Estrogen Receptor Alpha Splice Variants, Post-Translational Modifications, and Their Physiological Functions
Abstract
:1. Estrogen Receptor Alpha (ERα)
2. Complex Organization of ERα 5′-UTR
3. ERα Isoform Variation and Functions
3.1. Differential Splicing
3.1.1. ERα46
3.1.2. ERα36
3.1.3. ERαV/ERαΔ3-6
3.1.4. ERα-LBD
3.1.5. N-Terminally Truncated ERα Products (NTERPs)/Truncated Estrogen Receptor Products (TERPs)
3.1.6. ERαΔ3, ERαΔ4, ERαΔ3/4
3.1.7. ERα-Neo KO Mouse
3.2. Post-Translational Modifications
3.2.1. S118 Phosphorylation
Site in Human ERα | Site in Mouse ERα | Modification | Physiological Functions | References |
---|---|---|---|---|
S118 | S122 | Phosphorylation | Dimerization of ERα/transcriptional regulation | [59,60] |
Sexually dimorphic effects on fat accumulation; amino acid substitution to non-phosphorylatable form leads to more fat accumulation in female mice and lower fat mass in male mice | [65,66] | |||
S212 | S216 | Phosphorylation | Transcriptional regulation via ERE | [67] |
Amino acid substitution to non-phosphorylatable form increases inflammatory signatures and impairs motor coordination | [68] | |||
R260 | R264 | Methylation | ERα cytoplasmic distribution | [69] |
Amino acid substitution to non-methylatable form impairs membrane-initiated actions of E2 in the endothelial cells | [70] | |||
C447 | C451 | Palmitoylation | ERα plasma membrane localization | [71,72] |
Amino acid substitution to non-palmitoylable form leads to female mouse infertility and impairs the homeostatic regulation of trabecular bone in the axial skeleton | [73,74,75] | |||
Y537 | Y541 | Phosphorylation | E2-ERα binding/interaction with kinases | [76,77] |
Amino acid substitution to non-phosphorylatable form leads to female mouse infertility | [78] |
3.2.2. S212 Phosphorylation
3.2.3. R260 Methylation
3.2.4. C447 Palmitoylation
3.2.5. Y537 Phosphorylation
3.3. New Unidentified Variant
4. Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Herynk, M.H.; Fuqua, S.A.W. Estrogen Receptor Mutations in Human Disease. Endocr. Rev. 2004, 25, 869–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, S.E.; Martin-Hirsch, P.L.; Martin, F.L. Oestrogen receptor splice variants in the pathogenesis of disease. Cancer Lett. 2010, 288, 133–148. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Yang, S.; Wei, M.; Vlantis, A.C.; Chan, J.Y.K.; van Hasselt, C.A.; Li, D.; Zeng, X.; Xue, L.; Tong, M.C.F.; et al. The Isoforms of Estrogen Receptor Alpha and Beta in Thyroid Cancer. Front. Oncol. 2022, 12, 916804. [Google Scholar] [CrossRef]
- Thomas, C.; Gustafsson, J. The different roles of ER subtypes in cancer biology and therapy. Nat. Rev. Cancer 2011, 11, 597–608. [Google Scholar] [CrossRef]
- Ishii, H.; Sakuma, Y. Complex organization of the 5′-untranslated region of the mouse estrogen receptor α gene: Identification of numerous mRNA transcripts with distinct 5′-ends. J. Steroid Biochem. Mol. Biol. 2011, 125, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Kos, M.; O’Brien, S.; Flouriot, G.; Gannon, F. Tissue-specific expression of multiple mRNA variants of the mouse estrogen receptor α gene. FEBS Lett. 2000, 477, 15–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishii, H.; Kobayashi, M.; Sakuma, Y. Alternative promoter usage and alternative splicing of the rat estrogen receptor α gene generate numerous mRNA variants with distinct 5′-ends. J. Steroid Biochem. Mol. Biol. 2010, 118, 59–69. [Google Scholar] [CrossRef]
- Koš, M.; Reid, G.; Denger, S.; Gannon, F. Minireview: Genomic Organization of the Human ERα Gene Promoter Region. Mol. Endocrinol. 2001, 15, 2057–2063. [Google Scholar] [CrossRef]
- Flouriot, G.; Brand, H.; Denger, S.; Métivier, R.; Koš, M.; Reid, G.; Sonntag-Buck, V.; Gannon, F. Identification of a new isoform of the human estrogen receptor-alpha (hER-α) that is encoded by distinct transcripts and that is able to repress hER-α activation function 1. EMBO J. 2000, 19, 4688–4700. [Google Scholar] [CrossRef] [Green Version]
- Arnal, J.F.; Lenfant, F.; Metivier, R.; Flouriot, G.; Henrion, D.; Adlanmerini, M.; Fontaine, C.; Gourdy, P.; Chambon, P.; Katzenellenbogen, B.; et al. Membrane and Nuclear Estrogen Receptor Alpha Actions: From Tissue Specificity to Medical Implications. Physiol. Rev. 2017, 97, 1045–1087. [Google Scholar] [CrossRef] [PubMed]
- Figtree, G.A.; McDonald, D.; Watkins, H.; Channon, K.M. Truncated Estrogen Receptor α 46-kDa Isoform in Human Endothelial Cells. Circulation 2003, 107, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Hattori, Y.; Ishii, H.; Morita, A.; Sakuma, Y.; Ozawa, H. Characterization of the fundamental properties of the N-terminal truncation (Δ exon 1) variant of estrogen receptor α in the rat. Gene 2015, 571, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Irsik, D.L.; Carmines, P.K.; Lane, P.H. Classical Estrogen Receptors and ERα Splice Variants in the Mouse. PLoS ONE 2013, 8, e70926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Zhang, X.; Shen, P.; Loggie, B.W.; Chang, Y.; Deuel, T.F. Identification, cloning, and expression of human estrogen receptor-α36, a novel variant of human estrogen receptor-α66. Biochem. Biophys. Res. Commun. 2005, 336, 1023–1027. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, X.; Shen, P.; Loggie, B.W.; Chang, Y.; Deuel, T.F. A variant of estrogen receptor-α, hER-α36: Transduction of estrogen- and antiestrogen-dependent membrane-initiated mitogenic signaling. Proc. Natl. Acad. Sci. USA 2006, 103, 9063–9068. [Google Scholar] [CrossRef] [Green Version]
- Thiebaut, C.; Chamard-Jovenin, C.; Chesnel, A.; Morel, C.; Djermoune, E.-H.; Boukhobza, T.; Dumond, H. Mammary epithelial cell phenotype disruption in vitro and in vivo through ERalpha36 overexpression. PLoS ONE 2017, 12, e0173931. [Google Scholar] [CrossRef] [Green Version]
- Thiebaut, C.; Konan, H.-P.; Guerquin, M.-J.; Chesnel, A.; Livera, G.; Le Romancer, M.; Dumond, H. The Role of ERα36 in Development and Tumor Malignancy. Int. J. Mol. Sci. 2020, 21, 4116. [Google Scholar] [CrossRef]
- Chaudhri, R.A.; Olivares-Navarrete, R.; Cuenca, N.; Hadadi, A.; Boyan, B.D.; Schwartz, Z. Membrane Estrogen Signaling Enhances Tumorigenesis and Metastatic Potential of Breast Cancer Cells via Estrogen Receptor-α36 (ERα36). J. Biol. Chem. 2012, 287, 7169–7181. [Google Scholar] [CrossRef] [Green Version]
- Ishunina, T.; Sluiter, A.; Swaab, D.; Verwer, R. Transcriptional activity of human brain estrogen receptor-α splice variants: Evidence for cell type-specific regulation. Brain Res. 2013, 1500, 1–9. [Google Scholar] [CrossRef]
- Ohshiro, K.; Mudvari, P.; Meng, Q.-C.; Rayala, S.; Sahin, A.A.; Fuqua, S.A.W.; Kumar, R. Identification of a Novel Estrogen Receptor-α Variant and Its Upstream Splicing Regulator. Mol. Endocrinol. 2010, 24, 914–922. [Google Scholar] [CrossRef]
- Strillacci, A.; Sansone, P.; Rajasekhar, V.K.; Turkekul, M.; Boyko, V.; Meng, F.; Houck-Loomis, B.; Brown, D.; Berger, M.F.; Hendrickson, R.C.; et al. ERα-LBD, an isoform of estrogen receptor alpha, promotes breast cancer proliferation and endocrine resistance. Npj Breast Cancer 2022, 8, 1–16. [Google Scholar] [CrossRef]
- Ishii, H.; Shoda, Y.; Yomogida, K.; Hamada, T.; Sakuma, Y. Identification of C-terminally and N-terminally truncated estrogen receptor α variants in the mouse. J. Steroid Biochem. Mol. Biol. 2011, 124, 38–46. [Google Scholar] [CrossRef]
- Friend, K.E.; Ang, L.W.; Shupnik, M.A. Estrogen regulates the expression of several different estrogen receptor mRNA isoforms in rat pituitary. Proc. Natl. Acad. Sci. USA 1995, 92, 4367–4371. [Google Scholar] [CrossRef] [Green Version]
- Tiffoche, C.; Vaillant, C.; Schausi, D.; Thieulant, M.-L. Novel Intronic Promoter in the Rat ERα Gene Responsible for the Transient Transcription of a Variant Receptor. Endocrinology 2001, 142, 4106–4119. [Google Scholar] [CrossRef] [PubMed]
- Bryant, W.M.; Gibson, M.A.; Shupnik, M.A. Stimulation of the Novel Estrogen Receptor-α Intronic TERP-1 Promoter by Estrogens, Androgen, Pituitary Adenylate Cyclase-Activating Peptide, and Forskolin, and Autoregulation by TERP-1 Protein. Endocrinology 2006, 147, 543–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schreihofer, D.A.; Rowe, D.F.; Rissman, E.F.; Scordalakes, E.M.; Gustafsson, J.; Shupnik, M.A. Estrogen Receptor-α (ERα), But Not ERβ, Modulates Estrogen Stimulation of the ERα-Truncated Variant, TERP-1. Endocrinology 2002, 143, 4196–4202. [Google Scholar] [CrossRef] [Green Version]
- Pasqualini, C.; Guivarc’H, D.; Barnier, J.-V.; Guibert, B.; Vincent, J.-D.; Vernier, P. Differential Subcellular Distribution and Transcriptional Activity of ΣE3, ΣE4, and ΣE3–4 Isoforms of the Rat Estrogen Receptor-α. Mol. Endocrinol. 2001, 15, 894–908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasqualini, C.; Guivarc’H, D.; Boxberg, Y.V.; Nothias, F.; Vincent, J.-D.; Vernier, P. Stage- and Region-Specific Expression of Estrogen Receptor α Isoforms during Ontogeny of the Pituitary Gland*. Endocrinology 1999, 140, 2781–2789. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.M.; Scott, A.; Johnson, C.S.; Mohr, M.A.; Mittelman-Smith, M.; Micevych, P.E. ER αΔ4, an ER α splice variant missing exon4, interacts with caveolin-3 and mG luR2/3. J. Neuroendocr. 2019, 31, e12725. [Google Scholar] [CrossRef]
- Wong, A.M.; Abrams, M.C.; Micevych, P.E. β-Arrestin Regulates Estradiol Membrane-Initiated Signaling in Hypothalamic Neurons. PLoS ONE 2015, 10, e0120530. [Google Scholar] [CrossRef]
- Pfeffer, U.; Fecarotta, E.; Castagnetta, L.; Vidali, G. Estrogen receptor variant messenger RNA lacking exon 4 in estrogen-responsive human breast cancer cell lines. Cancer Res. 1993, 53, 741–743. [Google Scholar] [PubMed]
- Shupnik, M.A.; Pitt, L.K.; Soh, A.Y.; Anderson, A.; Lopes, M.B.; Laws, E.R. Selective Expression of Estrogen Receptor ? and ? Isoforms in Human Pituitary Tumors 1. J. Clin. Endocrinol. Metab. 1998, 83, 3965–3972. [Google Scholar] [CrossRef]
- Park, W.; Choi, J.J.; Hwang, E.S.; Lee, J.H. Identification of a variant estrogen receptor lacking exon 4 and its coexpression with wild-type estrogen receptor in ovarian carcinomas. Clin. Cancer Res. 1996, 2, 2029–2035. [Google Scholar]
- Dominguez, R.; Dewing, P.; Kuo, J.; Micevych, P. Membrane-initiated estradiol signaling in immortalized hypothalamic N-38 neurons. Steroids 2013, 78, 607–613. [Google Scholar] [CrossRef] [Green Version]
- Skipper, J.K.; Young, L.J.; Bergeron, J.M.; Tetzlaff, M.T.; Osborn, C.T.; Crews, D. Identification of an isoform of the estrogen receptor messenger RNA lacking exon four and present in the brain. Proc. Natl. Acad. Sci. USA 1993, 90, 7172–7175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, K.; Dickey, J.E.; Rodeghiero, S.R.; Toth, B.A.; Kelly, M.J.; Deng, Y.; Singh, U.; Deng, G.; Jiang, J.; Cui, H. Hypomorphism of a novel long ERα isoform causes severe reproductive dysfunctions in female mice. Endocrinology 2022, 163, bqac160. [Google Scholar] [CrossRef]
- Ohe, K.; Miyajima, S.; Abe, I.; Tanaka, T.; Hamaguchi, Y.; Harada, Y.; Horita, Y.; Beppu, Y.; Ito, F.; Yamasaki, T.; et al. HMGA1a induces alternative splicing of estrogen receptor alpha in MCF-7 human breast cancer cells. J. Steroid Biochem. Mol. Biol. 2018, 182, 21–26. [Google Scholar] [CrossRef]
- Stevens, T.A.; Meech, R. BARX2 and estrogen receptor-α (ESR1) coordinately regulate the production of alternatively spliced ESR1 isoforms and control breast cancer cell growth and invasion. Oncogene 2006, 25, 5426–5435. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Wang, J.; Zhang, L.; Li, X.; Shen, D. Expression of ER-α36, a Novel Variant of Estrogen Receptor in Endometrial Carcinoma and Its Clinical Significance. Gynecol. Obstet. Investig. 2012, 75, 68–72. [Google Scholar] [CrossRef]
- Fu, Z.; Deng, H.; Wang, X.; Yang, X.; Wang, Z.; Liu, L. Involvement of ER-α36 in the malignant growth of gastric carcinoma cells is associated with GRP94 overexpression. Histopathology 2013, 63, 325–333. [Google Scholar] [CrossRef]
- Jiang, H.; Teng, R.; Wang, Q.; Zhang, X.; Wang, H.; Wang, Z.; Cao, J.; Teng, L. Transcriptional analysis of estrogen receptor alpha variant mRNAs in colorectal cancers and their matched normal colorectal tissues. J. Steroid Biochem. Mol. Biol. 2008, 112, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Sun, M.; Liao, X.-B.; Yuan, L.-Q.; Sheng, Z.-F.; Meng, J.-C.; Wang, D.; Yu, Z.-Y.; Zhang, L.-Y.; Zhou, H.-D.; et al. Estrogen receptor α36 mediates a bone-sparing effect of 17β-estrodiol in postmenopausal women. J. Bone Miner. Res. 2010, 26, 156–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, B.-Z.; Lin, S.-L.; Li, M.; Zhu, J.-Q.; Li, S.; Ouyang, Y.-C.; Chen, D.-Y.; Sun, Q.-Y. Changes in estrogen receptor-α variant (er-alpha36) expression during mouse ovary development and oocyte meiotic maturation. Histochem. Cell Biol. 2008, 131, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Bollig-Fischer, A.; Thakur, A.; Sun, Y.; Wu, J.; Liao, D.J. The Predominant Proteins that React to the MC-20 Estrogen Receptor Alpha Antibody Differ in Molecular Weight between the Mammary Gland and Uterus in the Mouse and Rat. Int. J. Biomed. Sci. IJBS 2012, 8, 51–63. [Google Scholar] [PubMed]
- Sołtysik, K.; Czekaj, P. ERα36—Another piece of the estrogen puzzle. Eur. J. Cell Biol. 2015, 94, 611–625. [Google Scholar] [CrossRef]
- Ishunina, T.A.; Swaab, D.F. Decreased alternative splicing of estrogen receptor-α mRNA in the Alzheimer’s disease brain. Neurobiol. Aging 2012, 33, 286–296.e3. [Google Scholar] [CrossRef]
- Stirone, C.; Duckles, S.P.; Krause, D.N. Multiple forms of estrogen receptor-α in cerebral blood vessels: Regulation by estrogen. Am. J. Physiol. Metab. 2003, 284, E184–E192. [Google Scholar] [CrossRef]
- Hirata, S.; Shoda, T.; Kato, J.; Hoshi, K. The novel isoform of the estrogen receptor-α cDNA (ERα isoform S cDNA) in the human testis. J. Steroid Biochem. Mol. Biol. 2002, 80, 299–305. [Google Scholar] [CrossRef]
- Lubahn, D.B.; Moyer, J.S.; Golding, T.S.; Couse, J.F.; Korach, K.S.; Smithies, O. Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc. Natl. Acad. Sci. USA 1993, 90, 11162–11166. [Google Scholar] [CrossRef] [Green Version]
- Couse, J.F.; Hewitt, S.C.; Bunch, D.O.; Sar, M.; Walker, V.R.; Davis, B.J.; Korach, K.S. Postnatal Sex Reversal of the Ovaries in Mice Lacking Estrogen Receptors α and β. Science 1999, 286, 2328–2331. [Google Scholar] [CrossRef] [Green Version]
- Pendaries, C.; Darblade, B.; Rochaix, P.; Krust, A.; Chambon, P.; Korach, K.S.; Bayard, F.; Arnal, J.-F. The AF-1 activation-function of ERα may be dispensable to mediate the effect of estradiol on endothelial NO production in mice. Proc. Natl. Acad. Sci. USA 2002, 99, 2205–2210. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Wolfe, A.; Wang, X.; Chang, C.; Yeh, S.; Radovick, S. Generation and characterization of a complete null estrogen receptor α mouse using Cre/LoxP technology. Mol. Cell. Biochem. 2008, 321, 145–153. [Google Scholar] [CrossRef] [Green Version]
- Iafrati, M.D.; Karas, R.H.; Aronovitz, M.; Kim, S.; Sullivan, T.R., Jr.; Lubahn, D.B.; O’Donnell, T.F., Jr.; Korach, K.S.; Mendelsohn, M.E. Estrogen inhibits the vascular injury response in estrogen receptor α-deficient mice. Nat. Med. 1997, 3, 545–548. [Google Scholar] [CrossRef]
- Pare, G.; Krust, A.; Karas, R.H.; Dupont, S.; Aronovitz, M.; Chambon, P.; Mendelsohn, M.E. Estrogen Receptor-α Mediates the Protective Effects of Estrogen Against Vascular Injury. Circ. Res. 2002, 90, 1087–1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brouchet, L.; Krust, A.; Dupont, S.; Chambon, P.; Bayard, F.; Arnal, J.F. Estradiol Accelerates Reendothelialization in Mouse Carotid Artery through Estrogen Receptor-α but Not Estrogen Receptor-β. Circulation 2001, 103, 423–428. [Google Scholar] [CrossRef] [Green Version]
- Le Romancer, M.; Poulard, C.; Cohen, P.; Sentis, S.; Renoir, J.-M.; Corbo, L. Cracking the Estrogen Receptor’s Posttranslational Code in Breast Tumors. Endocr. Rev. 2011, 32, 597–622. [Google Scholar] [CrossRef] [Green Version]
- Habara, M.; Shimada, M. Estrogen receptor α revised: Expression, structure, function, and stability. Bioessays 2022, 44, e2200148. [Google Scholar] [CrossRef]
- Anbalagan, M.; Rowan, B.G. Estrogen receptor alpha phosphorylation and its functional impact in human breast cancer. Mol. Cell. Endocrinol. 2015, 418, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Masuhiro, Y.; Mezaki, Y.; Sakari, M.; Takeyama, K.-I.; Yoshida, T.; Inoue, K.; Yanagisawa, J.; Hanazawa, S.; O’Malley, B.W.; Kato, S. Splicing potentiation by growth factor signals via estrogen receptor phosphorylation. Proc. Natl. Acad. Sci. USA 2005, 102, 8126–8131. [Google Scholar] [CrossRef] [Green Version]
- Sheeler, C.Q.; Singleton, D.W.; Khan, S.A. Mutation of Serines 104, 106, and 118 Inhibits Dimerization of the Human Estrogen Receptor in Yeast. Endocr. Res. 2003, 29, 237–255. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, C.; Shapiro, D.J. A Functional Serine 118 Phosphorylation Site in Estrogen Receptor-α Is Required for Down-Regulation of Gene Expression by 17β-Estradiol and 4-Hydroxytamoxifen. Endocrinology 2007, 148, 4634–4641. [Google Scholar] [CrossRef] [PubMed]
- Huderson, B.P.; Duplessis, T.T.; Williams, C.C.; Seger, H.C.; Marsden, C.G.; Pouey, K.J.; Hill, S.M.; Rowan, B.G. Stable Inhibition of Specific Estrogen Receptor α (ERα) Phosphorylation Confers Increased Growth, Migration/Invasion, and Disruption of Estradiol Signaling in MCF-7 Breast Cancer Cells. Endocrinology 2012, 153, 4144–4159. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Washbrook, E.; Sarwar, N.; Bates, G.J.; Pace, P.E.; Thirunuvakkarasu, V.; Taylor, J.; Epstein, R.J.; Fuller-Pace, F.V.; Egly, J.-M.; et al. Phosphorylation of human estrogen receptor α at serine 118 by two distinct signal transduction pathways revealed by phosphorylation-specific antisera. Oncogene 2002, 21, 4921–4931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grissom, E.M.; Daniel, J. Evidence for Ligand-Independent Activation of Hippocampal Estrogen Receptor-α by IGF-1 in Hippocampus of Ovariectomized Rats. Endocrinology 2016, 157, 3149–3156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohlsson, C.; Gustafsson, K.L.; Farman, H.H.; Henning, P.; Lionikaite, V.; Movérare-Skrtic, S.; Sjögren, K.; Törnqvist, A.E.; Andersson, A.; Islander, U.; et al. Phosphorylation site S122 in estrogen receptor α has a tissue-dependent role in female mice. FASEB J. 2020, 34, 15991–16002. [Google Scholar] [CrossRef]
- Horkeby, K.; Farman, H.H.; Movérare-Skrtic, S.; Lionikaite, V.; Wu, J.; Henning, P.; Windahl, S.; Sjögren, K.; Ohlsson, C.; Lagerquist, M.K. Phosphorylation of S122 in ERα is important for the skeletal response to estrogen treatment in male mice. Sci. Rep. 2022, 12, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Shindo, S.; Sakuma, T.; Negishi, M.; Squires, J. Phosphorylation of serine 212 confers novel activity to human estrogen receptor α. Steroids 2012, 77, 448–453. [Google Scholar] [CrossRef] [Green Version]
- Shindo, S.; Chen, S.-H.; Gotoh, S.; Yokobori, K.; Hu, H.; Ray, M.; Moore, R.; Nagata, K.; Martinez, J.; Hong, J.-S.; et al. Estrogen receptor α phosphorylated at Ser216 confers inflammatory function to mouse microglia. Cell Commun. Signal. 2020, 18, 1–13. [Google Scholar] [CrossRef]
- Le Romancer, M.; Treilleux, I.; Leconte, N.; Robin-Lespinasse, Y.; Sentis, S.; Bouchekioua-Bouzaghou, K.; Goddard, S.; Gobert-Gosse, S.; Corbo, L. Regulation of estrogen rapid signaling through arginine methylation by PRMT1. Mol. Cell 2008, 31, 212–221. [Google Scholar] [CrossRef]
- Adlanmerini, M.; Fébrissy, C.; Zahreddine, R.; Vessières, E.; Buscato, M.; Solinhac, R.; Favre, J.; Anquetil, T.; Guihot, A.-L.; Boudou, F.; et al. Mutation of Arginine 264 on ERα (Estrogen Receptor Alpha) Selectively Abrogates the Rapid Signaling of Estradiol in the Endothelium without Altering Fertility. Arter. Thromb. Vasc. Biol. 2020, 40, 2143–2158. [Google Scholar] [CrossRef]
- Acconcia, F.; Ascenzi, P.; Bocedi, A.; Spisni, E.; Tomasi, V.; Trentalance, A.; Visca, P.; Marino, M.; Kim, K.H.; Toomre, D.; et al. Palmitoylation-dependent Estrogen Receptor α Membrane Localization: Regulation by 17β-Estradiol. Mol. Biol. Cell 2005, 16, 231–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedram, A.; Razandi, M.; Deschenes, R.J.; Levin, E.R. DHHC-7 and -21 are palmitoylacyltransferases for sex steroid receptors. Mol. Biol. Cell 2012, 23, 188–199. [Google Scholar] [CrossRef] [PubMed]
- Adlanmerini, M.; Solinhac, R.; Abot, A.; Fabre, A.; Raymond-Letron, I.; Guihot, A.-L.; Boudou, F.; Sautier, L.; Vessières, E.; Kim, S.H.; et al. Mutation of the palmitoylation site of estrogen receptor α in vivo reveals tissue-specific roles for membrane versus nuclear actions. Proc. Natl. Acad. Sci. USA 2013, 111, E283–E290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedram, A.; Razandi, M.; Lewis, M.; Hammes, S.; Levin, E.R. Membrane-Localized Estrogen Receptor α Is Required for Normal Organ Development and Function. Dev. Cell 2014, 29, 482–490. [Google Scholar] [CrossRef] [Green Version]
- Gustafsson, K.L.; Farman, H.; Henning, P.; Lionikaite, V.; Movérare-Skrtic, S.; Wu, J.; Ryberg, H.; Koskela, A.; Gustafsson, J.; Tuukkanen, J.; et al. The role of membrane ERα signaling in bone and other major estrogen responsive tissues. Sci. Rep. 2016, 6, 29473. [Google Scholar] [CrossRef] [Green Version]
- Pietras, R.; Arboleda, J.; Reese, D.M.; Wongvipat, N.; Pegram, M.D.; Ramos, L.; Gorman, C.M.; Parker, M.G.; Sliwkowski, M.X.; Slamon, D.J. HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells. Oncogene 1995, 10, 2435–2446. [Google Scholar]
- Arnold, S.F.; Obourn, J.D.; Notides, A.C.; Jaffe, H. Phosphorylation of the human estrogen receptor on tyrosine 537 in vivo and by src family tyrosine kinases in vitro. Mol. Endocrinol. 1995, 9, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Simond, A.M.; Ling, C.; Moore, M.J.; Condotta, S.A.; Richer, M.J.; Muller, W.J. Point-activated ESR1Y541S has a dramatic effect on the development of sexually dimorphic organs. Genes Dev. 2020, 34, 1304–1309. [Google Scholar] [CrossRef]
- Vidal, O.; Lindberg, M.K.; Hollberg, K.; Baylink, D.J.; Andersson, G.; Lubahn, D.B.; Mohan, S.; Gustafsson, J.Å.; Ohlsson, C. Estrogen receptor specificity in the regulation of skeletal growth and maturation in male mice. Proc. Natl. Acad. Sci. USA 2000, 97, 5474–5479. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.C.L.; Jessop, H.; Suswillo, R.; Zaman, G.; Lanyon, L.E. The adaptive response of bone to mechanical loading in female transgenic mice is deficient in the absence of oestrogen receptor-alpha and -beta. J. Endocrinol. 2004, 182, 193–201. [Google Scholar] [CrossRef] [Green Version]
- Syed, F.A.; Mödder, U.I.L.; Fraser, D.G.; Spelsberg, T.C.; Rosen, C.J.; Krust, A.; Chambon, P.; Jameson, J.; Khosla, S. Skeletal Effects of Estrogen Are Mediated by Opposing Actions of Classical and Nonclassical Estrogen Receptor Pathways. J. Bone Miner. Res. 2005, 20, 1992–2001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahlborg, H.G.; Johnell, O.; Turner, C.H.; Rannevik, G.; Karlsson, M.K. Bone Loss and Bone Size after Menopause. N. Engl. J. Med. 2003, 349, 327–334. [Google Scholar] [CrossRef] [Green Version]
- Shindo, S.; Moore, R.; Flake, G.; Negishi, M. Serine 216 Phosphorylation of Estrogen Receptor α in Neutrophils: Migration and Infiltration into the Mouse Uterus. PLoS ONE 2013, 8, e84462. [Google Scholar] [CrossRef]
- Gustafsson, K.L.; Farman, H.H.; Nilsson, K.H.; Henning, P.; Movérare-Skrtic, S.; Lionikaite, V.; Lawenius, L.; Engdahl, C.; Ohlsson, C.; Lagerquist, M.K. Arginine site 264 in murine estrogen receptor-α is dispensable for the regulation of the skeleton. Am. J. Physiol. Metab. 2021, 320, E160–E168. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Huangyang, P.; Wang, Y.; Xue, L.; Devericks, E.; Nguyen, H.G.; Yu, X.; Oses-Prieto, J.A.; Burlingame, A.L.; Miglani, S.; et al. ERα is an RNA-binding protein sustaining tumor cell survival and drug resistance. Cell 2021, 184, 5215–5229.e17. [Google Scholar] [CrossRef]
- Maniaci, M.; Boffo, F.L.; Massignani, E.; Bonaldi, T. Systematic Analysis of the Impact of R-Methylation on RBPs-RNA Interactions: A Proteomic Approach. Front. Mol. Biosci. 2021, 8, 688973. [Google Scholar] [CrossRef] [PubMed]
- Micevych, P.E.; Mermelstein, P.G.; Sinchak, K. Estradiol Membrane-Initiated Signaling in the Brain Mediates Reproduction. Trends Neurosci. 2017, 40, 654–666. [Google Scholar] [CrossRef]
- Razandi, M.; Oh, P.; Pedram, A.; Schnitzer, J.; Levin, E.R. ERs Associate with and Regulate the Production of Caveolin: Implications for Signaling and Cellular Actions. Mol. Endocrinol. 2002, 16, 100–115. [Google Scholar] [CrossRef] [PubMed]
- Rusidzé, M.; Faure, M.C.; Sicard, P.; Raymond-Letron, I.; Giton, F.; Vessieres, E.; Prevot, V.; Henrion, D.; Arnal, J.-F.; Cornil, C.A.; et al. Loss of function of the maternal membrane oestrogen receptor ERα alters expansion of trophoblast cells and impacts mouse fertility. Development 2022, 149, dev200683. [Google Scholar] [CrossRef]
- Saito, K.; He, Y.; Yang, Y.; Zhu, L.; Wang, C.; Xu, P.; Hinton, A.O.; Yan, X.; Zhao, J.; Fukuda, M.; et al. PI3K in the ventromedial hypothalamic nucleus mediates estrogenic actions on energy expenditure in female mice. Sci. Rep. 2016, 6, 23459. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Xu, P.; Cao, X.; Yang, Y.; Hinton, A.O.; Xia, Y.; Saito, K.; Yan, X.; Zou, F.; Ding, H.; et al. The ERα-PI3K Cascade in Proopiomelanocortin Progenitor Neurons Regulates Feeding and Glucose Balance in Female Mice. Endocrinology 2015, 156, 4474–4491. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Hill, J.W.; Fukuda, M.; Gautron, L.; Sohn, J.-W.; Kim, K.-W.; Lee, C.E.; Choi, M.J.; Lauzon, D.A.; Dhillon, H.; et al. PI3K Signaling in the Ventromedial Hypothalamic Nucleus Is Required for Normal Energy Homeostasis. Cell Metab. 2010, 12, 88–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.X.; Borg, A.; Wolf, D.M.; Oesterreich, S.; Fuqua, S.A. An estrogen receptor mutant with strong hormone-independent activity from a metastatic breast cancer. Cancer Res. 1997, 57, 1244–1249. [Google Scholar] [PubMed]
- Golding, T.S.; Korach, K.S. Nuclear estrogen receptor molecular heterogeneity in the mouse uterus. Proc. Natl. Acad. Sci. USA 1988, 85, 69–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Washburn, T.; Hocutt, A.; Brautigan, D.L.; Korach, K.S. Uterine Estrogen Receptor in Vivo: Phosphorylation of Nuclear Specific Forms on Serine Residues. Mol. Endocrinol. 1991, 5, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Joel, P.B.; Traish, A.M.; Lannigan, D.A. Estradiol-induced Phosphorylation of Serine 118 in the Estrogen Receptor Is Independent of p42/p44 Mitogen-activated Protein Kinase. J. Biol. Chem. 1998, 273, 13317–13323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabatadze, N.; Smejkalova, T.; Woolley, C.S. Distribution and posttranslational modification of synaptic ERα in the adult female rat hippocampus. Endocrinology 2012, 154, 819–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auricchio, F.; Di Domenico, M.; Migliaccio, A.; Castoria, G.; Bilancio, A. The role of estradiol receptor in the proliferative activity of vanadate on MCF-7 cells. Cell Growth Differ. Mol. Biol. J. Am. Assoc. Cancer Res. 1995, 6, 105–113. [Google Scholar]
- Castoria, G.; Migliaccio, A.; Bilancio, A.; Pagano, M.; Abbondanza, C.; Auricchio, F. A 67 kDa non-hormone binding estradiol receptor is present in human mammary cancers. Int. J. Cancer 1996, 65, 574–583. [Google Scholar] [CrossRef]
- Li, Q.; Sun, H.; Zou, J.; Ge, C.; Yu, K.; Cao, Y.; Hong, Q. Increased Expression of Estrogen Receptor a-36 by Breast Cancer Oncogene IKKe Promotes Growth of ER-Negative Breast Cancer Cells. Cell. Physiol. Biochem. 2013, 31, 833–841. [Google Scholar] [CrossRef]
- Treutlein, B.; Gokce, O.; Quake, S.R.; Südhof, T.C. Cartography of neurexin alternative splicing mapped by single-molecule long-read mRNA sequencing. Proc. Natl. Acad. Sci. USA 2014, 111, E1291–E1299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ray, T.A.; Cochran, K.; Kozlowski, C.; Wang, J.; Alexander, G.; Cady, M.A.; Spencer, W.J.; Ruzycki, P.A.; Clark, B.S.; Laeremans, A.; et al. Comprehensive identification of mRNA isoforms reveals the diversity of neural cell-surface molecules with roles in retinal development and disease. Nat. Commun. 2020, 11, 3328. [Google Scholar] [CrossRef]
- Cox, D.B.T.; Gootenberg, J.S.; Abudayyeh, O.O.; Franklin, B.; Kellner, M.J.; Joung, J.; Zhang, F. RNA editing with CRISPR-Cas13. Science 2017, 358, 1019–1027. [Google Scholar] [CrossRef] [Green Version]
- Abudayyeh, O.O.; Gootenberg, J.S.; Essletzbichler, P.; Han, S.; Joung, J.; Belanto, J.J.; Verdine, V.; Cox, D.B.T.; Kellner, M.J.; Regev, A.; et al. RNA targeting with CRISPR–Cas13. Nature 2017, 550, 280–284. [Google Scholar] [CrossRef] [Green Version]
- Niklas, K.J.; Bondos, S.E.; Edunker, A.K.; Newman, S.A. Rethinking gene regulatory networks in light of alternative splicing, intrinsically disordered protein domains, and post-translational modifications. Front. Cell Dev. Biol. 2015, 3, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunker, A.K.; Bondos, S.E.; Huang, F.; Oldfield, C.J. Intrinsically disordered proteins and multicellular organisms. Semin. Cell Dev. Biol. 2015, 37, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Cao, S.; Kiselar, J.; Xiao, X.; Du, Z.; Hsieh, A.; Ko, S.; Chen, Y.; Agrawal, P.; Zheng, W.; et al. A Metastable Contact and Structural Disorder in the Estrogen Receptor Transactivation Domain. Structure 2019, 27, 229–240.e4. [Google Scholar] [CrossRef] [Green Version]
Isoform | MW (kDa) | Species | Tissues Detected | Physiological Functions/Properties | References |
---|---|---|---|---|---|
ERα46 | 46 | Human | ovary, liver, skeletal muscle, lung, kidney, adrenal gland |
| [9,10,11,12] |
Mouse | heart, uterus, testis |
| [13] | ||
Rat | pituitary |
| [12] | ||
ERα36 | 36 | Human | breast cancer endometrial cells, mammary gland, uterus |
| [14,15] |
| [16] | ||||
| [17] | ||||
| [13,18] | ||||
Mouse | kidney, ovary, oocytes |
| [13] | ||
ERαV/ΔE3-6 | 37 | Human | brain, MCF-7 cells |
| [19,20] |
ERα-LBD | 37.3 | Human | breast cancer |
| [21] |
NTERPs | 37.3 | Mouse | pituitary, brain, ovary, testis, kidney |
| [22] |
TERPs | 20–24 | Rat | pituitary |
| [22,23,24,25,26] |
| [24] | ||||
ERαΔE3/ΔE4/ΔE3/4 | 61.8/53/45 | Rat | pituitary |
| [27,28,29,30] |
ERαΔE4 | 52 | Human | MCF-7 cells, pituitary, ovarian carcinoma |
| [31,32,33] |
52 | Mouse | N-38 immortalized hypothalamic neurons |
| [30,34,35] | |
ERα66* | 67–70 | Mouse | pituitary, brain, ovary, testis, liver |
| [36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saito, K.; Cui, H. Estrogen Receptor Alpha Splice Variants, Post-Translational Modifications, and Their Physiological Functions. Cells 2023, 12, 895. https://doi.org/10.3390/cells12060895
Saito K, Cui H. Estrogen Receptor Alpha Splice Variants, Post-Translational Modifications, and Their Physiological Functions. Cells. 2023; 12(6):895. https://doi.org/10.3390/cells12060895
Chicago/Turabian StyleSaito, Kenji, and Huxing Cui. 2023. "Estrogen Receptor Alpha Splice Variants, Post-Translational Modifications, and Their Physiological Functions" Cells 12, no. 6: 895. https://doi.org/10.3390/cells12060895
APA StyleSaito, K., & Cui, H. (2023). Estrogen Receptor Alpha Splice Variants, Post-Translational Modifications, and Their Physiological Functions. Cells, 12(6), 895. https://doi.org/10.3390/cells12060895