Cellular and Genomic Instability Induced by the Herbicide Glufosinate-Ammonium: An In Vitro and In Vivo Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Lymphocyte Cultures and Cytokinesis-Block Micronucleus Assays
2.3. Lymnaea stagnalis Physiology and Rearing
2.4. Micronuclei Assay on Hemocytes from Lymnaea stagnalis
2.5. Statistical Analyses
3. Results
3.1. Lymphocytes
3.2. Hemocytes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, X.; Fu, K.; Xiang, K.-P.; Wang, L.-Y.; Zhang, Y.-F.; Luo, Y.-P. Comparison of the chronic and multigenerational toxicity of racemic glufosinate and L-glufosinate to Caenorhabditis elegans at environmental concentrations. Chemosphere 2023, 316, 137863. [Google Scholar] [CrossRef] [PubMed]
- Babalola, O.O.; Van Wyk, J.H. Comparative early life stage toxicity of the african clawed frog, Xenopus laevis following exposure to selected herbicide formulations applied to eradicate alien plants in South Africa. Arch. Environ. Contam. Toxicol. 2018, 75, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Castelli, L.; Branchiccela, B.; Zunino, P.; Antúnez, K. Insights into the effects of sublethal doses of pesticides Glufosinate-ammonium and sulfoxaflor on honey bee health. Sci. Total Environ. 2023, 868, 161331. [Google Scholar] [CrossRef] [PubMed]
- Takano, H.K.; Dayan, F.E. Glufosinate-ammonium: A review of the current state of knowledge. Pest Manag. Sci. 2020, 76, 3911–3925. [Google Scholar] [CrossRef] [PubMed]
- Takano, H.K.; Beffa, R.; Preston, C.; Westra, P.; Dayan, F.E. Reactive oxygen species trigger the fast action of glufosinate. Planta 2019, 249, 1837–1849. [Google Scholar] [CrossRef] [PubMed]
- Limoli, C.L.; Giedzinski, E. Induction of chromosomal instability by chronic oxidative stress. Neoplasia 2003, 5, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Ragu, S.; Faye, G.; Iraqui, I.; Masurel-Heneman, A.; Kolodner, R.D.; Huang, M.-E. Oxygen metabolism and reactive oxygen species cause chromosomal rearrangements and cell death. Proc. Natl. Acad. Sci. USA 2007, 104, 9747–9752. [Google Scholar] [CrossRef] [PubMed]
- Shipitalo, M.J.; Malone, R.W.; Owens, L.B. Impact of glyphosate-tolerant soybean and glufosinate-tolerant corn production on herbicide losses in surface runoff. J. Environ. Qual. 2008, 37, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Lajmanovich, R.C.; Cabagna-Zenklusen, M.C.; Attademo, A.M.; Junges, C.M.; Peltzer, P.M.; Bassó, A.; Lorenzatti, E. Induction of micronuclei and nuclear abnormalities in tadpoles of the common toad (Rhinella arenarum) treated with the herbicides Liberty® and Glufosinate-ammonium. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2014, 769, 7–12. [Google Scholar] [CrossRef]
- Devault, D.A.; Karolak, S. Wastewater-based epidemiology approach to assess population exposure to pesticides: A review of a pesticide pharmacokinetic dataset. Environ. Sci. Pollut. Res. Int. 2020, 27, 4695–4702. [Google Scholar] [CrossRef]
- Masiol, M.; Prete, M.; Giannì, B. Herbicides in river water across the northeastern Italy: Occurrence and spatial patterns of glyphosate, aminomethylphosphonic acid and Glufosinate ammonium. Environ. Sci. Pollut. Res. 2018, 25, 24368–24378. [Google Scholar] [CrossRef]
- Pelosi, C.; Bertrand, C.; Bretagnolle, V.; Coeurdassier, M.; Delhomme, O.; Deschamps, M.; Gaba, S.; Millet, M.; Nélieu, S.; Fritsch, C. Glyphosate, AMPA and glufosinate in soils and earthworms in a French arable landscape. Chemosphere 2022, 301, 134672. [Google Scholar] [CrossRef]
- FAO. Pesticide Residues in Food. 2012 Report; FAO plant production and protection paper; FAO: Rome, Italy, 2012; p. 216. [Google Scholar]
- Demonte, L.D.; Michlig, N.; Gaggiotti, M.; Adam, C.G.; Beldoménico, H.R.; Repetti, M.R. Determination of glyphosate, AMPA and glufosinate in dairy farm water from Argentina using a simplified UHPLC-MS/MS Method. Sci. Total Environ. 2018, 645, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; Jiang, L.; Zhang, D.; Liu, B.; Zhang, J.; Cheng, H.; Wang, L.; Peng, Y.; Wang, Y.; Zhao, Y.; et al. Glyphosate, aminomethylphosphonic acid, and Glufosinate ammonium in agricultural groundwater and surface water in China from 2017 to 2018: Occurrence, main drivers, and environmental risk assessment. Sci. Total Environ. 2021, 769, 144396. [Google Scholar] [CrossRef] [PubMed]
- Wauchope, R.D.; Estes, T.L.; Allen, R.; Baker, J.L.; Hornsby, A.G.; Jones, R.L.; Richards, R.P.; Gustafson, D.I. Predicted impact of transgenic, herbicidetolerant corn on drinking water quality in vulnerable watersheds of the Mid-Western USA. Pest Manag. Sci. 2002, 58, 146–160. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Wang, B.; Li, Z.; Ding, X.; Wen, Y.; Shan, W.; Hu, W.; Wang, X.; Xia, Y. Effects of Glufosinate-ammonium on male reproductive health: Focus on epigenome and transcriptome in mouse sperm. Chemosphere 2022, 287, 132395. [Google Scholar] [CrossRef]
- Cuzziol Boccioni, A.P.; Lener, G.; Peluso, J.; Peltzer, P.M.; Attademo, A.M.; Aronzon, C.; Simoniello, M.F.; Demonte, L.D.; Repetti, M.R.; Lajmanovich, R.C. Comparative assessment of individual and mixture chronic toxicity of glyphosate and glufosinate ammonium on amphibian tadpoles: A multibiomarker approach. Chemosphere 2022, 309, 136554. [Google Scholar] [CrossRef]
- Xiong, G.; Deng, Y.; Li, J.; Cao, Z.; Liao, X.; Liu, Y.; Lu, H. Immunotoxicity and transcriptome analysis of zebrafish embryos in response to Glufosinate-ammonium exposure. Chemosphere 2019, 236, 124423. [Google Scholar] [CrossRef]
- Zhang, L.; Diao, J.; Chen, L.; Wang, Z.; Zhang, W.; Li, Y.; Tian, Z.; Zhou, Z. Hepatotoxicity and reproductive disruption in male lizards (Eremias argus) exposed to Glufosinate-ammonium contaminated soil. Environ. Pollut. 2019, 246, 190–197. [Google Scholar] [CrossRef]
- Sagiv, S.K.; Harris, M.H.; Gunier, R.B.; Kogut, K.R.; Harley, K.G.; Deardorff, J.; Bradman, A.; Holland, N.; Eskenazi, B. Prenatal organophosphate pesticide exposure and traits related to autism spectrum disorders in a population living in proximity to agriculture. Environ. Health Perspect. 2018, 126, 047012. [Google Scholar] [CrossRef]
- Engel, S.M.; Bradman, A.; Wolff, M.S.; Rauh, V.A.; Harley, K.G.; Yang, J.H.; Hoepner, L.A.; Barr, D.B.; Yolton, K.; Vedar, M.G.; et al. Prenatal organophosphorus pesticide exposure and child neurodevelopment at 24 months: An analysis of four birth cohorts. Environ. Health Perspect. 2016, 124, 822–830. [Google Scholar] [CrossRef] [PubMed]
- Corsini, E.; Sokooti, M.; Galli, C.L.; Moretto, A.; Colosio, C. Pesticide induced immunotoxicity in humans: A comprehensive review of the existing evidence. Toxicology 2013, 307, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Amaral, A.F.S. Pesticides and Asthma: Challenges for epidemiology. Front. Public Health 2014, 2, 6. [Google Scholar] [CrossRef] [PubMed]
- Feat-Vetel, J.; Larrigaldie, V.; Meyer-Dilhet, G.; Herzine, A.; Mougin, C.; Laugeray, A.; Gefflaut, T.; Richard, O.; Quesniaux, V.; Montécot-Dubourg, C.; et al. Multiple effects of the herbicide Glufosinate-ammonium and its main metabolite on neural stem cells from the subventricular zone of newborn mice. Neurotoxicology 2018, 69, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Qian, H.; Chen, W.; Sheng, G.D.; Xu, X.; Liu, W.; Fu, Z. Effects of glufosinate on antioxidant enzymes, subcellular structure, and gene expression in the unicellular green alga Chlorella vulgaris. Aquat. Toxicol. 2008, 88, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Khare, P.; Feldman, L.; Dent, J.A. Reversal frequency in Caenorhabditis elegans represents an integrated response to the state of the animal and its environment. J. Neurosci. 2003, 23, 5319–5328. [Google Scholar] [CrossRef] [PubMed]
- Fabian, D.; Bystriansky, J.; Burkuš, J.; Rehák, P.; Legáth, J.; Koppel, J. The effect of herbicide BASTA 15 on the development of mouse preimplantation embryos in vivo and in vitro. Toxicol. In Vitro 2011, 25, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Schulte-Hermann, R.; Wogan, G.N.; Berry, C.; Brown, N.A.; Czeizel, A.; Giavini, E.; Holmes, L.B.; Kroes, R.; Nau, H.; Neubert, D.; et al. Analysis of reproductive toxicity and classification of Glufosinate-ammonium. Regul. Toxicol. Pharmacol. 2006, 44, S1–S76. [Google Scholar] [CrossRef] [PubMed]
- Kanaya, N.; Tsubokawa, T.; Kanaya, N.; Tsubokawa, T. Induction of micronuclei by herbicides in medaka (Oryzias latipes) gill cells. Hiyoshi Rev. Nat. Sci. 2007, 41, 1–14. [Google Scholar]
- Amorim, J.; Abreu, I.; Rodrigues, P.; Peixoto, D.; Pinheiro, C.; Saraiva, A.; Carvalho, A.P.; Guimarães, L.; Oliva-Teles, L. Lymnaea stagnalis as a freshwater model invertebrate for ecotoxicological studies. Sci. Total Environ. 2019, 669, 11–28. [Google Scholar] [CrossRef]
- Qin, Z.; Sarath Babu, V.; Lin, H.; Dai, Y.; Kou, H.; Chen, L.; Li, J.; Zhao, L.; Lin, L. The immune function of prophenoloxidase from red swamp crayfish (Procambarus clarkii) in response to bacterial infection. Fish Shellfish Immunol. 2019, 92, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Ellis, R.P.; Parry, H.; Spicer, J.I.; Hutchinson, T.H.; Pipe, R.K.; Widdicombe, S. Immunological function in marine invertebrates: Responses to environmental perturbation. Fish Shellfish Immunol. 2011, 30, 1209–1222. [Google Scholar] [CrossRef] [PubMed]
- Ludovici, G.M.; Cascone, M.G.; Huber, T.; Chierici, A.; Gaudio, P.; de Souza, S.O.; d’Errico, F.; Malizia, A. Cytogenetic bio-dosimetry techniques in the detection of dicentric chromosomes induced by ionizing radiation: A review. Eur. Phys. J. Plus 2021, 136, 482. [Google Scholar] [CrossRef]
- Santovito, A.; Pappalardo, A.; Nota, A.; Prearo, M.; Schleicherová, D. Lymnaea Stagnalis and Ophryotrocha Diadema as model organisms for studying genotoxicological and physiological effects of benzophenone-3. Toxics 2023, 11, 827. [Google Scholar] [CrossRef] [PubMed]
- Fenech, M. The in vitro micronucleus technique. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2000, 455, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Surrallés, J.; Xamena, N.; Creus, A.; Catalfin, J.; Norppa, H.; Marcos, R. Induction of micronuclei by five pyrethroid insecticides in whole-blood and isolated human lymphocyte cultures. Mutat. Res./Genet. Toxicol. 1995, 341, 169–184. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Schuler, M.; Berenbaum, M. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol. 2007, 52, 231–253. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Xu, Y.; Dai, Y.; Zhang, G.; Ji, C.; Zhang, Q.; Zhao, M. Comparing the enantioselective toxicity on cell cycle and apoptosis of DL-glufosinate and L-glufosinate to SH-SY5Y cells. Sci. Total Environ. 2023, 895, 165106. [Google Scholar] [CrossRef] [PubMed]
- Santovito, A.; Ruberto, S.; Gendusa, C.; Cervella, P. In vitro evaluation of genomic damage induced by glyphosate on human lymphocytes. Environ. Sci. Pollut. Res. Int. 2018, 25, 34693–34700. [Google Scholar] [CrossRef]
- Koene, J.; Maat, A. Energy budgets in the simultaneously hermaphroditic pond snail, Lymnaea stagnalis: A trade-off between growth and reproduction during development. Belg. J. Zool. 2004, 134, 41–45. [Google Scholar]
- SMAT Turin. Quality Characteristics of the Water Supplied in the Municipality of Turin, TO 1 District (Average Values, Second Half of 2023). Available online: https://www.smatorino.it/monitoraggio-acque/ (accessed on 10 May 2024).
- Koureas, M.; Tsezou, A.; Tsakalof, A.; Orfanidou, T.; Hadjichristodoulou, C. Increased levels of oxidative DNA damage in pesticide sprayers in Thessaly Region (Greece). Implications of Pesticide Exposure. Sci. Total Environ. 2014, 496, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Abdollahi, M.; Ranjbar, A.; Shadnia, S.; Nikfar, S.; Rezaie, A. Pesticides and oxidative stress: A review. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2004, 10, RA141–RA147. [Google Scholar]
- Kocaman, A.Y.; Rencüzoğulları, E.; Topaktaş, M. In vitro investigation of the genotoxic and cytotoxic effects of thiacloprid in cultured human peripheral blood lymphocytes. Environ. Toxicol. 2014, 29, 631–641. [Google Scholar] [CrossRef]
- Ham, J.; Lim, W.; Song, G. Pendimethalin induces apoptosis in testicular cells via hampering ER-mitochondrial function and autophagy. Environ. Pollut. 2021, 278, 116835. [Google Scholar] [CrossRef] [PubMed]
- Marc, J.; Mulner-Lorillon, O.; Bellé, R. Glyphosate-based pesticides affect cell cycle regulation. Biol. Cell 2004, 96, 245–249. [Google Scholar] [CrossRef]
- Zafra-Lemos, L.; Cusioli, L.F.; Bergamasco, R.; Borin-Carvalho, L.A.; Portela-Castro, A.L.d.B. Evaluation of the genotoxic and cytotoxic effects of exposure to the herbicide 2,4-dichlorophenoxyacetic acid in Astyanax lacustris (Pisces, Characidae) and the potential for its removal from contaminated water using a biosorbent. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2021, 865, 503335. [Google Scholar] [CrossRef]
- Prosser, C.L.; Bishop, D.W. Nitrogen excretion. In Comparative Animal Physiology; Saunders: Philadelphia, PA, USA, 1950; pp. 187–209. [Google Scholar]
- Hack, R.; Ebert, E.; Ehling, G.; Leist, K. Glufosinate ammonium-some aspects of its mode of action in mammals. Food Chem. Toxicol. 1994, 32, 461–470. [Google Scholar] [CrossRef]
- Chang, W.K.; Yang, K.D.; Shaio, M.F. Lymphocyte proliferation modulated by glutamine: Involved in the endogenous redox reaction. Clin. Exp. Immunol. 1999, 117, 482–488. [Google Scholar] [CrossRef] [PubMed]
- DeMarco, V.G.; Dyess, K.; Strauss, D.; West, C.M.; Neu, J. Inhibition of glutamine synthetase decreases proliferation of cultured rat intestinal epithelial cells. J. Nutr. 1999, 129, 57–62. [Google Scholar] [CrossRef]
- Zhao, J.-S.; Shi, S.; Qu, H.-Y.; Keckesova, Z.; Cao, Z.-J.; Yang, L.-X.; Yu, X.; Feng, L.; Shi, Z.; Krakowiak, J.; et al. Glutamine synthetase licenses APC/C-mediated mitotic progression to drive cell growth. Nat. Metab. 2022, 4, 239–253. [Google Scholar] [CrossRef]
- Margottin-Goguet, F.; Hsu, J.Y.; Loktev, A.; Hsieh, H.; Reimann, J.D.; Jackson, P. Prophase destruction of Emi1 by the SCF (betaTrCP/Slimb) ubiquitin ligase activates the anaphase promoting complex to allow progression beyond prometaphase. Dev. Cell 2003, 4, 813–826. [Google Scholar] [CrossRef] [PubMed]
- Guardavaccaro, D.; Kudo, Y.; Boulaire, J.; Barchi, M.; Busino, L.; Donzelli, M.; Margottin-Goguet, F.; Jackson, P.; Yamasaki, L.; Pagano, M. Control of meiotic and mitotic progression by the F Box Protein β-Trcp1 in vivo. Dev. Cell 2003, 4, 799–812. [Google Scholar] [CrossRef] [PubMed]
- Malakar, P.; Singha, D.; Choudhury, D.; Shukla, S. Glutamine regulates the cellular proliferation and cell cycle progression by modulating the mTOR mediated protein levels of β-TrCP. Cell Cycle 2023, 22, 1937–1950. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T. Apoptosis induced by Glufosinate ammonium in the neuroepithelium of developing mouse embryos in culture. Neurosci. Lett. 1997, 222, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Schleicherová, D.; Pastorino, P.; Pappalardo, A.; Nota, A.; Gendusa, C.; Mirone, E.; Prearo, M.; Santovito, A. Genotoxicological and physiological effects of glyphosate and its metabolite, aminomethylphosphonic acid, on the freshwater invertebrate Lymnaea stagnalis. Aquat. Toxicol. 2024, 271, 106940. [Google Scholar] [CrossRef]
- Zhang, Q.; Song, Q.; Wang, C.; Zhou, C.; Lu, C.; Zhao, M. Effects of glufosinate on the growth of and microcystin production by Microcystis aeruginosa at environmentally relevant concentrations. Sci. Total Environ. 2017, 575, 513–518. [Google Scholar] [CrossRef]
- Ahn, Y.J.; Kim, Y.J.; Yoo, J.K. Toxicity of the herbicide Glufosinate-ammonium to predatory insects and mites of Tetranychus urticae (Acari: Tetranychidae) under laboratory conditions. J. Econ. Entomol. 2001, 94, 157–161. [Google Scholar] [CrossRef]
Concentration | I Week | II Week | III Week | IV Week | Total |
---|---|---|---|---|---|
NC | 2875 | 2644 | 1856 | 2348 | 9723 |
0.500 µg/mL | 1017 | 975 | 1235 | 1801 | 5028 *** |
0.200 µg/mL | 1934 | 1318 | 1190 | 1623 | 6065 *** |
0.100 µg/mL | 1838 | 1765 | 1421 | 2067 | 7091 *** |
0.050 µg/mL | 2423 | 2108 | 2258 | 2195 | 8984 *** |
0.020 µg/mL | 2542 | 2189 | 2232 | 2595 | 9558 |
0.010 µg/mL | 2571 | 2449 | 2584 | 2232 | 9836 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santovito, A.; Lambertini, M.; Schleicherová, D.; Mirone, E.; Nota, A. Cellular and Genomic Instability Induced by the Herbicide Glufosinate-Ammonium: An In Vitro and In Vivo Approach. Cells 2024, 13, 909. https://doi.org/10.3390/cells13110909
Santovito A, Lambertini M, Schleicherová D, Mirone E, Nota A. Cellular and Genomic Instability Induced by the Herbicide Glufosinate-Ammonium: An In Vitro and In Vivo Approach. Cells. 2024; 13(11):909. https://doi.org/10.3390/cells13110909
Chicago/Turabian StyleSantovito, Alfredo, Mattia Lambertini, Dáša Schleicherová, Enrico Mirone, and Alessandro Nota. 2024. "Cellular and Genomic Instability Induced by the Herbicide Glufosinate-Ammonium: An In Vitro and In Vivo Approach" Cells 13, no. 11: 909. https://doi.org/10.3390/cells13110909
APA StyleSantovito, A., Lambertini, M., Schleicherová, D., Mirone, E., & Nota, A. (2024). Cellular and Genomic Instability Induced by the Herbicide Glufosinate-Ammonium: An In Vitro and In Vivo Approach. Cells, 13(11), 909. https://doi.org/10.3390/cells13110909