Stem Cells and Acellular Preparations in Bone Regeneration/Fracture Healing: Current Therapies and Future Directions
Abstract
:1. Introduction
2. Clinical Background on Bone Healing
3. Stem Cells
3.1. Human Pluripotent Stem Cells (hPSCs)
3.2. Embryonic Stem Cells (ESCs)
3.3. Induced Pluripotent Stem Cells (iPSCs)
3.4. Amniotic Stem Cells (ASCs)
3.5. Multipotent Stem Cells
3.6. Mesenchymal Stem Cells (MSCs)
3.7. Hematopoietic Stem Cells (HSCs)
3.8. Skeletal Stem Cells (SSCs)
Stem Cell Type | Application | |
---|---|---|
Human Pluripotent Stem Cell (hPSC) | Embryonic Stem Cell (ESC) | Osteogenic differentiation of human ESCs into bone tissue was successfully observed and evidence of ESC-derived mineralized tissue was found after 35 days [49]. |
Chondrocyte-differentiated ESCs led to better repair of knee articular cartilage 6 months after transplantation following xenotransplantation of human ESCs into porcine knee joints [50]. | ||
Induced Pluripotent Stem Cell (iPSC) | MSCs were reprogrammed into iPSC-MSCs, which showed higher proliferation, as well as morphological and immunophenotypically similarities to BM-MSCs *. iPSC-MSCs showed equivalent results in bone maintenance and repair in the in vivo rat femoral head necrosis model [61]. | |
iPSC-MSCs with CPG * significantly increased bone formation in a mini-pig model at 6 weeks, matching BM-MSC and autologous bone concentrate transplant results [62]. | ||
Co-transplanting iPSC-MSCs with anti-BMP2 * antibodies in nude mice increased calcification and angiogenesis, possibly indicating enhanced osteogenesis through BMP2 receptor interactions [63]. | ||
Amniotic Stem Cell (ASC) | ASC therapy led to more advanced osteogenesis compared to BM-MSC therapy in rat lumbar spine injuries [76]. | |
Human-ASC transplantation compared to mBMSCs * transplantation in mice with calvarial defects promoted host cell incorporation and bone-like tissue formation via scaffold transplant. Bone growth was possibly due to host cell recruitment rather than direct ASC-induced osteogenesis [77]. | ||
Multipotent Stem Cell (MSC) | Mesenchymal Stem Cell (MSC) | BM-MSCs with PBS * enhanced radiodensity and cortical bone growth at mandibular osteotomy sites in sheep compared to PBS alone at 3 and 6 weeks [88]. |
Hematopoietic Stem Cell (HSC) | HSCs in bone healing increased osteogenesis with HSC transplantation in vivo [94]. | |
Skeletal Stem Cell (SSC) | Injured and uninjured human phalanges were transplanted into immunodeficient mice, observing bone growth. Injured samples showed higher human SSC levels, indicating SSC proliferation in response to skeletal injury [80]. | |
Tumor necrosis factor α reduced Ihh * expression in diabetic mice, impairing SSC expansion and bone healing. Introducing Ihh via hydrogel restored SSC expansion and bone healing [95]. |
4. Potential Mechanisms of Stem Cells in Fracture Healing
4.1. Direct Osteogenic Formation
4.2. Paracrine Signaling in Bone Regeneration
5. Stem Cell Therapy: Current State and Applications
5.1. BM-MSC Clinical Trials
5.1.1. Spine
5.1.2. Face
5.1.3. Hip (Total/Revision Hip Arthroplasty)
5.1.4. Long Bones
Author | Defect | Transplant | Follow Up | Outcome |
---|---|---|---|---|
Granchi et al. (2019) [120] | Nonunion of long bones (n = 26) and osteonecrosis of femoral head (n = 13) | BM-MSCs + biphasic calcium phosphate | 12 and 24 weeks | 33/37 achieved good clinical outcomes. No adverse effects were observed. In good outcome patients increased CICP and decreased CTX collagen biomarkers were observed. |
Seebach et al. (2016) [123] | Proximal humerus fractures (n = 10) | BM-MSCs + β-TCP | 5 visits over 12 weeks | Radiological evaluation showed no secondary dislocations or screw perforations |
Gomez-Barrena et al. (2020) [121] | Long bones with delayed union or nonunion. Femur (n = 11), Humerus (n = 4), Tibia (n = 13). | BM-MSCs + MBCP+TM (20% HA and 80% β-TCP) | 3, 6 and 12 months | 25/28 patients showed consolidation 12 months post-op on radiograph. One died at 6 months, one voluntarily dropped out, one experienced nonunion. |
Redondo et al. (2018) [116] | Maxillary cysts (n = 9) | BM-MSCs + BioMax scaffold | 2 weeks, 3–4 months, and 6–8 months from the 2nd surgery | The ratio of the CT bone density values after/before treatment was 2.52 ± 0.45 in the experimental group and 0.99 ± 0.14 in the control group. |
Gan et al. (2008) [115] | Thoracolumbar fracture (n = 19) and degenerative disc disease (n = 22) | BM-MSC + β-TCP | 2 weeks and 1, 3, 6, 12, and 24 months | Radiographs showed 95.1% of patients demonstrated good spinal fusion after 34.5 months |
Gjerde et al. (2018) [117] | Maxillofacial bone defect (n = 11) | BM-MSC + biphasic calcium phosphate granule scaffold | 12–14 days and 1, 6, 9, and 18 months | Average bone volume increase was 887.23 ± 365.01 mm3 (p < 0.001) and measured bone width mean increase was 4.05 mm (p < 0.001). |
Seebach et al. (2024) [124] | Proximal humerus fracture (n = 56) | BM-MSC + β-TCP (n = 28); Only β-TCP (n = 28) | 1, 6, and 12 weeks post-op | Study was terminated because no statistical differences were seen in secondary dislocations or complications between BM-MSC group and control group. |
Jayankura et al. (2021) [122] | Long bone delayed union fractures: Tibia (n = 8) Humerus (n = 5) Femur (n = 3) Ulna (n = 3) Fibula (n = 2) Radius (n = 1) | BM-MSC | 2 weeks and 1, 3, 6, 12, and 24 months | GDE score improvement of ≥25% and a TUS score increase of ≥2 was seen in 16/21 of the patients. The mean TUS increase at 6 months post-op was 3.8 points. Two patients needed revision surgery at 18 months post-op. |
Šponer et al. (2016) [118] | Total hip arthroplasty (n = 18) | BM-MSC + β-TCP (n = 9); only β-TCP (n = 9) | 6 weeks and 3, 6, and 12 months post-op | Trabecular remodeling was found in all nine BM-MSC-treated patients and only in one control patients. |
Šponer et al. (2018) [119] | Revision hip arthroplasty (n = 37) | BM-MSC + β-TCP (n = 19); only β-TCP graft material (n = 9); only cancellous autografts (n = 9) | 6 weeks and 3, 6, and 12 months post-op | No significant difference between BM-MSC and cancellous autograft groups but significant difference seen in only β-TCP graft compared to cancellous autografts. |
5.2. Umbilical Cord MSC (UC-MSC) Clinical Trials
Author | Defect | Transplant | Follow Up | Outcome |
---|---|---|---|---|
Shim et al. (2021) [125] | Osteoporotic Vertebral Compression Fracture (n = 14) | UC-MSCs + teriparatide (n = 7); only teriparatide (n = 7) | 6 and 12 months | UC-MSC treatment group showed a significant increase in the VAS, ODI, and SF-36 scores compared to the control group. Bone turnover markers were not significantly different between the two groups. BMD T-scores of the spine and hip analyzed by DEXA showed an increase in both UC-MSC and control groups with no statistically significant difference between the two groups. CT scans of the spines of the UC-MSC treatment group showed better microarchitecture at baseline, 6 months, and 12 months. |
5.3. Adipose Tissue MSC (AT-MSC) Clinical Trials
Author | Defect | Transplant | Follow Up | Outcome |
---|---|---|---|---|
Castillo-Cardiel et al. (2017) [126] | Mandibular Fractures (n = 20) | AT-MSCs + Fracture Reduction (n = 10); Only Fracture Reduction (n = 10) | 4 and 12 weeks post-op | AT-MSC-treated group showed an increase in bone quality indicated by panoramic radiography measurements of 153.53 ± 1.83 vs. 101.81 ± 4.83 (p = 0.000), and CT measurements of 165.4 ± 4.2 vs. 112.9 ± 2.0 (p = 0.000) for the AT-MSC vs. control groups, respectively. A statistically significant 36.48% increase in bone ossification was seen in AT-MSC-treated group at 12 weeks post-op. |
6. Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Charitos, I.A.; Ballini, A.; Cantore, S.; Boccellino, M.; Di Domenico, M.; Borsani, E.; Nocini, R.; Di Cosola, M.; Santacroce, L.; Bottalico, L. Stem Cells: A Historical Review about Biological, Religious, and Ethical Issues. Stem Cells Int. 2021, 2021, 9978837. [Google Scholar] [CrossRef] [PubMed]
- Hansford, S.; Huntsman, D.G. Boveri at 100: Theodor Boveri and Genetic Predisposition to Cancer. J. Pathol. 2014, 234, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Tajbakhsh, S. Stem Cell: What’s in a Name? Nat. Rep. Stem Cells 2009. [Google Scholar] [CrossRef]
- Ramalho-Santos, M.; Willenbring, H. On the Origin of the Term “Stem Cell”. Cell Stem Cell 2007, 1, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Zakrzewski, W.; Dobrzyński, M.; Szymonowicz, M.; Rybak, Z. Stem Cells: Past, Present, and Future. Stem Cell Res. Ther. 2019, 10, 68. [Google Scholar] [CrossRef] [PubMed]
- Poliwoda, S.; Noor, N.; Downs, E.; Schaaf, A.; Cantwell, A.; Ganti, L.; Kaye, A.D.; Mosel, L.I.; Carroll, C.B.; Viswanath, O.; et al. Stem Cells: A Comprehensive Review of Origins and Emerging Clinical Roles in Medical Practice. Orthop. Rev. 2022, 14, 37498. [Google Scholar] [CrossRef] [PubMed]
- Einhorn, T.A. Bone Healing: Little Secrets. Clin. Cases Miner. Bone Metab. 2011, 8, 17–20. [Google Scholar] [PubMed]
- Einhorn, T.A.; Gerstenfeld, L.C. Fracture Healing: Mechanisms and Interventions. Nat. Rev. Rheumatol. 2015, 11, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Marsell, R.; Einhorn, T.A. Emerging Bone Healing Therapies. J. Orthop. Trauma. 2010, 24, S4–S8. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Liu, Y. The Role of the Immune Microenvironment in Bone Regeneration. Int. J. Med. Sci. 2021, 18, 3697–3707. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, M.; Rhee, C.; Utsunomiya, T.; Zhang, N.; Ueno, M.; Yao, Z.; Goodman, S.B. Modulation of the Inflammatory Response and Bone Healing. Front. Endocrinol. 2020, 11, 386. [Google Scholar] [CrossRef] [PubMed]
- Claes, L. The Effect of Both a Thoracic Trauma and a Soft-Tissue Trauma on Fracture Healing in a Rat Model. Acta Orthop. 2011, 82, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Einhorn, T.A. The Science of Fracture Healing. J. Orthop. Trauma 2005, 19, S4–S6. [Google Scholar] [CrossRef] [PubMed]
- ElHawary, H.; Baradaran, A.; Abi-Rafeh, J.; Vorstenbosch, J.; Xu, L.; Efanov, J.I. Bone Healing and Inflammation: Principles of Fracture and Repair. Semin. Plast. Surg. 2021, 35, 198–203. [Google Scholar] [CrossRef] [PubMed]
- McKinley, T. Principles of Fracture Healing. Surgery 2003, 21, 209–212. [Google Scholar] [CrossRef]
- Setiawan, F.; Wahjuningrum, D.A.; Utomo, D.N. The Property of Mesenchymal Stem Cells (MSCs) Secretome as a Bone Stimulator Candidate in Regeneration of Injured Bone. Malays. J. Med. Health Sci. 2021, 17, 98–106. [Google Scholar]
- McKibbin, B. The Biology of Fracture Healing in Long Bones. J. Bone Jt. Surg. Br. 1978, 60, 150–162. [Google Scholar] [CrossRef]
- Phillips, A.M. Overview of the Fracture Healing Cascade. Injury 2005, 36, 5–7. [Google Scholar] [CrossRef] [PubMed]
- Bais, M.; McLean, J.; Sebastiani, P.; Young, M.; Wigner, N.; Smith, T.; Kotton, D.N.; Einhorn, T.A.; Gerstenfeld, L.C. Transcriptional Analysis of Fracture Healing and the Induction of Embryonic Stem Cell–Related Genes. PLoS ONE 2009, 4, e5393. [Google Scholar] [CrossRef] [PubMed]
- Röding, F.; Lindkvist, M.; Bergström, U.; Lysholm, J. Epidemiologic Patterns of Injuries Treated at the Emergency Department of a Swedish Medical Center. Inj. Epidemiol. 2015, 2, 3. [Google Scholar] [CrossRef] [PubMed]
- Amin, S.; Achenbach, S.J.; Atkinson, E.J.; Khosla, S.; Melton III, L.J. Trends in Fracture Incidence: A Population-Based Study Over 20 Years. J. Bone Miner. Res. 2014, 29, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Mitalipov, S.; Wolf, D. Totipotency, Pluripotency and Nuclear Reprogramming. In Engineering of Stem Cells; Martin, U., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 185–199. ISBN 978-3-540-88805-5. [Google Scholar]
- Kolios, G.; Moodley, Y. Introduction to Stem Cells and Regenerative Medicine. Respiration 2013, 85, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Sobhani, A.; Khanlarkhani, N.; Baazm, M.; Mohammadzadeh, F.; Najafi, A.; Mehdinejadiani, S.; Sargolzaei Aval, F. Multipotent Stem Cell and Current Application. Acta Med. Iran. 2017, 55, 6–23. [Google Scholar] [PubMed]
- Singh, V.K.; Saini, A.; Kalsan, M.; Kumar, N.; Chandra, R. Describing the Stem Cell Potency: The Various Methods of Functional Assessment and In Silico Diagnostics. Front. Cell Dev. Biol. 2016, 4, 134. [Google Scholar] [CrossRef] [PubMed]
- Research National Research Council (US); Institute of Medicine (US) Committee on the Biological and Biomedical Applications of Stem Cell. Embryonic Stem Cells. In Stem Cells and the Future of Regenerative Medicine; National Academies Press: Washington, DC, USA, 2002. [Google Scholar]
- Rodríguez-Fuentes, D.E.; Fernández-Garza, L.E.; Samia-Meza, J.A.; Barrera-Barrera, S.A.; Caplan, A.I.; Barrera-Saldaña, H.A. Mesenchymal Stem Cells Current Clinical Applications: A Systematic Review. Arch. Med. Res. 2021, 52, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Díez Villanueva, P.; Sanz-Ruiz, R.; Núñez García, A.; Fernández Santos, M.E.; Sánchez, P.L.; Fernández-Avilés, F. Functional Multipotency of Stem Cells: What Do We Need from Them in the Heart? Stem Cells Int. 2012, 2012, 817364. [Google Scholar] [CrossRef] [PubMed]
- Leventhal, A. The Benefits and Risks of Stem Cell Technology. Oral. Dis. 2012, 18, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Wuputra, K.; Ku, C.-C.; Wu, D.-C.; Lin, Y.-C.; Saito, S.; Yokoyama, K.K. Prevention of Tumor Risk Associated with the Reprogramming of Human Pluripotent Stem Cells. J. Exp. Clin. Cancer Res. 2020, 39, 100. [Google Scholar] [CrossRef]
- Aldahmash, A.; Atteya, M.; Elsafadi, M.; Al-Nbaheen, M.; Al-Mubarak, H.A.; Vishnubalaji, R.; Al-Roalle, A.; Al-Harbi, S.; Manikandan, M.; Matthaei, K.I.; et al. Teratoma Formation in Immunocompetent Mice After Syngeneic and Allogeneic Implantation of Germline Capable Mouse Embryonic Stem Cells. Asian Pac. J. Cancer Prev. 2013, 14, 5705–5711. [Google Scholar] [CrossRef] [PubMed]
- Wakitani, S. Embryonic Stem Cells Injected into the Mouse Knee Joint Form Teratomas and Subsequently Destroy the Joint. Rheumatology 2003, 42, 162–165. [Google Scholar] [CrossRef] [PubMed]
- Baharvand, H.; Matthaei, A. Culture Condition Difference for Establishment of New Embryonic Stem Cell Lines from the C57BL/6 and BALB/c Mouse Strains. Vitr. Cell. Dev. Biol. 2004, 40, 102–107. [Google Scholar]
- Przyborski, S.A. Differentiation of Human Embryonic Stem Cells after Transplantation in Immune-Deficient Mice. Stem Cells 2005, 23, 1242–1250. [Google Scholar] [CrossRef] [PubMed]
- Nussbaum, J.; Minami, E.; Laflamme, M.A.; Virag, J.A.I.; Ware, C.B.; Masino, A.; Muskheli, V.; Pabon, L.; Reinecke, H.; Murry, C.E. Transplantation of Undifferentiated Murine Embryonic Stem Cells in the Heart: Teratoma Formation and Immune Response. FASEB J. 2007, 21, 1345–1357. [Google Scholar] [CrossRef] [PubMed]
- Dressel, R.; Schindehütte, J.; Kuhlmann, T.; Elsner, L.; Novota, P.; Baier, P.C.; Schillert, A.; Bickeböller, H.; Herrmann, T.; Trenkwalder, C.; et al. The Tumorigenicity of Mouse Embryonic Stem Cells and In Vitro Differentiated Neuronal Cells Is Controlled by the Recipients’ Immune Response. PLoS ONE 2008, 3, e2622. [Google Scholar] [CrossRef] [PubMed]
- Prokhorova, T.A.; Harkness, L.M.; Frandsen, U.; Ditzel, N.; Schrøder, H.D.; Burns, J.S.; Kassem, M. Teratoma Formation by Human Embryonic Stem Cells Is Site Dependent and Enhanced by the Presence of Matrigel. Stem Cells Dev. 2009, 18, 47–54. [Google Scholar] [CrossRef]
- Zhang, R.; Gao, Z.; Geng, W. Engineering Vascularized Bone Graft with Osteogenic and Angiogenic Lineage Differentiated Bone Marrow Mesenchymal Stem Cells. Artif. Organs 2012, 36, 1036–1046. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Chen, Y.; Meng, X.; Kwok, K.Y.; Huang, X.; Choy, K.W.; Wang, C.C.; Lan, H.; Yuan, P. Suppression of Malignancy by Smad3 in Mouse Embryonic Stem Cell Formed Teratoma. Stem Cell Rev. Rep. 2013, 9, 709–720. [Google Scholar] [CrossRef] [PubMed]
- Haworth, R.; Sharpe, M. Accept or Reject: The Role of Immune Tolerance in the Development of Stem Cell Therapies and Possible Future Approaches. Toxicol. Pathol. 2021, 49, 1308–1316. [Google Scholar] [CrossRef] [PubMed]
- Rivron, N.C.; Martinez Arias, A.; Pera, M.F.; Moris, N.; M’hamdi, H.I. An Ethical Framework for Human Embryology with Embryo Models. Cell 2023, 186, 3548–3557. [Google Scholar] [CrossRef] [PubMed]
- Lenzer, J. Bush Says He Will Veto Stem Cell Funding, despite Vote in Favour in Congress. BMJ 2007, 334, 1243. [Google Scholar] [CrossRef] [PubMed]
- Wolinsky, H. The Pendulum Swung. President Barack Obama Removes Restrictions on Stem-Cell Research, but Are Expectations Now Too High? EMBO Rep. 2009, 10, 436–439. [Google Scholar] [CrossRef] [PubMed]
- Kobold, S.; Bultjer, N.; Stacey, G.; Mueller, S.C.; Kurtz, A.; Mah, N. History and Current Status of Clinical Studies Using Human Pluripotent Stem Cells. Stem Cell Rep. 2023, 18, 1592–1598. [Google Scholar] [CrossRef] [PubMed]
- Golchin, A.; Chatziparasidou, A.; Ranjbarvan, P.; Niknam, Z.; Ardeshirylajimi, A. Embryonic Stem Cells in Clinical Trials: Current Overview of Developments and Challenges. In Cell Biology and Translational Medicine, Volume 11: Stem Cell Therapy—Potential and Challenges; Turksen, K., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 19–37. ISBN 978-3-030-71925-8. [Google Scholar]
- Choumerianou, D.M.; Dimitriou, H.; Kalmanti, M. Stem Cells: Promises versus Limitations. Tissue Eng. Part B Rev. 2008, 14, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.A.; Almohazey, D.; Alomari, M.; Almofty, S.A. Isolation, Culture, and Functional Characterization of Human Embryonic Stem Cells: Current Trends and Challenges. Stem Cells Int. 2018, 2018, e1429351. [Google Scholar] [CrossRef] [PubMed]
- Wysoczynski, M.; Bolli, R. A Realistic Appraisal of the Use of Embryonic Stem Cell-Based Therapies for Cardiac Repair. Eur. Heart J. 2020, 41, 2397–2404. [Google Scholar] [CrossRef] [PubMed]
- Bielby, R.C.; Polak, J.M. In Vitro Differentiation and In Vivo Mineralization of Osteogenic Cells Derived from Human Embryonic Stem Cells. Tissue Eng. 2004, 10, 1518–1525. [Google Scholar] [CrossRef] [PubMed]
- Petrigliano, F.A.; Liu, N.Q.; Lee, S.; Tassey, J.; Sarkar, A.; Lin, Y.; Li, L.; Yu, Y.; Geng, D.; Zhang, J.; et al. Long-Term Repair of Porcine Articular Cartilage Using Cryopreservable, Clinically Compatible Human Embryonic Stem Cell-Derived Chondrocytes. npj Regen. Med. 2021, 6, 77. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Inoue, H.; Wu, J.C.; Yamanaka, S. Induced Pluripotent Stem Cell Technology: A Decade of Progress. Nat. Rev. Drug Discov. 2017, 16, 115–130. [Google Scholar] [CrossRef] [PubMed]
- Lo, B.; Parham, L. Ethical Issues in Stem Cell Research. Endocr. Rev. 2009, 30, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Li, X.; Lu, X.; Zhang, C.; Yu, H.; Zhao, T. Cells Derived from iPSC Can Be Immunogenic—Yes or No? Protein Cell 2014, 5, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, R.; Wada, H.; Murata, T.; Seino, K. Immune Reaction and Regulation in Transplantation Based on Pluripotent Stem Cell Technology. Inflamm. Regen. 2020, 40, 12. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.; Wanczyk, H.; Jensen, T.; Finck, C. Assessment of iPSC Teratogenicity throughout Directed Differentiation toward an Alveolar-like Phenotype. Differentiation 2019, 105, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Worringer, K.A.; Rand, T.A.; Hayashi, Y. The Let-7/LIN-41 Pathway Regulates Reprogramming to Human Induced Pluripotent Stem Cells by Controlling Expression of Prodifferentiation Genes. Cell Stem Cell 2014, 14, 40–52. [Google Scholar] [CrossRef] [PubMed]
- Kumazaki, T.; Kurata, S.; Matsuo, T.; Mitsui, Y.; Takahashi, T. Establishment of Human Induced Pluripotent Stem Cell Lines from Normal Fibroblast TIG-1. Hum. Cell 2011, 24, 96–103. [Google Scholar] [CrossRef]
- Péault, B. Stem Cell Technology for Bone Regeneration: Current Status and Potential Applications. Stem Cells Cloning Adv. Appl. 2015, 8, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Xi, J.; Cheng, Y.; Sun, D.; Shu, P.; Chi, S.; Tian, S.; Ye, S. Reprogrammed Mesenchymal Stem Cells Derived from iPSCs Promote Bone Repair in Steroid-Associated Osteonecrosis of the Femoral Head. Stem Cell Res. Ther. 2021, 12, 175. [Google Scholar] [CrossRef]
- Jungbluth, P.; Spitzhorn, L.-S.; Grassmann, J.; Tanner, S.; Latz, D.; Rahman, M.S.; Bohndorf, M.; Wruck, W.; Sager, M.; Grotheer, V.; et al. Human iPSC-Derived iMSCs Improve Bone Regeneration in Mini-Pigs. Bone Res. 2019, 7, 32. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Yang, B.; Cao, C.; Hu, K.; Wang, P.; Man, Y. Therapeutic Antibody Directed Osteogenic Differentiation of Induced Pluripotent Stem Cell Derived MSCs. Acta Biomater. 2018, 74, 222–235. [Google Scholar] [CrossRef] [PubMed]
- Qiu, C.; Ge, Z.; Cui, W.; Yu, L.; Li, J. Human Amniotic Epithelial Stem Cells: A Promising Seed Cell for Clinical Applications. IJMS 2020, 21, 7730. [Google Scholar] [CrossRef] [PubMed]
- Miki, T. Amnion-Derived Stem Cells: In Quest of Clinical Applications. Stem Cell Res. Ther. 2011, 2, 25. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.-W.; Huang, Q.-M.; Wu, H.-Y.; Zuo, G.-S.-L.; Gu, H.-C.; Deng, K.-Y.; Xin, H.-B. Characteristics and Therapeutic Potential of Human Amnion-Derived Stem Cells. Int. J. Mol. Sci. 2021, 22, 970. [Google Scholar] [CrossRef]
- Lim, R.; Malhotra, A.; Tan, J.; Chan, S.T.; Lau, S.; Zhu, D.; Mockler, J.C.; Wallace, E.M. First-In-Human Administration of Allogeneic Amnion Cells in Premature Infants with Bronchopulmonary Dysplasia: A Safety Study. Stem Cells Transl. Med. 2018, 7, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Huang, X.; Huang, F.; Liu, X. [Preliminary study on transdifferentiation of human amniotic epithelial cells and its intrasplenic transplantation]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2011, 25, 144–148. [Google Scholar] [PubMed]
- De Coppi, P.; Bartsch, G.; Siddiqui, M.M.; Xu, T.; Santos, C.C.; Perin, L.; Mostoslavsky, G.; Serre, A.C.; Snyder, E.Y.; Yoo, J.J.; et al. Isolation of Amniotic Stem Cell Lines with Potential for Therapy. Nat. Biotechnol. 2007, 25, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Dobreva, M.P.; Pereira, P.N.G.; Deprest, J.; Zwijsen, A. On the Origin of Amniotic Stem Cells: Of Mice and Men. Int. J. Dev. Biol. 2010, 54, 761–777. [Google Scholar] [CrossRef] [PubMed]
- Kang, N.-H.; Hwang, K.-A.; Kim, S.U.; Kim, Y.-B.; Hyun, S.-H.; Jeung, E.-B.; Choi, K.-C. Potential Antitumor Therapeutic Strategies of Human Amniotic Membrane and Amniotic Fluid-Derived Stem Cells. Cancer Gene Ther. 2012, 19, 517–522. [Google Scholar] [CrossRef]
- Phermthai, T.; Odglun, Y.; Julavijitphong, S.; Titapant, V.; Chuenwattana, P.; Vantanasiri, C.; Pattanapanyasat, K. A Novel Method to Derive Amniotic Fluid Stem Cells for Therapeutic Purposes. BMC Cell Biol. 2010, 11, 79. [Google Scholar] [CrossRef] [PubMed]
- Jafari, A.; Rezaei-Tavirani, M.; Farhadihosseinabadi, B.; Zali, H.; Niknejad, H. Human Amniotic Mesenchymal Stem Cells to Promote/Suppress Cancer: Two Sides of the Same Coin. Stem Cell Res. Ther. 2021, 12, 126. [Google Scholar] [CrossRef] [PubMed]
- Meng, M.-Y.; Li, L.; Wang, W.-J.; Liu, F.-F.; Song, J.; Yang, S.-L.; Tan, J.; Gao, H.; Zhao, Y.-Y.; Tang, W.-W.; et al. Assessment of Tumor Promoting Effects of Amniotic and Umbilical Cord Mesenchymal Stem Cells In Vitro and In Vivo. J. Cancer Res. Clin. Oncol. 2019, 145, 1133–1146. [Google Scholar] [CrossRef] [PubMed]
- Dziadosz, M.; Basch, R.S.; Young, B.K. Human Amniotic Fluid: A Source of Stem Cells for Possible Therapeutic Use. Am. J. Obstet. Gynecol. 2016, 214, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, E.E.A.; El-Zawahry, M.; Farrag, A.R.H.; Aziz1, N.N.A.; Sharaf-ElDin, W.; Abu-Shahba, N.; Mahmoud, M.; Gaber, K.; Ismail, T.; Mossaad, M.M.; et al. Osteogenic Differentiation Potential of Human Bone Marrow and Amniotic Fluid-Derived Mesenchymal Stem Cells In Vitro & In Vivo. Open Access Maced. J. Med. Sci. 2019, 7, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Basile, M.; Marchegiani, F.; Novak, S.; Kalajzic, I.; Di Pietro, R. Human Amniotic Fluid Stem Cells Attract Osteoprogenitor Cells in Bone Healing. J. Cell. Physiol. 2020, 235, 4643–4654. [Google Scholar] [CrossRef] [PubMed]
- Thermo Fisher Scientific. An Overview of Pluripotent and Multipotent Stem Cell Targets—US. Available online: https://www.thermofisher.com/us/en/home/life-science/antibodies/antibodies-learning-center/antibodies-resource-library/antibody-methods/pluripotent-multipotent-stem-cell-targets.html (accessed on 26 February 2024).
- Xu, G.-P. Current and Future Uses of Skeletal Stem Cells for Bone Regeneration. World J. Stem Cells 2020, 12, 339–350. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.K.F.; Gulati, G.S.; Sinha, R.; Tompkins, J.V.; Lopez, M.; Carter, A.C.; Ransom, R.C.; Reinisch, A.; Wearda, T.; Murphy, M.; et al. Identification of the Human Skeletal Stem Cell. Cell 2018, 175, 43–56.e21. [Google Scholar] [CrossRef] [PubMed]
- Iaquinta, M.R.; Mazzoni, E.; Bononi, I.; Rotondo, J.C.; Mazziotta, C.; Montesi, M.; Sprio, S.; Tampieri, A.; Tognon, M.; Martini, F. Adult Stem Cells for Bone Regeneration and Repair. Front. Cell Dev. Biol. 2019, 7, 268. [Google Scholar] [CrossRef] [PubMed]
- Mohamed-Ahmed, S.; Fristad, I.; Lie, S.A.; Suliman, S.; Mustafa, K.; Vindenes, H.; Idris, S.B. Adipose-Derived and Bone Marrow Mesenchymal Stem Cells: A Donor-Matched Comparison. Stem Cell Res. Ther. 2018, 9, 168. [Google Scholar] [CrossRef] [PubMed]
- Im, G.I.; Shin, Y.W.; Lee, K.B. Do Adipose Tissue-Derived Mesenchymal Stem Cells Have the Same Osteogenic and Chondrogenic Potential as Bone Marrow-Derived Cells? Osteoarthr. Cartil. 2005, 13, 845–853. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.-T.; Chen, C.-T. Osteogenic Potential: Comparison between Bone Marrow and Adipose-Derived Mesenchymal Stem Cells. World J. Stem Cells 2014, 6, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Bollmann, A.; Sons, H.C.; Schiefer, J.L.; Fuchs, P.C.; Windolf, J.; Suschek, C.V. Comparative Study of the Osteogenic Differentiation Potential of Adipose Tissue-Derived Stromal Cells and Dedifferentiated Adipose Cells of the Same Tissue Origin under Pro and Antioxidant Conditions. Biomedicines 2022, 10, 3071. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Le, A.V.; Mendez, J.J.; Chang, J.; Niklason, L.E.; Steinbacher, D.M. Osteogenic Performance of Donor-Matched Human Adipose and Bone Marrow Mesenchymal Cells under Dynamic Culture. Tissue Eng. Part A 2015, 21, 1621–1632. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Sohn, J.; Shen, H.; Langhans, M.T.; Tuan, R.S. Bone Marrow Mesenchymal Stem Cells: Aging and Tissue Engineering Applications to Enhance Bone Healing. Biomaterials 2019, 203, 96–110. [Google Scholar] [CrossRef] [PubMed]
- Aykan, A.; Ozturk, S.; Sahin, I.; Gurses, S.; Ural, A.U.; Oren, N.C.; Isik, S. Biomechanical Analysis of the Effect of Mesenchymal Stem Cells on Mandibular Distraction Osteogenesis. J. Craniofacial Surg. 2013, 24, e169. [Google Scholar] [CrossRef] [PubMed]
- Baht, G.S.; Vi, L.; Alman, B.A. The Role of the Immune Cells in Fracture Healing. Curr. Osteoporos. Rep. 2018, 16, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Hong, S.-H. Hematopoietic Stem Cells and Their Roles in Tissue Regeneration. Int. J. Stem Cells 2019, 13, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Henig, I.; Zuckerman, T. Hematopoietic Stem Cell Transplantation—50 Years of Evolution and Future Perspectives. Rambam Maimonides Med. J. 2014, 5, e0028. [Google Scholar] [CrossRef] [PubMed]
- Chabannon, C.; Kuball, J.; Bondanza, A.; Dazzi, F.; Pedrazzoli, P.; Toubert, A.; Ruggeri, A.; Fleischhauer, K.; Bonini, C. Hematopoietic Stem Cell Transplantation in Its 60s: A Platform for Cellular Therapies. Sci. Transl. Med. 2018, 10, eaap9630. [Google Scholar] [CrossRef] [PubMed]
- Koniali, L.; Lederer, C.W.; Kleanthous, M. Therapy Development by Genome Editing of Hematopoietic Stem Cells. Cells 2021, 10, 1492. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.S.; Carreira, M.; Correia, C.R.; Mano, J.F. The Therapeutic Potential of Hematopoietic Stem Cells in Bone Regeneration. Tissue Eng. Part B Rev. 2022, 28, 379–392. [Google Scholar] [CrossRef] [PubMed]
- Tevlin, R.; Seo, E.Y.; Marecic, O.; McArdle, A.; Tong, X.; Zimdahl, B.; Malkovskiy, A.; Sinha, R.; Gulati, G.; Li, X.; et al. Pharmacological Rescue of Diabetic Skeletal Stem Cell Niches. Sci. Transl. Med. 2017, 9, eaag2809. [Google Scholar] [CrossRef]
- Geuze, R.E.; Prins, H.-J.; Öner, F.C.; Van Der Helm, Y.J.M.; Schuijff, L.S.; Martens, A.C.; Kruyt, M.C.; Alblas, J.; Dhert, W.J.A. Luciferase Labeling for Multipotent Stromal Cell Tracking in Spinal Fusion versus Ectopic Bone Tissue Engineering in Mice and Rats. Tissue Eng. Part A 2010, 16, 3343–3351. [Google Scholar] [CrossRef] [PubMed]
- Bhumiratana, S.; Bernhard, J.C.; Alfi, D.M.; Yeager, K.; Eton, R.E.; Bova, J.; Shah, F.; Gimble, J.M.; Lopez, M.J.; Eisig, S.B.; et al. Tissue-Engineered Autologous Grafts for Facial Bone Reconstruction. Sci. Transl. Med. 2016, 8, 343ra83. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.N.; Ren, G.; Young, K.; Pina, S.; Reis, R.L.; Oliveira, J.M. Scaffold Fabrication Technologies and Structure/Function Properties in Bone Tissue Engineering. Adv. Funct. Mater. 2021, 31, 2010609. [Google Scholar] [CrossRef]
- Dumic-Cule, I.; Pecina, M.; Jelic, M.; Jankolija, M.; Popek, I.; Grgurevic, L. Biological aspects of segmental bone defects management. Int. Orthop. 2015, 39, 1005–1011. [Google Scholar] [CrossRef] [PubMed]
- Decambron, A.; Fournet, A.; Bensidhoum, M.; Manassero, M.; Sailhan, F.; Petite, H. Low-Dose BMP-2 and MSC Dual Delivery onto Coral Scaffold for Critical-Size Bone Defect Regeneration in Sheep. J. Orthop. Res. 2017, 35, 2637–2645. [Google Scholar] [CrossRef] [PubMed]
- Meinel, L.; Fajardo, R.; Hofmann, S.; Langer, R.; Chen, J.; Snyder, B.; Vunjak-Novakovic, G.; Kaplan, D. Silk Implants for the Healing of Critical Size Bone Defects. Bone 2005, 37, 688–698. [Google Scholar] [CrossRef] [PubMed]
- Garg, P.; Mazur, M.M.; Buck, A.C.; Wandtke, M.E.; Liu, J.; Ebraheim, N.A. Prospective Review of Mesenchymal Stem Cells Differentiation into Osteoblasts. Orthop. Surg. 2017, 9, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Malizos, K.N.; Papatheodorou, L.K. The Healing Potential of the Periosteum Molecular Aspects. Injury 2005, 36 (Suppl. S3), S13–S19. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Xia, X.; Yeh, J.; Kua, H.; Liu, H.; Mishina, Y.; Hao, A.; Li, B. PDGF-AA Promotes Osteogenic Differentiation and Migration of Mesenchymal Stem Cell by down-Regulating PDGFRα and Derepressing BMP-Smad1/5/8 Signaling. PLoS ONE 2014, 9, e113785. [Google Scholar] [CrossRef] [PubMed]
- Crane, J.L.; Cao, X. Bone Marrow Mesenchymal Stem Cells and TGF-β Signaling in Bone Remodeling. J. Clin. Investig. 2014, 124, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Zhang, T.; Chen, M.; Yao, K.; Huang, X.; Zhang, B.; Li, Y.; Liu, J.; Wang, Y.; Zhao, Z. Bone Physiological Microenvironment and Healing Mechanism: Basis for Future Bone-Tissue Engineering Scaffolds. Bioact. Mater. 2021, 6, 4110–4140. [Google Scholar] [CrossRef]
- Linero, I.; Chaparro, O. Paracrine Effect of Mesenchymal Stem Cells Derived from Human Adipose Tissue in Bone Regeneration. PLoS ONE 2014, 9, e107001. [Google Scholar] [CrossRef] [PubMed]
- Osugi, M.; Katagiri, W.; Yoshimi, R.; Inukai, T.; Hibi, H.; Ueda, M. Conditioned Media from Mesenchymal Stem Cells Enhanced Bone Regeneration in Rat Calvarial Bone Defects. Tissue Eng. Part A 2012, 18, 1479–1489. [Google Scholar] [CrossRef] [PubMed]
- Reichert, J.C.; Cipitria, A.; Epari, D.R.; Saifzadeh, S.; Krishnakanth, P.; Berner, A.; Woodruff, M.A.; Schell, H.; Mehta, M.; Schuetz, M.A.; et al. A Tissue Engineering Solution for Segmental Defect Regeneration in Load-Bearing Long Bones. Sci. Transl. Med. 2012, 4, 141ra93. [Google Scholar] [CrossRef] [PubMed]
- Salhotra, A.; Shah, H.N.; Levi, B.; Longaker, M.T. Mechanisms of Bone Development and Repair. Nat. Rev. Mol. Cell Biol. 2020, 21, 696–711. [Google Scholar] [CrossRef] [PubMed]
- Stem Cells Market Size, Share and Growth Report, 2030. Available online: https://www.grandviewresearch.com/industry-analysis/stem-cells-market (accessed on 27 February 2024).
- Sohn, H.-S.; Oh, J.-K. Review of Bone Graft and Bone Substitutes with an Emphasis on Fracture Surgeries. Biomater. Res. 2019, 23, 9. [Google Scholar] [CrossRef] [PubMed]
- Venkataiah, V.S.; Yahata, Y.; Kitagawa, A.; Inagaki, M.; Kakiuchi, Y.; Nakano, M.; Suzuki, S.; Handa, K.; Saito, M. Clinical Applications of Cell-Scaffold Constructs for Bone Regeneration Therapy. Cells 2021, 10, 2687. [Google Scholar] [CrossRef] [PubMed]
- Theodosaki, A.M.; Tzemi, M.; Galanis, N.; Bakopoulou, A.; Kotsiomiti, E.; Aggelidou, E.; Kritis, A. Bone Regeneration with Mesenchymal Stem Cells in Scaffolds: Systematic Review of Human Clinical Trials. Stem Cell Rev. Rep. 2024, 20, 938–966. [Google Scholar] [CrossRef] [PubMed]
- Gan, Y.; Dai, K.; Zhang, P.; Tang, T.; Zhu, Z.; Lu, J. The Clinical Use of Enriched Bone Marrow Stem Cells Combined with Porous Beta-Tricalcium Phosphate in Posterior Spinal Fusion. Biomaterials 2008, 29, 3973–3982. [Google Scholar] [CrossRef] [PubMed]
- Redondo, L.M.; García, V.; Peral, B.; Verrier, A.; Becerra, J.; Sánchez, A.; García-Sancho, J. Repair of Maxillary Cystic Bone Defects with Mesenchymal Stem Cells Seeded on a Cross-Linked Serum Scaffold. J. Cranio-Maxillofac. Surg. 2018, 46, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Gjerde, C.; Mustafa, K.; Hellem, S.; Rojewski, M.; Gjengedal, H.; Yassin, M.A.; Feng, X.; Skaale, S.; Berge, T.; Rosen, A.; et al. Cell Therapy Induced Regeneration of Severely Atrophied Mandibular Bone in a Clinical Trial. Stem Cell Res. Ther. 2018, 9, 213. [Google Scholar] [CrossRef] [PubMed]
- Šponer, P.; Filip, S.; Kučera, T.; Brtková, J.; Urban, K.; Palička, V.; Kočí, Z.; Syka, M.; Bezrouk, A.; Syková, E. Utilizing Autologous Multipotent Mesenchymal Stromal Cells and β-Tricalcium Phosphate Scaffold in Human Bone Defects: A Prospective, Controlled Feasibility Trial. BioMed Res. Int. 2016, 2016, 2076061. [Google Scholar] [CrossRef] [PubMed]
- Šponer, P.; Kučera, T.; Brtková, J.; Urban, K.; Kočí, Z.; Měřička, P.; Bezrouk, A.; Konrádová, Š.; Filipová, A.; Filip, S. Comparative Study on the Application of Mesenchymal Stromal Cells Combined with Tricalcium Phosphate Scaffold into Femoral Bone Defects. Cell Transplant. 2018, 27, 1459–1468. [Google Scholar] [CrossRef] [PubMed]
- Granchi, D.; Ciapetti, G.; Gómez-Barrena, E.; Rojewski, M.; Rosset, P.; Layrolle, P.; Spazzoli, B.; Donati, D.M.; Baldini, N. Biomarkers of Bone Healing Induced by a Regenerative Approach Based on Expanded Bone Marrow–Derived Mesenchymal Stromal Cells. Cytotherapy 2019, 21, 870–885. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Barrena, E.; Padilla-Eguiluz, N.; Rosset, P.; Gebhard, F.; Hernigou, P.; Baldini, N.; Rouard, H.; Sensebé, L.; Gonzalo-Daganzo, R.-M.; Giordano, R.; et al. Early Efficacy Evaluation of Mesenchymal Stromal Cells (MSC) Combined to Biomaterials to Treat Long Bone Non-Unions. Injury 2020, 51, S63–S73. [Google Scholar] [CrossRef] [PubMed]
- Jayankura, M.; Schulz, A.P.; Delahaut, O.; Witvrouw, R.; Seefried, L.; Berg, B.V.; Heynen, G.; Sonnet, W. Percutaneous Administration of Allogeneic Bone-Forming Cells for the Treatment of Delayed Unions of Fractures: A Pilot Study. Stem Cell Res. Ther. 2021, 12, 363. [Google Scholar] [CrossRef] [PubMed]
- Seebach, C.; Henrich, D.; Meier, S.; Nau, C.; Bonig, H.; Marzi, I. Safety and Feasibility of Cell-Based Therapy of Autologous Bone Marrow-Derived Mononuclear Cells in Plate-Stabilized Proximal Humeral Fractures in Humans. J. Transl. Med. 2016, 14, 314. [Google Scholar] [CrossRef]
- Seebach, C.; Nau, C.; Henrich, D.; Verboket, R.; Bellen, M.; Frischknecht, N.; Moeck, V.; Eichler, K.; Horlohé, K.H.S.; Hoffmann, R.; et al. Cell-Based Therapy by Autologous Bone Marrow-Derived Mononuclear Cells for Bone Augmentation of Plate-Stabilized Proximal Humeral Fractures: A Multicentric, Randomized, Open Phase IIa Study. Stem Cells Transl. Med. 2024, 13, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.; Kim, K.-T.; Kim, K.G.; Choi, U.-Y.; Kyung, J.W.; Sohn, S.; Lim, S.H.; Choi, H.; Ahn, T.-K.; Choi, H.J.; et al. Safety and Efficacy of Wharton’s Jelly-Derived Mesenchymal Stem Cells with Teriparatide for Osteoporotic Vertebral Fractures: A Phase I/IIa Study. Stem Cells Transl. Med. 2021, 10, 554–567. [Google Scholar] [CrossRef]
- Castillo-Cardiel, G.; López-Echaury, A.C.; Saucedo-Ortiz, J.A.; Fuentes-Orozco, C.; Michel-Espinoza, L.R.; Irusteta-Jiménez, L.; Salazar-Parra, M.; González-Ojeda, A. Bone Regeneration in Mandibular Fractures after the Application of Autologous Mesenchymal Stem Cells, a Randomized Clinical Trial. Dent. Traumatol. 2017, 33, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Pang, B.; Zhu, Y.; Lu, L.; Gu, F.; Chen, H. The Applications and Features of Liquid Chromatography-Mass Spectrometry in the Analysis of Traditional Chinese Medicine. Evid. Based Complement. Altern. Med. 2016, 2016, 3837270. [Google Scholar] [CrossRef] [PubMed]
- Beccaria, M.; Cabooter, D. Current Developments in LC-MS for Pharmaceutical Analysis. Analyst 2020, 145, 1129–1157. [Google Scholar] [CrossRef] [PubMed]
- Sutandy, F.X.R.; Qian, J.; Chen, C.-S.; Zhu, H. Overview of Protein Microarrays. Curr. Protoc. Protein Sci. 2013, 72, 2711–27116. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Dodig-Crnković, T.; Schwenk, J.M.; Tao, S. Current Applications of Antibody Microarrays. Clin. Proteom. 2018, 15, 7. [Google Scholar] [CrossRef] [PubMed]
- Poetz, O.; Ostendorp, R.; Brocks, B.; Schwenk, J.M.; Stoll, D.; Joos, T.O.; Templin, M.F. Protein Microarrays for Antibody Profiling: Specificity and Affinity Determination on a Chip. Proteomics 2005, 5, 2402–2411. [Google Scholar] [CrossRef] [PubMed]
- Venkatarame Gowda Saralamma, V.; Vetrivel, P.; Kim, S.M.; Ha, S.E.; Lee, H.J.; Lee, S.J.; Kim, Y.S.; Pak, J.E.; Lee, H.J.; Heo, J.D.; et al. Proteome Profiling of Membrane-Free Stem Cell Components by Nano-LS/MS Analysis and Its Anti-Inflammatory Activity. Evid.-Based Complement. Altern. Med. 2019, 2019, e4683272. [Google Scholar] [CrossRef] [PubMed]
- Luby, A.O.; Ranganathan, K.; Lynn, J.V.; Nelson, N.S.; Donneys, A.; Buchman, S.R. Stem Cells for Bone Regeneration: Current State and Future Directions. J. Craniofacial Surg. 2019, 30, 730–735. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brown, M.G.; Brady, D.J.; Healy, K.M.; Henry, K.A.; Ogunsola, A.S.; Ma, X. Stem Cells and Acellular Preparations in Bone Regeneration/Fracture Healing: Current Therapies and Future Directions. Cells 2024, 13, 1045. https://doi.org/10.3390/cells13121045
Brown MG, Brady DJ, Healy KM, Henry KA, Ogunsola AS, Ma X. Stem Cells and Acellular Preparations in Bone Regeneration/Fracture Healing: Current Therapies and Future Directions. Cells. 2024; 13(12):1045. https://doi.org/10.3390/cells13121045
Chicago/Turabian StyleBrown, Marcel G., Davis J. Brady, Kelsey M. Healy, Kaitlin A. Henry, Ayobami S. Ogunsola, and Xue Ma. 2024. "Stem Cells and Acellular Preparations in Bone Regeneration/Fracture Healing: Current Therapies and Future Directions" Cells 13, no. 12: 1045. https://doi.org/10.3390/cells13121045
APA StyleBrown, M. G., Brady, D. J., Healy, K. M., Henry, K. A., Ogunsola, A. S., & Ma, X. (2024). Stem Cells and Acellular Preparations in Bone Regeneration/Fracture Healing: Current Therapies and Future Directions. Cells, 13(12), 1045. https://doi.org/10.3390/cells13121045