The Role of Oxytocin in Alzheimer’s Disease and Its Relationship with Social Interaction
Abstract
:1. Introduction
2. Loneliness Aids AD Development
3. Social Environment Affects OXT Neuron Activation
3.1. Social Enrichment Increases the Activity and Secretion of OXT
3.2. Effects of Social Isolation on OXT Activity and Secretion
4. OXT Is a Potential Therapeutic Target for AD
4.1. OXT Reverses The Impairment of Learning and Memory in AD-Model Mice
4.2. The Activity of OXT Neurons Is Altered in AD Patients
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2016 Dementia Collaborators. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2019, 18, 88–106. [Google Scholar] [CrossRef] [PubMed]
- Lane, C.A.; Hardy, J.; Schott, J.M. Alzheimer’s disease. Eur. J. Neurol. 2018, 25, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Thal, D.R.; Capetillo-Zarate, E.; Del Tredici, K.; Braak, H. The development of amyloid beta protein deposits in the aged brain. Sci. Aging Knowl. Environ. 2006, 2006, re1. [Google Scholar] [CrossRef] [PubMed]
- Amin, F.U.; Hoshiar, A.K.; Do, T.D.; Noh, Y.; Shah, S.A.; Khan, M.S.; Yoon, J.; Kim, M.O. Osmotin-loaded magnetic nanoparticles with electromagnetic guidance for the treatment of Alzheimer’s disease. Nanoscale 2017, 9, 10619–10632. [Google Scholar] [CrossRef]
- Ferreira, S.T.; Klein, W.L. The Aβ oligomer hypothesis for synapse failure and memory loss in Alzheimer’s disease. Neurobiol. Learn. Mem. 2011, 96, 529–543. [Google Scholar] [CrossRef]
- Tolar, M.; Hey, J.; Power, A.; Abushakra, S. Neurotoxic Soluble Amyloid Oligomers Drive Alzheimer’s Pathogenesis and Represent a Clinically Validated Target for Slowing Disease Progression. Int. J. Mol. Sci. 2021, 22, 6355. [Google Scholar] [CrossRef]
- Shankar, G.M.; Li, S.; Mehta, T.H.; Garcia-Munoz, A.; Shepardson, N.E.; Smith, I.; Brett, F.M.; Farrell, M.A.; Rowan, M.J.; Lemere, C.A.; et al. Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat. Med. 2008, 14, 837–842. [Google Scholar] [CrossRef]
- Gong, Y.; Chang, L.; Viola, K.L.; Lacor, P.N.; Lambert, M.P.; Finch, C.E.; Krafft, G.A.; Klein, W.L. Alzheimer’s disease-affected brain: Presence of oligomeric A beta ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc. Natl. Acad. Sci. USA 2003, 100, 10417–10422. [Google Scholar] [CrossRef]
- Peng, S.; Garzon, D.J.; Marchese, M.; Klein, W.; Ginsberg, S.D.; Francis, B.M.; Mount, H.T.; Mufson, E.J.; Salehi, A.; Fahnestock, M. Decreased brain-derived neurotrophic factor depends on amyloid aggregation state in transgenic mouse models of Alzheimer’s disease. J. Neurosci. 2009, 29, 9321–9329. [Google Scholar] [CrossRef]
- Cruchaga, C.; Kauwe, J.S.; Harari, O.; Jin, S.C.; Cai, Y.; Karch, C.M.; Benitez, B.A.; Jeng, A.T.; Skorupa, T.; Carrell, D.; et al. GWAS of cerebrospinal fluid tau levels identifies risk variants for Alzheimer’s disease. Neuron 2013, 78, 256–268. [Google Scholar] [CrossRef]
- Khan, S.S.; Bloom, G.S. Tau: The Center of a Signaling Nexus in Alzheimer’s Disease. Front. Neurosci. 2016, 10, 31. [Google Scholar] [CrossRef] [PubMed]
- Weingarten, M.D.; Lockwood, A.H.; Hwo, S.Y.; Kirschner, M.W. A protein factor essential for microtubule assembly. Proc. Natl. Acad. Sci. USA 1975, 72, 1858–1862. [Google Scholar] [CrossRef] [PubMed]
- Grundke-Iqbal, I.; Iqbal, K.; Tung, Y.C.; Quinlan, M.; Wisniewski, H.M.; Binder, L.I. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci. USA 1986, 83, 4913–4917. [Google Scholar] [CrossRef] [PubMed]
- Sevigny, J.; Chiao, P.; Bussière, T.; Weinreb, P.H.; Williams, L.; Maier, M.; Dunstan, R.; Salloway, S.; Chen, T.; Ling, Y.; et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 2016, 537, 50–56. [Google Scholar] [CrossRef]
- Van Dyck, C.H. Anti-Amyloid-β Monoclonal Antibodies for Alzheimer’s Disease: Pitfalls and Promise. Biol. Psychiatry 2018, 83, 311–319. [Google Scholar] [CrossRef]
- Ross, H.E.; Young, L.J. Oxytocin and the neural mechanisms regulating social cognition and affiliative behavior. Front. Neuroendocrinol. 2009, 30, 534–547. [Google Scholar] [CrossRef]
- Baribeau, D.A.; Anagnostou, E. Oxytocin and vasopressin: Linking pituitary neuropeptides and their receptors to social neurocircuits. Front. Neurosci. 2015, 9, 335. [Google Scholar] [CrossRef]
- Du Vigneaud, V.; Ressler, C.; Trippett, S. The sequence of amino acids in oxytocin, with a proposal for the structure of oxytocin. J. Biol. Chem. 1953, 205, 949–957. [Google Scholar] [CrossRef]
- Jurek, B.; Neumann, I.D. The Oxytocin Receptor: From Intracellular Signaling to Behavior. Physiol. Rev. 2018, 98, 1805–1908. [Google Scholar] [CrossRef]
- Buijs, R.M.; De Vries, G.J.; Van Leeuwen, F.W.; Swaab, D.F. Vasopressin and oxytocin: Distribution and putative functions in the brain. Prog. Brain Res. 1983, 60, 115–122. [Google Scholar] [CrossRef]
- Lin, Y.-T.; Huang, C.-C.; Hsu, K.-S. Oxytocin Promotes Long-Term Potentiation by Enhancing Epidermal Growth Factor Receptor-Mediated Local Translation of Protein Kinase M zeta. J. Neurosci. 2012, 32, 15476–15488. [Google Scholar] [CrossRef] [PubMed]
- Raam, T.; McAvoy, K.M.; Besnard, A.; Veenema, A.H.; Sahay, A. Hippocampal oxytocin receptors are necessary for discrimination of social stimuli. Nat. Commun. 2017, 8, 2001. [Google Scholar] [CrossRef] [PubMed]
- Ripamonti, S.; Ambrozkiewicz, M.C.; Guzzi, F.; Gravati, M.; Biella, G.; Bormuth, I.; Hammer, M.; Tuffy, L.P.; Sigler, A.; Kawabe, H.; et al. Transient oxytocin signaling primes the development and function of excitatory hippocampal neurons. Elife 2017, 6, e22466. [Google Scholar] [CrossRef]
- Tomizawa, K.; Iga, N.; Lu, Y.F.; Moriwaki, A.; Matsushita, M.; Li, S.T.; Miyamoto, O.; Itano, T.; Matsui, H. Oxytocin improves long-lasting spatial memory during motherhood through MAP kinase cascade. Nat. Neurosci. 2003, 6, 384–390. [Google Scholar] [CrossRef]
- Bakos, J.; Srancikova, A.; Havranek, T.; Bacova, Z. Molecular Mechanisms of Oxytocin Signaling at the Synaptic Connection. Neural Plast. 2018, 2018, 4864107. [Google Scholar] [CrossRef] [PubMed]
- Amico, J.A.; Mantella, R.C.; Vollmer, R.R.; Li, X. Anxiety and stress responses in female oxytocin deficient mice. J. Neuroendocrinol. 2004, 16, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Maikoo, S.; Wilkins, A.; Qulu, L. The effect of oxytocin and an enriched environment on anxiety-like behaviour and corticosterone levels in a prenatally stressed febrile seizure rat model. IBRO Neurosci. Rep. 2022, 13, 47–56. [Google Scholar] [CrossRef]
- Lee, S.Y.; Park, S.H.; Chung, C.; Kim, J.J.; Choi, S.Y.; Han, J.S. Oxytocin Protects Hippocampal Memory and Plasticity from Uncontrollable Stress. Sci. Rep. 2015, 5, 18540. [Google Scholar] [CrossRef]
- Ebner, K.; Bosch, O.J.; Krömer, S.A.; Singewald, N.; Neumann, I.D. Release of oxytocin in the rat central amygdala modulates stress-coping behavior and the release of excitatory amino acids. Neuropsychopharmacology 2005, 30, 223–230. [Google Scholar] [CrossRef]
- Wilson, R.S.; Krueger, K.R.; Arnold, S.E.; Schneider, J.A.; Kelly, J.F.; Barnes, L.L.; Tang, Y.; Bennett, D.A. Loneliness and risk of Alzheimer disease. Arch. Gen. Psychiatry 2007, 64, 234–240. [Google Scholar] [CrossRef]
- Bennett, D.A.; Schneider, J.A.; Buchman, A.S.; Mendes de Leon, C.; Bienias, J.L.; Wilson, R.S. The Rush Memory and Aging Project: Study design and baseline characteristics of the study cohort. Neuroepidemiology 2005, 25, 163–175. [Google Scholar] [CrossRef]
- Donovan, N.J.; Okereke, O.I.; Vannini, P.; Amariglio, R.E.; Rentz, D.M.; Marshall, G.A.; Johnson, K.A.; Sperling, R.A. Association of Higher Cortical Amyloid Burden with Loneliness in Cognitively Normal Older Adults. JAMA Psychiatry 2016, 73, 1230–1237. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Rolls, E.; Cheng, W.; Kang, J.; Dong, G.; Xie, C.; Zhao, X.M.; Sahakian, B.; Feng, J. Associations of Social Isolation and Loneliness with Later Dementia. Neurology 2022, 99, e164–e175. [Google Scholar] [CrossRef] [PubMed]
- You, W.; Henneberg, M. Large household reduces dementia mortality: A cross-sectional data analysis of 183 populations. PLoS ONE 2022, 17, e0263309. [Google Scholar] [CrossRef] [PubMed]
- Peterman, J.L.; White, J.D.; Calcagno, A.; Hagen, C.; Quiring, M.; Paulhus, K.; Gurney, T.; Eimerbrink, M.J.; Curtis, M.; Boehm, G.W.; et al. Prolonged isolation stress accelerates the onset of Alzheimer’s disease-related pathology in 5xFAD mice despite running wheels and environmental enrichment. Behav. Brain Res. 2020, 379, 112366. [Google Scholar] [CrossRef] [PubMed]
- Ren, Q.G.; Gong, W.G.; Wang, Y.J.; Zhou, Q.D.; Zhang, Z.J. Citalopram attenuates tau hyperphosphorylation and spatial memory deficit induced by social isolation rearing in middle-aged rats. J. Mol. Neurosci. 2015, 56, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Prado Lima, M.G.; Schimidt, H.L.; Garcia, A.; Daré, L.R.; Carpes, F.P.; Izquierdo, I.; Mello-Carpes, P.B. Environmental enrichment and exercise are better than social enrichment to reduce memory deficits in amyloid beta neurotoxicity. Proc. Natl. Acad. Sci. USA 2018, 115, E2403–E2409. [Google Scholar] [CrossRef] [PubMed]
- Jack, C.R., Jr.; Knopman, D.S.; Jagust, W.J.; Shaw, L.M.; Aisen, P.S.; Weiner, M.W.; Petersen, R.C.; Trojanowski, J.Q. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010, 9, 119–128. [Google Scholar] [CrossRef]
- Williams, C.Y.K.; Townson, A.T.; Kapur, M.; Ferreira, A.F.; Nunn, R.; Galante, J.; Phillips, V.; Gentry, S.; Usher-Smith, J.A. Interventions to reduce social isolation and loneliness during COVID-19 physical distancing measures: A rapid systematic review. PLoS ONE 2021, 16, e0247139. [Google Scholar] [CrossRef]
- Merla, L.; Montesi, M.C.; Ticali, J.; Bais, B.; Cavarape, A.; Colussi, G. COVID-19 Accelerated Cognitive Decline in Elderly Patients with Pre-Existing Dementia Followed up in an Outpatient Memory Care Facility. J. Clin. Med. 2023, 12, 1845. [Google Scholar] [CrossRef]
- Gordon, M.N.; Heneka, M.T.; Le Page, L.M.; Limberger, C.; Morgan, D.; Tenner, A.J.; Terrando, N.; Willette, A.A.; Willette, S.A. Impact of COVID-19 on the Onset and Progression of Alzheimer’s Disease and Related Dementias: A Roadmap for Future Research. Alzheimers Dement. 2022, 18, 1038–1046. [Google Scholar] [CrossRef] [PubMed]
- Odendaal, J.S.; Meintjes, R.A. Neurophysiological correlates of affiliative behaviour between humans and dogs. Vet. J. 2003, 165, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Kosfeld, M.; Heinrichs, M.; Zak, P.J.; Fischbacher, U.; Fehr, E. Oxytocin increases trust in humans. Nature 2005, 435, 673–676. [Google Scholar] [CrossRef] [PubMed]
- Faraji, J.; Karimi, M.; Soltanpour, N.; Moharrerie, A.; Rouhzadeh, Z.; Lotfi, H.; Hosseini, S.A.; Jafari, S.Y.; Roudaki, S.; Moeeini, R.; et al. Oxytocin-mediated social enrichment promotes longer telomeres and novelty seeking. Elife 2018, 7, e40262. [Google Scholar] [CrossRef]
- Neal, S.; Kent, M.; Bardi, M.; Lambert, K.G. Enriched Environment Exposure Enhances Social Interactions and Oxytocin Responsiveness in Male Long-Evans Rats. Front. Behav. Neurosci. 2018, 12, 198. [Google Scholar] [CrossRef]
- Karelina, K.; Stuller, K.A.; Jarrett, B.; Zhang, N.; Wells, J.; Norman, G.J.; DeVries, A.C. Oxytocin mediates social neuroprotection after cerebral ischemia. Stroke 2011, 42, 3606–3611. [Google Scholar] [CrossRef]
- Tanaka, K.; Osako, Y.; Yuri, K. Juvenile social experience regulates central neuropeptides relevant to emotional and social behaviors. Neuroscience 2010, 166, 1036–1042. [Google Scholar] [CrossRef]
- Oliveira, V.E.M.; Neumann, I.D.; de Jong, T.R. Post-weaning social isolation exacerbates aggression in both sexes and affects the vasopressin and oxytocin system in a sex-specific manner. Neuropharmacology 2019, 156, 107504. [Google Scholar] [CrossRef]
- Grippo, A.J.; Cushing, B.S.; Carter, C.S. Depression-like behavior and stressor-induced neuroendocrine activation in female prairie voles exposed to chronic social isolation. Psychosom. Med. 2007, 69, 149–157. [Google Scholar] [CrossRef]
- Chiodera, P.; Salvarani, C.; Bacchi-Modena, A.; Spallanzani, R.; Cigarini, C.; Alboni, A.; Gardini, E.; Coiro, V. Relationship between plasma profiles of oxytocin and adrenocorticotropic hormone during suckling or breast stimulation in women. Horm. Res. 1991, 35, 119–123. [Google Scholar] [CrossRef]
- Legros, J.J.; Chiodera, P.; Geenen, V.; von Frenckell, R. Confirmation of the inhibitory influence of exogenous oxytocin on cortisol and ACTH in man: Evidence of reproducibility. Acta Endocrinol. 1987, 114, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Tops, M.; Buisman-Pijlman, F.T.; Boksem, M.A.; Wijers, A.A.; Korf, J. Cortisol-induced increases of plasma oxytocin levels predict decreased immediate free recall of unpleasant words. Front. Psychiatry 2012, 3, 43. [Google Scholar] [CrossRef] [PubMed]
- Corbett, B.A.; Bales, K.L.; Swain, D.; Sanders, K.; Weinstein, T.A.; Muglia, L.J. Comparing oxytocin and cortisol regulation in a double-blind, placebo-controlled, hydrocortisone challenge pilot study in children with autism and typical development. J. Neurodev. Disord. 2016, 8, 32. [Google Scholar] [CrossRef]
- Takahashi, J.; Yamada, D.; Ueta, Y.; Iwai, T.; Koga, E.; Tanabe, M.; Oka, J.-I.; Saitoh, A. Oxytocin reverses A beta-induced impairment of hippocampal synaptic plasticity in mice. Biochem. Biophys. Res. Commun. 2020, 528, 174–178. [Google Scholar] [CrossRef]
- Takahashi, J.; Ueta, Y.; Yamada, D.; Sasaki-Hamada, S.; Iwai, T.; Akita, T.; Yamashita, C.; Saitoh, A.; Oka, J.-I. Intracerebroventricular administration of oxytocin and intranasal administration of the oxytocin derivative improve beta-amyloid peptide (25-35)-induced memory impairment in mice. Neuropsychopharmacol. Rep. 2022, 42, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Dhuria, S.V.; Hanson, L.R.; Frey, W.H., 2nd. Intranasal delivery to the central nervous system: Mechanisms and experimental considerations. J. Pharm. Sci. 2010, 99, 1654–1673. [Google Scholar] [CrossRef]
- Akita, T.; Kimura, R.; Akaguma, S.; Nagai, M.; Nakao, Y.; Tsugane, M.; Suzuki, H.; Oka, J.I.; Yamashita, C. Usefulness of cell-penetrating peptides and penetration accelerating sequence for nose-to-brain delivery of glucagon-like peptide-2. J. Control. Release 2021, 335, 575–583. [Google Scholar] [CrossRef]
- El-Ganainy, S.O.; Soliman, O.A.; Ghazy, A.A.; Allam, M.; Elbahnasi, A.I.; Mansour, A.M.; Gowayed, M.A. Intranasal Oxytocin Attenuates Cognitive Impairment, beta-Amyloid Burden and Tau Deposition in Female Rats with Alzheimer’s Disease: Interplay of ERK1/2/GSK3 beta/Caspase-3. Neurochem. Res. 2022, 47, 2345–2356. [Google Scholar] [CrossRef]
- Ye, C.; Cheng, M.; Ma, L.; Zhang, T.; Sun, Z.; Yu, C.; Wang, J.; Dou, Y. Oxytocin Nanogels Inhibit Innate Inflammatory Response for Early Intervention in Alzheimer?s Disease. Acs Appl. Mater. Interfaces 2022, 14, 21822–21835. [Google Scholar] [CrossRef]
- Selles, M.C.; Fortuna, J.T.S.; de Faria, Y.P.R.; Siqueira, L.D.; Lima-Filho, R.; Longo, B.M.; Froemke, R.C.; Chao, M.V.; Ferreira, S.T. Oxytocin attenuates microglial activation and restores social and non-social memory in APP/PS1 Alzheimer model mice. iScience 2023, 26, 106545. [Google Scholar] [CrossRef]
- Petekkaya, E.; Burakgazi, G.; Kuş, B.; Melek, İ.M.; Arpacı, A. Comparative study of the volume of the temporal lobe sections and neuropeptide effect in Alzheimer’s patients and healthy persons. Int. J. Neurosci. 2021, 131, 725–734. [Google Scholar] [CrossRef] [PubMed]
- Zou, C.; Huang, X.; Zhang, Y.; Pan, M.; Xie, J.; Chen, L.; Meng, Y.; Zou, D.; Luo, J. Potential biomarkers of Alzheimer’s disease and cerebral small vessel disease. Front. Mol. Neurosci. 2022, 15, 996107. [Google Scholar] [CrossRef] [PubMed]
- Lardenoije, R.; Roubroeks, J.A.Y.; Pishva, E.; Leber, M.; Wagner, H.; Iatrou, A.; Smith, A.R.; Smith, R.G.; Eijssen, L.M.T.; Kleineidam, L.; et al. Alzheimer’s disease-associated (hydroxy)methylomic changes in the brain and blood. Clin. Epigenetics 2019, 11, 164. [Google Scholar] [CrossRef] [PubMed]
- Mazurek, M.F.; Beal, M.F.; Bird, E.D.; Martin, J.B. Oxytocin in Alzheimer’s disease: Postmortem brain levels. Neurology 1987, 37, 1001–1003. [Google Scholar] [CrossRef] [PubMed]
- Fliers, E.; Swaab, D.F.; Pool, C.W.; Verwer, R.W. The vasopressin and oxytocin neurons in the human supraoptic and paraventricular nucleus; changes with aging and in senile dementia. Brain Res. 1985, 342, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Raskind, M.A.; Peskind, E.R.; Lampe, T.H.; Risse, S.C.; Taborsky, G.J., Jr.; Dorsa, D. Cerebrospinal fluid vasopressin, oxytocin, somatostatin, and beta-endorphin in Alzheimer’s disease. Arch. Gen. Psychiatry 1986, 43, 382–388. [Google Scholar] [CrossRef]
- Wierda, M.; Goudsmit, E.; Van der Woude, P.F.; Purba, J.S.; Hofman, M.A.; Bogte, H.; Swaab, D.F. Oxytocin cell number in the human paraventricular nucleus remains constant with aging and in Alzheimer’s disease. Neurobiol. Aging 1991, 12, 511–516. [Google Scholar] [CrossRef]
- Ramo-Fernández, L.; Gumpp, A.M.; Boeck, C.; Krause, S.; Bach, A.M.; Waller, C.; Kolassa, I.T.; Karabatsiakis, A. Associations between childhood maltreatment and DNA methylation of the oxytocin receptor gene in immune cells of mother-newborn dyads. Transl. Psychiatry 2021, 11, 449. [Google Scholar] [CrossRef]
- Baribeau, D.A.; Dupuis, A.; Paton, T.A.; Scherer, S.W.; Schachar, R.J.; Arnold, P.D.; Szatmari, P.; Nicolson, R.; Georgiades, S.; Crosbie, J.; et al. Oxytocin Receptor Polymorphisms are Differentially Associated with Social Abilities across Neurodevelopmental Disorders. Sci. Rep. 2017, 7, 11618. [Google Scholar] [CrossRef]
- Chen, F.S.; Kumsta, R.; Dvorak, F.; Domes, G.; Yim, O.S.; Ebstein, R.P.; Heinrichs, M. Genetic modulation of oxytocin sensitivity: A pharmacogenetic approach. Transl. Psychiatry 2015, 5, e664. [Google Scholar] [CrossRef]
- Maud, C.; Ryan, J.; McIntosh, J.E.; Olsson, C.A. The role of oxytocin receptor gene (OXTR) DNA methylation (DNAm) in human social and emotional functioning: A systematic narrative review. BMC Psychiatry 2018, 18, 154. [Google Scholar] [CrossRef] [PubMed]
Loneliness Aides AD Development | |||
References | Species | Subjects/Model | Results |
[30] | Persons | A total of 823 older persons with no dementia. | A person with a high degree of loneliness was about 2.1 times more likely to develop clinical AD, compared to a person with a low degree of loneliness. |
[32] | Male and female persons | A mean age of 76 years. | The amyloid burden was associated with loneliness. The amyloid-positive group was found to be 7.5 times more lonely individuals than those who were not lonely. |
[33] | Male and female persons | A total of 462,619 persons (mean age at baseline 57.0 years). | Social isolation was associated with 1.26-fold increased risk of dementia. |
[34] | Male and female persons | Dementia specific mortality rates of the 183 member states of World Health Organization were calculated and matched with the respective country data on household size. | The larger household, the less the dementia mortality. |
[35] | 5 × FAD mice | The isolation for 2 or 3 months began at 2 months of age. | Social isolation in 5×FAD mice accelerated the burden of amyloid β plaque and BACE1 expression. |
[36] | Male Sprague Dawley rats | Social isolation for 6weeks in middle-aged rats (8-month age). | Social isolation increased in expression of hyperphosphorylated Tau in hippocampus compared to group housing. |
Social Environment Affects Activation of OXT Neurons | |||
References | Species | Model | Results |
[44] | Male and female Wistar rats | After weaning at PND 21, rats live at standard housing or social housing. | Social enrichment increases plasma OXT and extends telomere length. |
[46] | Male C57/BL6 mice | Mice housed either individually or with an ovariectomized female for a period of 1 week prior to surgery and throughout the reperfusion period. | OXT mRNA gene and OXT receptor gene were decreased following social isolation for 1week in adult mice. |
[47] | Rats | Social isolation for about 14 days was performed on male or female mice at 24–28 days of age. | OXT cells in PVN of isolated female rats were decreased compared to group housing, not but male rats. |
[48] | Male and female Wistar rats | Isolation rats were housed in a single rat cage at PND21-PND72. | Elevated OXT mRNA in the PVN and decreased expression of OXT receptors in the bed nucleus of the stria terminalis and nucleus accumbens of females by post-weaning social isolation but not in males. |
[49] | Female prairie voles | Twenty adult female prairie voles were exposed to either 60 days of social isolation or paired housing. | OXT- and CORT-immunoreactive cells in the PVN increased in social isolated prairie voles compared to group housing. |
Animal Studies | |||
References | Species | AD-Model | Results |
[54] | Male ddy mice | Perfusion of Aβ25–35 in the hippocampus slice | The perfusion of OXT reverses Aβ-induced impairment of hippocampal long-term potentiation via OXT receptors, ERK phosphorylation and Ca2+-permeable AMPA receptors. |
[55] | Male ddy mice | The ICV administration of Aβ25–35 | The ICV administration of OXT recovered Aβ25–35 -induced impairment of spatial working memory and spatial reference memory by Y-maze and MWM. |
[58] | Female Sprague Dawley rat | A daily oral dose of aluminum chloride (100 mg/kg) for 8 consecutive weeks | The intranasal OXT reversed impairment of spatial memory, suppressed AL-increased protein levels and restored morphological changes in the hippocampus. |
[59] | Female APP/PS1 mice | Transgenic mouse: amyloid precursor protein (Mo/HuAPP695swe) and a mutant human presenilin 1 (PS1-dE9) | The intravenously injection of OXT nanogel reversed impairment of spatial memory by MWM. OXT nanogel inhibited inflammatory signaling cascades to delay Aβ deposition and neuronal apoptosis. |
[60] | Male APP/PS1 mice | Transgenic mouse: amyloid precursor protein (Mo/HuAPP695swe) and a mutant human presenilin 1 (PS1-dE9) | Intranasal administration OXT recovered social and objective and spatial memory in APP/PS1 mice. OXT showed decreased in expression of Aβ deposition, Iba1 and CD68 by immunohistology. |
Activity of OXT Neurons is Altered in AD Patients | |||
References | Gender | Subjects | Results |
[61] | Male and female | Patients diagnosed with mild AD Normal people (72.9 ± 4.5 years of age) | AD patient group had a lower right hippocampus volume and plasma OXT concentration than the control group. |
[62] | Gene expression profiles of AD and CSVD were downloaded from the gene expression omnibus (GEO) database. gene expression profiles of blood samples from 145 AD subjects, 80 MCI subjects, and 104 healthy controls. | DEGs include in OXT signal pathway are identified between AD and mild cognitive impairment (MCI) or CSVD progression and CSVD no-progression. | |
[63] | Male and female | Brain tissue was obtained from 80 individuals aged above 80 years. Blood DNA was obtained from 99 individuals aged above 75 years. | OXT gene in the middle temporal gyrus was methylated in AD patients. And the methylation of OXT gene in blood in converters to AD was found to be associated with the methylation of OXT gene in the middle temporal gyrus in AD patients. |
[64] | Male and female | The postmortem brain tissue from 12 cases (62–90 years old) of Alzheimer’s disease and 13 controls (36–87 years old). | OXT concentration was increased 33% in the hippocampus and temporal cortex of Alzheimer brains comparable to control group. |
[65] | Male and female | 32 patients at 10 to 93 years of age including 3 individuals with senile dementia of the Alzheimer type. | The size of OXT cells did not show any significant changes with increasing age. |
[66] | Male | Patients with AD (67 ± 2.3 years of age) Normal elderly (68 ± 2.7 years of age) Normal young (25 ± 0.6 years of age) | The OXT level in cerebrospinal fluid was similar in AD patients and healthy individuals. |
[67] | Male and female | Patients with AD (46 to 97 years of age) Normal people (68 ± 2.7 years of age) | The number OXT neurons in PVN was similar in healthy individuals and AD patients. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takahashi, J.; Yamada, D.; Nagano, W.; Saitoh, A. The Role of Oxytocin in Alzheimer’s Disease and Its Relationship with Social Interaction. Cells 2023, 12, 2426. https://doi.org/10.3390/cells12202426
Takahashi J, Yamada D, Nagano W, Saitoh A. The Role of Oxytocin in Alzheimer’s Disease and Its Relationship with Social Interaction. Cells. 2023; 12(20):2426. https://doi.org/10.3390/cells12202426
Chicago/Turabian StyleTakahashi, Junpei, Daisuke Yamada, Wakana Nagano, and Akiyoshi Saitoh. 2023. "The Role of Oxytocin in Alzheimer’s Disease and Its Relationship with Social Interaction" Cells 12, no. 20: 2426. https://doi.org/10.3390/cells12202426
APA StyleTakahashi, J., Yamada, D., Nagano, W., & Saitoh, A. (2023). The Role of Oxytocin in Alzheimer’s Disease and Its Relationship with Social Interaction. Cells, 12(20), 2426. https://doi.org/10.3390/cells12202426