyna, S.; Holbrook, J.; Jarosz-Griffiths, H.H.; Peckham, D.; McDermott, M.F. Dysregulated Signalling Pathways in Innate Immune Cells with Cystic Fibrosis Mutations. Cell. Mol. Life Sci. 2020, 77, 4485–4503. [Google Scholar] [CrossRef] [PubMed]
- Maglione, P.J.; Simchoni, N.; Cunningham-Rundles, C. Toll-like Receptor Signaling in Primary Immune Deficiencies. Ann. N. Y. Acad. Sci. 2015, 1356, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kayesh, M.E.H.; Kohara, M.; Tsukiyama-Kohara, K. Toll-like Receptor Response to Human Immunodeficiency Virus Type 1 or Co-Infection with Hepatitis B or C Virus: An Overview. Int. J. Mol. Sci. 2023, 24, 9624. [Google Scholar] [CrossRef]
- Browne, E.P. The Role of Toll-Like Receptors in Retroviral Infection. Microorganisms 2020, 8, 1787. [Google Scholar] [CrossRef]
- Arancibia, S.A.; Beltrán, C.J.; Aguirre, I.M.; Silva, P.; Peralta, A.L.; Malinarich, F.; Hermoso, M.A. Toll-like Receptors Are Key Participants in Innate Immune Responses. Biol. Res. 2007, 40, 97–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Common Variable Immunodeficiency (CVID)|NIH: National Institute of Allergy and Infectious Diseases. Available online: https://www.niaid.nih.gov/diseases-conditions/common-variable-immunodeficiency-cvid (accessed on 5 July 2023).
- Yazdani, R.; Habibi, S.; Sharifi, L.; Azizi, G.; Abolhassani, H.; Olbrich, P.; Aghamohammadi, A. Common Variable Immunodeficiency: Epidemiology, Pathogenesis, Clinical Manifestations, Diagnosis, Classification, and Management. J. Investig. Allergol. Clin. Immunol. 2020, 30, 14–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mormile, I.; Punziano, A.; Riolo, C.A.; Granata, F.; Williams, M.; de Paulis, A.; Spadaro, G.; Rossi, F.W. Common Variable Immunodeficiency and Autoimmune Diseases: A Retrospective Study of 95 Adult Patients in a Single Tertiary Care Center. Front. Immunol. 2021, 12, 652487. [Google Scholar] [CrossRef]
- Wong, G.K.; Huissoon, A.P. T-Cell Abnormalities in Common Variable Immunodeficiency: The Hidden Defect. J. Clin. Pathol. 2016, 69, 672–676. [Google Scholar] [CrossRef] [Green Version]
- Bateman, E.A.L.; Ayers, L.; Sadler, R.; Lucas, M.; Roberts, C.; Woods, A.; Packwood, K.; Burden, J.; Harrison, D.; Kaenzig, N.; et al. T Cell Phenotypes in Patients with Common Variable Immunodeficiency Disorders: Associations with Clinical Phenotypes in Comparison with Other Groups with Recurrent Infections. Clin. Exp. Immunol. 2012, 170, 202–211. [Google Scholar] [CrossRef]
- Agarwal, S.; Cunningham-Rundles, C. Autoimmunity in Common Variable Immunodeficiency. Curr. Allergy Asthma. Rep. 2009, 9, 347–352. [Google Scholar] [CrossRef] [Green Version]
- Ho, H.; Cunningham-Rundles, C. Seeking Relevant Biomarkers in Common Variable Immunodeficiency. Front. Immunol. 2022, 13, 857050. [Google Scholar] [CrossRef] [PubMed]
- Mukkamalla, S.K.R.; Taneja, A.; Malipeddi, D.; Master, S.R. Chronic Lymphocytic Leukemia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Kipps, T.J.; Stevenson, F.K.; Wu, C.J.; Croce, C.M.; Packham, G.; Wierda, W.G.; O’Brien, S.; Gribben, J.; Rai, K. Chronic Lymphocytic Leukaemia. Nat. Rev. Dis. Primers 2017, 3, 16096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shadman, M. Diagnosis and Treatment of Chronic Lymphocytic Leukemia: A Review. JAMA 2023, 329, 918. [Google Scholar] [CrossRef]
- Hallek, M. Chronic Lymphocytic Leukemia: 2020 Update on Diagnosis, Risk Stratification and Treatment. Am. J. Hematol. 2019, 94, 1266–1287. [Google Scholar] [CrossRef] [Green Version]
- Hallek, M.; Al-Sawaf, O. Chronic Lymphocytic Leukemia: 2022 Update on Diagnostic and Therapeutic Procedures. Am. J. Hematol. 2021, 96, 1679–1705. [Google Scholar] [CrossRef]
- Rivera, D.; Ferrajoli, A. Managing the Risk of Infection in Chronic Lymphocytic Leukemia in the Era of New Therapies. Curr. Oncol. Rep. 2022, 24, 1003–1014. [Google Scholar] [CrossRef]
- Nosari, A. Infectious Complications in Chronic Lymphocytic Leukemia. Mediterr. J. Hematol. Infect. Dis. 2012, 4, e2012070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vlachonikola, E.; Stamatopoulos, K.; Chatzidimitriou, A. T Cells in Chronic Lymphocytic Leukemia: A Two-Edged Sword. Front. Immunol. 2021, 11, 612244. [Google Scholar] [CrossRef]
- Roessner, P.M.; Seiffert, M. T-Cells in Chronic Lymphocytic Leukemia: Guardians or Drivers of Disease? Leukemia 2020, 34, 2012–2024. [Google Scholar] [CrossRef]
- Aluri, J.; Cooper, M.A.; Schuettpelz, L.G. Toll-Like Receptor Signaling in the Establishment and Function of the Immune System. Cells 2021, 10, 1374. [Google Scholar] [CrossRef]
- Azam, S.; Jakaria, M.; Kim, I.-S.; Kim, J.; Haque, M.E.; Choi, D.-K. Regulation of Toll-Like Receptor (TLR) Signaling Pathway by Polyphenols in the Treatment of Age-Linked Neurodegenerative Diseases: Focus on TLR4 Signaling. Front. Immunol. 2019, 10, 1000. [Google Scholar] [CrossRef]
- Hennessy, E.J.; Parker, A.E.; O’Neill, L.A.J. Targeting Toll-like Receptors: Emerging Therapeutics? Nat. Rev. Drug Discov. 2010, 9, 293–307. [Google Scholar] [CrossRef] [PubMed]
- Dropulic, L.K.; Lederman, H.M. Overview of Infections in the Immunocompromised Host. Microbiol. Spectr. 2016, 4, 1–50. [Google Scholar] [CrossRef] [PubMed]
- Goronzy, J.J.; Gustafson, C.E.; Weyand, C.M. Immune Deficiencies at the Extremes of Age. In Clinical Immunology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 535–543.e1. [Google Scholar] [CrossRef]
- Farrugia, M.; Baron, B. The Role of Toll-Like Receptors in Autoimmune Diseases through Failure of the Self-Recognition Mechanism. Int. J. Inflam. 2017, 2017, 8391230. [Google Scholar] [CrossRef] [Green Version]
- Duan, T.; Du, Y.; Xing, C.; Wang, H.Y.; Wang, R.-F. Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity. Front. Immunol. 2022, 13, 812774. [Google Scholar] [CrossRef]
- McAlpine, W.; Sun, L.; Wang, K.; Liu, A.; Jain, R.; San Miguel, M.; Wang, J.; Zhang, Z.; Hayse, B.; McAlpine, S.G.; et al. Excessive Endosomal TLR Signaling Causes Inflammatory Disease in Mice with Defective SMCR8-WDR41-C9ORF72 Complex Function. Proc. Natl. Acad. Sci. USA 2018, 115, E11523–E11531. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.E.; Knight, A.K.; Radigan, L.; Marron, T.U.; Zhang, L.; Sanchez-Ramón, S.; Cunningham-Rundles, C. Toll-like Receptor 7 and 9 Defects in Common Variable Immunodeficiency. J. Allergy Clin. Immunol. 2009, 124, 349–356.e3. [Google Scholar] [CrossRef] [Green Version]
- Taraldsrud, E.; Fevang, B.; Aukrust, P.; Beiske, K.H.; Fløisand, Y.; Frøland, S.; Rollag, H.; Olweus, J. Common Variable Immunodeficiency Revisited: Normal Generation of Naturally Occurring Dendritic Cells That Respond to Toll-like Receptors 7 and 9. Clin. Exp. Immunol. 2014, 175, 439–448. [Google Scholar] [CrossRef]
- Trujillo, C.M.; Muskus, C.; Arango, J.; Patiño, P.J.; Montoya, C.J. Quantitative and Functional Evaluation of Innate Immune Responses in Patients with Common Variable Immunodeficiency. J. Investig. Allergol. Clin. Immunol. 2011, 21, 207–215. [Google Scholar] [PubMed]
- Marron, T.U.; Yu, J.E.; Cunningham-Rundles, C. Toll-like Receptor Function in Primary B Cell Defects. Front. Biosci. 2012, 4, 1853–1863. [Google Scholar] [CrossRef]
- Visentini, M.; Conti, V.; Cagliuso, M.; Tinti, F.; Siciliano, G.; Trombetta, A.C.; Mitterhofer, A.P.; Fiorilli, M.; Quinti, I. Regression of Systemic Lupus Erythematosus after Development of an Acquired Toll-like Receptor Signaling Defect and Antibody Deficiency. Arthritis Rheum. 2009, 60, 2767–2771. [Google Scholar] [CrossRef]
- Chapel, H.; Lucas, M.; Lee, M.; Bjorkander, J.; Webster, D.; Grimbacher, B.; Fieschi, C.; Thon, V.; Abedi, M.R.; Hammarstrom, L. Common Variable Immunodeficiency Disorders: Division into Distinct Clinical Phenotypes. Blood 2008, 112, 277–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunningham-Rundles, C. Common Variable Immunodeficiency. Curr. Allergy Asthma Rep. 2001, 1, 421–429. [Google Scholar] [CrossRef]
- Yu, J.E.; Zhang, L.; Radigan, L.; Sanchez-Ramon, S.; Cunningham-Rundles, C. TLR-Mediated B Cell Defects and IFN-α in Common Variable Immunodeficiency. J. Clin. Immunol. 2012, 32, 50–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanaei, R.; Rezaei, N.; Aghamohammadi, A.; Delbandi, A.-A.; Teimourian, S.; Yazdani, R.; Tavasolian, P.; Kiaee, F.; Tajik, N. Evaluation of the TLR Negative Regulatory Network in CVID Patients. Genes Immun. 2019, 20, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Mongini, P.K.A.; Gupta, R.; Boyle, E.; Nieto, J.; Lee, H.; Stein, J.; Bandovic, J.; Stankovic, T.; Barrientos, J.; Kolitz, J.E.; et al. TLR-9 and IL-15 Synergy Promotes the In Vitro Clonal Expansion of Chronic Lymphocytic Leukemia B Cells. J. Immunol. 2015, 195, 901–923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, R.; Yan, X.J.; Barrientos, J.; Kolitz, J.E.; Allen, S.L.; Rai, K.; Chiorazzi, N.; Mongini, P.K.A. Mechanistic Insights into CpG DNA and IL-15 Synergy in Promoting B Cell Chronic Lymphocytic Leukemia Clonal Expansion. J. Immunol. 2018, 201, 1570–1585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dampmann, M.; Görgens, A.; Möllmann, M.; Murke, F.; Dührsen, U.; Giebel, B.; Dürig, J. CpG Stimulation of Chronic Lymphocytic Leukemia Cells Induces a Polarized Cell Shape and Promotes Migration in Vitro and in Vivo. PLoS ONE 2020, 15, e0228674. [Google Scholar] [CrossRef] [Green Version]
- Wagner, M.; Oelsner, M.; Moore, A.; Götte, F.; Kuhn, P.-H.; Haferlach, T.; Fiegl, M.; Bogner, C.; Baxter, E.J.; Peschel, C.; et al. Integration of Innate into Adaptive Immune Responses in ZAP-70-Positive Chronic Lymphocytic Leukemia. Blood 2016, 127, 436–448. [Google Scholar] [CrossRef] [Green Version]
- Muzio, M.; Scielzo, C.; Bertilaccio, M.T.S.; Frenquelli, M.; Ghia, P.; Caligaris-Cappio, F. Expression and Function of Toll like Receptors in Chronic Lymphocytic Leukaemia Cells. Br. J. Haematol. 2009, 144, 507–516. [Google Scholar] [CrossRef]
- Szymańska, A.; Bojarska-Junak, A.; Drobiecki, A.; Tomczak, W.; Roliński, J.; Hus, M.; Hus, I. TLR2 Expression on Leukemic B Cells from Patients with Chronic Lymphocytic Leukemia. Arch. Immunol. Ther. Exp. 2019, 67, 55–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozková, D.; Novotná, L.; Pytlík, R.; Hochová, I.; Kozák, T.; Bartůnková, J.; Spísek, R. Toll-like Receptors on B-CLL Cells: Expression and Functional Consequences of Their Stimulation. Int. J. Cancer 2010, 126, 1132–1143. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Watkins, A.A.; Freeman, B.B.; Meyers, J.A.; Rifkin, I.R.; Lerner, A. Inhibition of Type 4 Cyclic Nucleotide Phosphodiesterase Blocks Intracellular TLR Signaling in Chronic Lymphocytic Leukemia and Normal Hematopoietic Cells. J. Immunol. 2015, 194, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Trillos, A.; Pinyol, M.; Navarro, A.; Aymerich, M.; Jares, P.; Juan, M.; Rozman, M.; Colomer, D.; Delgado, J.; Giné, E.; et al. Mutations in TLR/MYD88 Pathway Identify a Subset of Young Chronic Lymphocytic Leukemia Patients with Favorable Outcome. Blood 2014, 123, 3790–3796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dadashian, E.L.; McAuley, E.M.; Liu, D.; Shaffer, A.L.; Young, R.M.; Iyer, J.R.; Kruhlak, M.J.; Staudt, L.M.; Wiestner, A.; Herman, S.E.M. TLR Signaling Is Activated in Lymph Node-Resident CLL Cells and Is Only Partially Inhibited by Ibrutinib. Cancer Res. 2019, 79, 360–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muzio, M.; Fonte, E.; Caligaris-Cappio, F. Toll-like Receptors in Chronic Lymphocytic Leukemia. Mediterr. J. Hematol. Infect. Dis. 2012, 4, e2012055. [Google Scholar] [CrossRef]
- Arvaniti, E.; Ntoufa, S.; Papakonstantinou, N.; Touloumenidou, T.; Laoutaris, N.; Anagnostopoulos, A.; Lamnissou, K.; Caligaris-Cappio, F.; Stamatopoulos, K.; Ghia, P.; et al. Toll-like Receptor Signaling Pathway in Chronic Lymphocytic Leukemia: Distinct Gene Expression Profiles of Potential Pathogenic Significance in Specific Subsets of Patients. Haematologica 2011, 96, 1644–1652. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, E.; Coulter, E.; Halliwell, E.; Profitos-Peleja, N.; Walsby, E.; Clark, B.; Phillips, E.H.; Burley, T.A.; Mitchell, S.; Devereux, S.; et al. TLR9 Expression in Chronic Lymphocytic Leukemia Identifies a Promigratory Subpopulation and Novel Therapeutic Target. Blood 2021, 137, 3064–3078. [Google Scholar] [CrossRef]
- Netea, M.G.; Wijmenga, C.; O’Neill, L.A.J. Genetic Variation in Toll-like Receptors and Disease Susceptibility. Nat. Immunol. 2012, 13, 535–542. [Google Scholar] [CrossRef]
- Purdue, M.P.; Lan, Q.; Wang, S.S.; Kricker, A.; Menashe, I.; Zheng, T.-Z.; Hartge, P.; Grulich, A.E.; Zhang, Y.; Morton, L.M.; et al. A Pooled Investigation of Toll-like Receptor Gene Variants and Risk of Non-Hodgkin Lymphoma. Carcinogenesis 2009, 30, 275–281. [Google Scholar] [CrossRef] [Green Version]
- Nieters, A.; Beckmann, L.; Deeg, E.; Becker, N. Gene Polymorphisms in Toll-like Receptors, Interleukin-10, and Interleukin-10 Receptor Alpha and Lymphoma Risk. Genes Immun. 2006, 7, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Cerhan, J.R.; Ansell, S.M.; Fredericksen, Z.S.; Kay, N.E.; Liebow, M.; Call, T.G.; Dogan, A.; Cunningham, J.M.; Wang, A.H.; Liu-Mares, W.; et al. Genetic Variation in 1253 Immune and Inflammation Genes and Risk of Non-Hodgkin Lymphoma. Blood 2007, 110, 4455–4463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | Patients with CVID (n = 40) | Patients with CLL (n = 40) | Healthy Volunteers (n = 40) | p-Value | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD | Median (Range) | Mean ± SD | Median (Range) | Mean ± SD | Median (Range) | CVID Vs. CLL | CVID Vs. Healthy Volunteers | CLL Vs. Healthy Volunteers | ||
WBC | 6.92 ± 1.63 | 6.70 (4.78–9.99) | 31.95 ± 11.35 | 34.19 (10.34–47.85) | 5.66 ± 1.39 | 6.03 (3.40–7.78) | 0.000 * | 0.000 * | 0.004 * | 0.000 * |
LYM | 0.96 ± 0.54 | 0.92 (0.08–1.99) | 22.16 ± 5.21 | 21.26 (5.54–35.60) | 1.56 ± 0.49 | 1.49 (0.76–2.85) | 0.000 * | 0.000 * | 0.000 * | 0.000 * |
MON | 0.47 ± 0.15 | 0.47 (0.20–0.79) | 0.57 ± 0.45 | 0.42 (0.09–1.71) | 0.48 ± 0.15 | 0.48 (0.20–0.81) | 0.733 | 0.642 | 0.556 | 0.524 |
NEU | 1.0 ± 0.56 | 1.14 (0.03–1.92) | 3.31 ± 1.44 | 3.15 (0.61– 7.40) | 3.35 ± 1.27 | 3.50 (0.91–5.52) | 0.000 * | 0.000 * | 0.000 * | 0.629 |
EOS | 0.08 ± 0.03 | 0.08 (0.03–0.19) | 0.12 ± 0.10 | 0.10 (0.01–0.51) | 0.10 ± 0.04 | 0.09 (0.03–0.22) | 0.182 | 0.200 | 0.058 | 0.698 |
BAS | 0.03 ± 0.02 | 0.03 (0.00–0.08) | 0.08 ± 0.05 | 0.07 (0.01–0.21) | 0.04 ± 0.02 | 0.03 (0.00–0.09) | 0.000 * | 0.000 * | 0.103 | 0.000 * |
RBC | 3.39 ± 0.24 | 3.39 (2.86–3.89) | 4.21 ± 0.70 | 4.18 (2.34–5.21) | 4.51 ± 0.32 | 4.53 (3.81–5.19) | 0.000 * | 0.000 * | 0.000 * | 0.038 * |
HGB | 9.98 ± 0.67 | 9.98 (8.33–11.63) | 12.27 ± 1.71 | 12.50 (8.20–14.40) | 13.30 ± 0.90 | 13.30 (11.10–15.50) | 0.000 * | 0.000 * | 0.000 * | 0.004 * |
PLT | 115.43 ± 18.24 | 114.09 (86.36–148.42) | 122.85 ± 41.52 | 116.00 (34.00–198.00) | 244.50 ± 64.11 | 233.50 (152.00–404.00) | 0.000 * | 0.298 | 0.000 * | 0.038 * |
IgG | 5.08 ± 0.86 | 5.19 (2.96–6.58) | 5.37 ± 3.51 | 5.32 (0.31–12.93) | 12.40 ± 2.11 | 12.65 (7.23–16.06) | 0.000 * | 0.785 | 0.000 * | 0.038 * |
IgM | 1.37 ± 0.53 | 1.38 (0.37–2.38) | 1.79 ± 1.10 | 1.44 (0.23–4.37) | 1.47 ± 0.57 | 1.49 (0.40–2.56) | 0.000 * | 0.000 * | 0.370 | 0.038 * |
IgA | 0.62 ± 0.23 | 0.64 (0.11–1.09) | 0.79 ± 0.58 | 0.52 (0.05–3.38) | 2.07 ± 0.76 | 1.95 (0.70–4.00) | 0.000 * | 0.000 * | 0.000 * | 0.049 * |
Frequency of Individual Populations of Immune System Cells [%] | Patients with CVID (n = 40) | Patients with CLL (n = 40) | Healthy Volunteers (n = 40) | p-Value | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD | Median (Range) | Mean ± SD | Median (Range) | Mean ± SD | Median (Range) | CVID Vs. CLL | CVID Vs. Healthy Volunteers | CLL Vs. Healthy Volunteers | ||
CD45+ leukocytes [%] | 90.72 ± 4.60 | 91.04 (79.38–98.91) | 96.42 ± 2.30 | 97.29 (88.75–99.12) | 95.28 ± 2.75 | 95.88 (89.14–99.37) | 0.000 * | 0.000 * | 0.000 * | 0.043 * |
CD3+ T lymphocytes [%] | 66.56 ± 9.67 | 65.51 (44.85–89.85) | 21.17 ± 10.52 | 16.82 (5.2–41.12) | 72.83 ± 6.31 | 71.94 (65.09–96.34) | 0.000 * | 0.000 * | 0.001* | 0.000 * |
CD19+ B lymphocytes [%] | 8.33 ± 4.71 | 7.14 (1.45–20.94) | 73.17 ± 12.96 | 79.04 (46.21–91.91) | 12.59 ± 2.25 | 12.46 (7.81–16.83) | 0.000 * | 0.000 * | 0.000 * | 0.000 * |
NK cells [%] | 15.84 ± 6.86 | 14.37 (3.34–28.70) | 2.79 ± 0.96 | 2.94 (0.98–4.17) | 10.18 ± 3.03 | 8.55 (7.13–16.43) | 0.000 * | 0.000 * | 0.000 * | 0.000 * |
CD4+CD3+ T lymphocytes [%] | 30.77 ± 11.05 | 28.62 (10.45–56.73) | 13.51 ± 7.09 | 10.34 (3.24–26.84) | 47.53 ± 4.76 | 46.76 (42.19–65.51) | 0.000 * | 0.000 * | 0.000 * | 0.000 * |
CD8+CD3+ T lymphocytes [%] | 35.78 ± 12.90 | 35.40 (15.10–58.76) | 7.67 ± 3.84 | 6.06 (2.08–15.21) | 26.39 ± 2.98 | 26.91 (20.18–31.07) | 0.000 * | 0.000 * | 0.001 * | 0.000 * |
CD4+CD3+/CD8+CD3+ ratio | 1.09 ± 0.77 | 0.75 (0.22–3.47) | 1.81 ± 0.43 | 1.78 (0.52–3.47) | 1.82 ± 0.25 | 1.78 (1.53–2.23) | 0.000 * | 0.000 * | 0.000 * | 0.882 |
Parameter | Patients with CVID (n = 40) | Patients with CLL (n = 40) | Healthy Volunteers (n = 40) | p-Value | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD | Median (Range) | Mean ± SD | Median (Range) | Mean ± SD | Median (Range) | CVID Vs. CLL | CVID Vs. Healthy Volunteers | CLL Vs. Healthy Volunteers | |||
TLR2 | CD4+TLR2+ T lymphocytes [%] | 6.02 ± 0.56 | 5.99 (5.04–6.96) | 2.10 ± 0.70 | 2.14 (0.63–3.89) | 0.64 ± 0.40 | 0.76 (0.02–1.45) | 0.000 * | 0.000 * | 0.000 * | 0.000 * |
CD8+TLR2+ T lymphocytes [%] | 6.63 ± 0.88 | 6.87 (5.00–7.80) | 2.95 ± 0.56 | 2.95 (2.03–3.86) | 0.96 ± 0.60 | 1.09 (0.04–1.88) | 0.000 * | 0.000 * | 0.000 * | 0.000 * | |
CD19+TLR2+ B lymphocytes [%] | 4.80 ± 1.06 | 4.64 (3.01–6.76) | 2.85 ± 0.53 | 2.82 (2.03–3.78) | 0.60 ± 0.30 | 0.67 (0.14–1.29) | 0.000 * | 0.000 * | 0.000 * | 0.000 * | |
TLR3 | CD4+TLR3+ T lymphocytes [%] | 3.40 ± 0.87 | 3.50 (2.02–4.91) | 2.11 ± 0.60 | 2.13 (0.60–3.16) | 0.94 ± 0.59 | 1.06 (0.03–2.13) | 0.000 * | 0.000 * | 0.000 * | 0.000 * |
CD8+TLR3+ T lymphocytes [%] | 2.99 ± 0.55 | 3.04 (2.02–3.98) | 1.89 ± 0.95 | 2.22 (0.29–3.60) | 0.79 ± 0.51 | 0.63 (0.12–1.83) | 0.000 * | 0.000 * | 0.000 * | 0.000 * | |
CD19+TLR3+ B lymphocytes [%] | 3.03 ± 0.64 | 3.19 (2.12–3.98) | 2.64 ± 0.95 | 2.59 (1.01–4.41) | 0.49 ± 0.25 | 0.52 (0.12–1.12) | 0.000 * | 0.07 | 0.000 * | 0.000 * | |
TLR4 | CD4+TLR4+ T lymphocytes [%] | 6.70 ± 0.87 | 6.78 (5.21–7.97) | 4.34 ± 0.85 | 4.15 (3.19–5.97) | 0.98 ± 0.45 | 1.07 (0.14–1.76) | 0.000 * | 0.000 * | 0.000 * | 0.000 * |
CD8+TLR4+ T lymphocytes [%] | 6.40 ± 0.81 | 6.32 (5.00–7.92) | 4.12 ± 0.55 | 4.19 (3.01–4.97) | 0.98 ± 0.61 | 1.07 (0.01– 1.79) | 0.000 * | 0.000 * | 0.000 * | 0.000 * | |
CD19+TLR4+ B lymphocytes [%] | 4.60 ± 0.98 | 4.74 (3.04–5.98) | 3.92 ± 1.21 | 3.96 (2.00–5.95) | 0.74 ± 0.35 | 0.79 (0.17–1.60) | 0.000 * | 0.012 * | 0.000 * | 0.000 * | |
TLR7 | CD4+TLR7+ T lymphocytes [%] | 1.99 ± 0.52 | 2.00 (1.03–2.97) | 1.98 ± 0.51 | 2.01 (1.04–2.97) | 0.49 ± 0.30 | 0.55 (0.02–1.20) | 0.000 * | 0,889 | 0.000 * | 0.000 * |
CD8+TLR7+ T lymphocytes [%] | 2.06 ± 0.53 | 2.09 (1.06–2.92) | 2.12 ± 1.22 | 2.40 (0.26–4.47) | 0.51 ± 0.38 | 0.34 (0.02–1.31) | 0.000 * | 0.550 | 0.000 * | 0.000 * | |
CD19+TLR7+ B lymphocytes [%] | 2.89 ± 0.59 | 2.82 (2.00–3.97) | 2.94 ± 0.56 | 2.88 (2.12–3.90) | 0.43 ± 0.18 | 0.44 (0.08–0.74) | 0.000 * | 0.615 | 0.000 * | 0.000 * | |
TLR8 | CD4+TLR8+ T lymphocytes [%] | 2.89 ± 1.21 | 3.26 (0.78–4.93) | 2.49 ± 0.89 | 2.52 (1.08–3.93) | 0.79 ± 0.51 | 0.76 (0.09–1.77) | 0.000 * | 0.093 | 0.000 * | 0.000 * |
CD8+TLR8+ T lymphocytes [%] | 2.44 ± 1.17 | 2.54 (0.14–4.08) | 1.94 ± 0.54 | 1.82 (1.05–3.00) | 0.42 ± 0.27 | 0.33 (0.06–0.93) | 0.000 * | 0.014 * | 0.000 * | 0.000 * | |
CD19+TLR8+ B lymphocytes [%] | 2.43 ± 0.84 | 2.41 (1.02–3.96) | 2.43 ± 0.99 | 2.39 (1.05–4.28) | 0.56 ± 0.28 | 0.59 (0.14–1.33) | 0.000 * | 0.996 | 0.000 * | 0.000 * | |
TLR9 | CD4+TLR9+ T lymphocytes [%] | 5.03 ± 0.58 | 4.96 (4.15–5.95) | 3.76 ± 0.69 | 3.81 (2.07–4.78) | 0.55 ± 0.35 | 0.54 (0.07–1.22) | 0.000 * | 0.000 * | 0.000 * | 0.000 * |
CD8+TLR9+ T lymphocytes [%] | 4.44 ± 0.75 | 4.63 (3.14–5.88) | 3.98 ± 0.60 | 3.98 (3.02–4.94) | 0.69 ± 0.45 | 0.64 (0.08–1.61) | 0.000 * | 0.006 * | 0.000 * | 0.000 * | |
CD19+TLR9+ B lymphocytes [%] | 4.61 ± 0.87 | 4.56 (3.03–5.98) | 4.06 ± 0.58 | 4.07 (3.09–4.94) | 0.78 ± 0.37 | 0.84 (0.18–1.65) | 0.000 * | 0.003 * | 0.000 * | 0.000 * |
Serum Concentration [ng/mL] | Patients with CVID (n = 40) | Patients with CLL (n = 40) | Healthy Volunteers (n = 40) | p-Value | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD | Median (Range) | Mean ± SD | Median (Range) | Mean ± SD | Median (Range) | CVID Vs. CLL | CVID Vs. Healthy Volunteers | CLL Vs. Healthy Volunteers | ||
sTLR2 | 13.83 ± 2.31 | 13.80 (10.11–17.84) | 10.66 ± 2.34 | 10.61 (7.18–14.67) | 1.89 ± 0.66 | 1.95 (1.00–2.93) | 0.000 * | 0.000 * | 0.000 * | 0.000 * |
sTLR3 | 9.00 ± 1.34 | 8.87 (7.10–11.85) | 7.87 ± 0.56 | 7.83 (7.04–8.97) | 1.57 ± 0.81 | 1.47 (0.04–2.97) | 0.000 * | 0.000 * | 0.000 * | 0.000 * |
sTLR4 | 15.52 ± 1.33 | 15.55 (13.31–17.89) | 11.08 ± 1.09 | 11.09 (9.01–12.85) | 3.13 ± 0.55 | 3.29 (2.12–3.94) | 0.000 * | 0.000 * | 0.000 * | 0.000 * |
sTLR7 | 6.58 ± 0.90 | 6.56 (5.10–7.98) | 6.56 ± 0.78 | 6.61 (5.17–7.87) | 1.07 ± 0.59 | 1.07 (0.06–1.93) | 0.000 * | 0.859 | 0.000 * | 0.000 * |
sTLR8 | 8.69 ± 0.92 | 8.69 (7.13–9.99) | 6.81 ± 1.14 | 6.72 (5.17–8.94) | 0.97 ± 0.63 | 1.01 (0.01–1.98) | 0.000 * | 0.000 * | 0.000 * | 0.000 * |
sTLR9 | 13.06 ± 1.05 | 12.89 (11.18–14.83) | 11.54 ± 1.38 | 11.67 (9.18–13.68) | 3.00 ± 0.58 | 2.96 (2.00–3.92) | 0.000 * | 0.000 * | 0.000 * | 0.000 * |
Parameters | R Spearman | t(N-2) | p-Value |
---|---|---|---|
Percentage of occurrence CD19+TLR2+ and CD8+TLR3+ | −0.364 | −2.47 | 0.017 * |
Percentage of occurrence CD19+TLR4+ and CD4+TLR8+ | −0.319 | −2.13 | 0.039 * |
Percentage of occurrence CD19+TLR3+ and CD19+TLR8+ | 0.320 | 2.14 | 0.038 * |
Percentage of occurrence CD19+TLR3+ and CD4+TLR9+ | 0.360 | 2.44 | 0.019 * |
Percentage of occurrence CD4+TLR4+ and CD4+TLR7+ | −0.356 | −2.40 | 0.020 * |
Percentage of occurrence CD4+TLR4+ and CD8+TLR4+ | 0.366 | 2.48 | 0.017 * |
Percentage of occurrence CD4+TLR4+ and CD8+TLR3+ | 0.322 | 2.15 | 0.037 * |
Percentage of occurrence CD4+TLR4+ and CD8+TLR9+ | 0.345 | 2.32 | 0.025 * |
Percentage of occurrence CD4+TLR8+ and CD8+TLR4+ | −0.542 | −4.08 | 0.0002 * |
Percentage of occurrence CD4+TLR9+ and CD8+TLR3+ | −0.306 | −2.03 | 0.048 * |
Percentage of occurrence CD4+TLR9+ and CD8+TLR7+ | −0.327 | −2.18 | 0.034 * |
Percentage of occurrence CD19+TLR4+ and serum concentration sTLR9 | −0.304 | −2.02 | 0.049 * |
Percentage of occurrence CD19+TLR8+ and serum concentration sTLR7 | −0.313 | −2.08 | 0.043 * |
Percentage of occurrence CD4+TLR2+ and serum concentration sTLR2 | 0.308 | 2.05 | 0.046 * |
Percentage of occurrence CD4+TLR7+ and serum concentration sTLR7 | −0.313 | −2.08 | 0.043 * |
Percentage of occurrence CD8+TLR3+ and serum concentration sTLR9 | 0.356 | 2.41 | 0.020 * |
Percentage of occurrence CD8+TLR7+ and serum concentration sTLR4 | −0.405 | −2.80 | 0.007 * |
Serum concentration sTLR2 and serum concentration sTLR9 | 0.437 | 3.05 | 0.003 * |
Parameters | R Spearman | t(N-2) | p-Value |
---|---|---|---|
Percentage of occurrence CD19+TLR2+ and CD8+TLR4+ | −0.370 | −2.46 | 0.018 * |
Percentage of occurrence CD19+TLR4+ and CD4+TLR4+ | 0.429 | 2.93 | 0.005 * |
Percentage of occurrence CD19+TLR3+ and CD19+TLR8+ | 0.469 | 3.27 | 0.002 * |
Percentage of occurrence CD19+TLR3+ and CD4+TLR2+ | 0.549 | 4.04 | 0.0002 * |
Percentage of occurrence CD19+TLR3+ and CD4+TLR3+ | 0.620 | 4.88 | 0.000 * |
Percentage of occurrence CD19+TLR3+ and CD4+TLR8+ | 0.608 | 4.72 | 0.000 * |
Percentage of occurrence CD19+TLR3+ and CD4+TLR9+ | 0.403 | 2.72 | 0.009 * |
Percentage of occurrence CD19+TLR3+ and CD8+TLR3+ | 0.605 | 4.68 | 0.000 * |
Percentage of occurrence CD19+TLR3+ and CD8+TLR7+ | 0.615 | 4.81 | 0.000 * |
Percentage of occurrence CD19+TLR3+ and CD8+TLR8+ | 0.622 | 4.90 | 0.000 * |
Percentage of occurrence CD19+TLR3+ and CD8+TLR9+ | 0.350 | 2.30 | 0.026 * |
Percentage of occurrence CD19+TLR8+ and CD4+TLR2+ | 0.350 | 2.30 | 0.026 * |
Percentage of occurrence CD19+TLR8+ and CD4+TLR3+ | 0.404 | 2.72 | 0.009 * |
Percentage of occurrence CD19+TLR8+ and CD4+TLR8+ | 0.555 | 4.11 | 0.000 * |
Percentage of occurrence CD19+TLR8+ and CD8+TLR3+ | 0.656 | 5.37 | 0.000 * |
Percentage of occurrence CD19+TLR8+ and CD8+TLR7+ | 0.570 | 4.28 | 0.000 * |
Percentage of occurrence CD19+TLR8+ and CD8+TLR8+ | 0.549 | 4.05 | 0.0002 * |
Percentage of occurrence CD4+TLR2+ and CD4+TLR3+ | 0.538 | 3.94 | 0.0003 * |
Percentage of occurrence CD4+TLR2+ and CD4+TLR8+ | 0.579 | 4.38 | 0.000 * |
Percentage of occurrence CD4+TLR2+ and CD4+TLR9+ | 0.403 | 2.71 | 0.009 * |
Percentage of occurrence CD4+TLR2+ and CD8+TLR3+ | 0.632 | 5.03 | 0.000 * |
Percentage of occurrence CD4+TLR2+ and CD8+TLR7+ | 0.573 | 4.31 | 0.0001 * |
Percentage of occurrence CD4+TLR2+ and CD8+TLR8+ | 0.473 | 3.31 | 0.002 * |
Percentage of occurrence CD4+TLR3+ and CD4+TLR8+ | 0.747 | 6.93 | 0.000 * |
Percentage of occurrence CD4+TLR3+ and CD8+TLR3+ | 0.680 | 5.73 | 0.000 * |
Percentage of occurrence CD4+TLR3+ and CD8+TLR7+ | 0.639 | 5.12 | 0.000 * |
Percentage of occurrence CD4+TLR3+ and CD8+TLR8+ | 0.523 | 3.78 | 0.000 * |
Percentage of occurrence CD4+TLR7+ and CD4+TLR9+ | −0.461 | −3.20 | 0.002 * |
Percentage of occurrence CD4+TLR8+ and CD8+TLR3+ | 0.695 | 5.96 | 0.000 * |
Percentage of occurrence CD4+TLR8+ and CD8+TLR7+ | 0.707 | 6.16 | 0.000 * |
Percentage of occurrence CD4+TLR8+ and CD8+TLR8+ | 0.775 | 7.56 | 0.000 * |
Percentage of occurrence CD4+TLR9+ and CD8+TLR3+ | 0.393 | 2.64 | 0.011 * |
Percentage of occurrence CD8+TLR3+ and CD8+TLR7+ | 0.827 | 9.08 | 0.000 * |
Percentage of occurrence CD8+TLR3+ and CD8+TLR8+ | 0.624 | 4.92 | 0.000 * |
Percentage of occurrence CD8+TLR7+ and CD8+TLR8+ | 0.633 | 5.05 | 0.000 * |
Percentage of occurrence CD19+TLR3+ and serum concentration sTLR8 | −0.334 | −2.18 | 0.034 * |
Percentage of occurrence CD19+TLR9+ and serum concentration sTLR7 | 0.449 | 3.10 | 0.003 * |
Percentage of occurrence CD4+TLR9+ and serum concentration sTLR8 | −0.404 | −2.72 | 0.009 * |
Percentage of occurrence CD8+TLR2+ and serum concentration sTLR4 | 0.395 | 2.65 | 0.011 * |
Percentage of occurrence CD8+TLR4+ and serum concentration sTLR8 | −0.466 | −3.25 | 0.002 * |
Percentage of occurrence CD8+TLR8+ and serum concentration sTLR4 | −0.328 | −2.14 | 0.038 * |
Parameter | AUC | SE | +95% | −95% | Z Statistic | p-Value |
---|---|---|---|---|---|---|
CD4+/TLR2+ T lymphocytes [%] | 1.00 | 0.00 | 1.00 | 1.00 | - | 0.000 * |
CD8+TLR2+ T lymphocytes [%] | 1.00 | 0.00 | 1.00 | 1.00 | - | 0.000 * |
CD19+TLR2+ B lymphocytes [%] | 0.95 | 0.022 | 0.906 | 0.993 | 20.201 | 0.000 * |
CD4+/TLR3+ T lymphocytes [%] | 0.874 | 0.037 | 0.802 | 0.947 | 10.119 | 0.000 * |
CD8+TLR3+ T lymphocytes [%] | 0.842 | 0.043 | 0.757 | 0.927 | 7.901 | 0.000 * |
CD19+TLR3+ B lymphocytes [%] | 0.617 | 0.065 | 0.491 | 0.744 | 1.815 | 0.0696 |
CD4+/TLR4+ T lymphocytes [%] | 0.972 | 0.014 | 0.944 | 0.999 | 33.533 | 0.000 * |
CD8+TLR4+ T lymphocytes [%] | 1.00 | 0.00 | 1.00 | 1.00 | - | 0.000 * |
CD19+TLR4+ B lymphocytes [%] | 0.338 | 0.061 | 0.219 | 0.457 | −2.667 | 0.007 * |
CD4+/TLR7+ T lymphocytes [%] | 0.509 | 0.065 | 0.382 | 0.637 | 0.144 | 0.885 |
CD8+TLR7+ T lymphocytes [%] | 0.462 | 0.07 | 0.324 | 0.599 | −0.548 | 0.583 |
CD19+TLR7+ B lymphocytes [%] | 0.467 | 0.065 | 0.339 | 0.595 | −0.508 | 0.611 |
CD4+/TLR8+ T lymphocytes [%] | 0.391 | 0.065 | 0.263 | 0.518 | −1.668 | 0.092 |
CD8+TLR8+ T lymphocytes [%] | 0.499 | 0.066 | 0.37 | 0.629 | −0.009 | 0.992 |
CD19+TLR8+ B lymphocytes [%] | 0.341 | 0.065 | 0.214 | 0.468 | -2.455 | 0.014 * |
CD4+/TLR9+ T lymphocytes [%] | 0.926 | 0.027 | 0.873 | 0.978 | 15.965 | 0.000 * |
CD8+TLR9+ T lymphocytes [%] | 0.678 | 0.06 | 0.560 | 0.795 | 2.957 | 0.003 * |
CD19+TLR9+ B lymphocytes [%] | 0.690 | 0.06 | 0.572 | 0.807 | 3.169 | 0.001 * |
Serum concentration [ng/mL] | AUC | SE | +95% | −95% | Z Statistic | p-Value |
---|---|---|---|---|---|---|
sTLR2 | 0.822 | 0.045 | 0.733 | 0.910 | 7.138 | 0.000 * |
sTLR3 | 0.756 | 0.055 | 0.647 | 0.864 | 4.624 | 0.000 * |
sTLR4 | 1.000 | 0.000 | 1.000 | 1.000 | - | 0.000 * |
sTLR7 | 0.512 | 0.066 | 0.383 | 0.640 | 0.176 | 0.860 |
sTLR8 | 0.881 | 0.036 | 0.810 | 0.952 | 10.501 | 0.000 * |
sTLR9 | 0.785 | 0.050 | 0.687 | 0.882 | 5.707 | 0.000 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mertowska, P.; Smolak, K.; Mertowski, S.; Grywalska, E. Unraveling the Role of Toll-like Receptors in the Immunopathogenesis of Selected Primary and Secondary Immunodeficiencies. Cells 2023, 12, 2055. https://doi.org/10.3390/cells12162055
Mertowska P, Smolak K, Mertowski S, Grywalska E. Unraveling the Role of Toll-like Receptors in the Immunopathogenesis of Selected Primary and Secondary Immunodeficiencies. Cells. 2023; 12(16):2055. https://doi.org/10.3390/cells12162055
Chicago/Turabian StyleMertowska, Paulina, Konrad Smolak, Sebastian Mertowski, and Ewelina Grywalska. 2023. "Unraveling the Role of Toll-like Receptors in the Immunopathogenesis of Selected Primary and Secondary Immunodeficiencies" Cells 12, no. 16: 2055. https://doi.org/10.3390/cells12162055
APA StyleMertowska, P., Smolak, K., Mertowski, S., & Grywalska, E. (2023). Unraveling the Role of Toll-like Receptors in the Immunopathogenesis of Selected Primary and Secondary Immunodeficiencies. Cells, 12(16), 2055. https://doi.org/10.3390/cells12162055