Impact of Neuroendocrine Differentiation (NED) on Enzalutamide and Abiraterone Efficacy in Metastatic Castration-Resistant Prostate Cancer (mCRPC): A Retrospective Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Treatment Outcomes Measures
2.3. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Baseline Characteristics Comparison between mCRPC With and Without NED
3.3. Treatment Outcomes Comparison between mCRPC With and Without NED
3.4. Univariate/Multivariate and Subgroup Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer Statistics, 2023. CA A Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Parker, C.; Castro, E.; Fizazi, K.; Heidenreich, A.; Ost, P.; Procopio, G.; Tombal, B.; Gillessen, S.; ESMO Guidelines Committee. Electronic address: Clinicalguidelines@esmo.org Prostate Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2020, 31, 1119–1134. [Google Scholar] [CrossRef]
- Karantanos, T.; Corn, P.G.; Thompson, T.C. Prostate Cancer Progression after Androgen Deprivation Therapy: Mechanisms of Castrate Resistance and Novel Therapeutic Approaches. Oncogene 2013, 32, 5501–5511. [Google Scholar] [CrossRef]
- Watson, P.A.; Arora, V.K.; Sawyers, C.L. Emerging Mechanisms of Resistance to Androgen Receptor Inhibitors in Prostate Cancer. Nat. Rev. Cancer 2015, 15, 701–711. [Google Scholar] [CrossRef] [PubMed]
- Fizazi, K.; Scher, H.I.; Molina, A.; Logothetis, C.J.; Chi, K.N.; Jones, R.J.; Staffurth, J.N.; North, S.; Vogelzang, N.J.; Saad, F.; et al. Abiraterone Acetate for Treatment of Metastatic Castration-Resistant Prostate Cancer: Final Overall Survival Analysis of the COU-AA-301 Randomised, Double-Blind, Placebo-Controlled Phase 3 Study. Lancet Oncol. 2012, 13, 983–992. [Google Scholar] [CrossRef]
- Ryan, C.J.; Smith, M.R.; de Bono, J.S.; Molina, A.; Logothetis, C.J.; de Souza, P.; Fizazi, K.; Mainwaring, P.; Piulats, J.M.; Ng, S.; et al. Abiraterone in Metastatic Prostate Cancer without Previous Chemotherapy. N. Engl. J. Med. 2013, 368, 138–148. [Google Scholar] [CrossRef]
- Beer, T.M.; Armstrong, A.J.; Rathkopf, D.E.; Loriot, Y.; Sternberg, C.N.; Higano, C.S.; Iversen, P.; Bhattacharya, S.; Carles, J.; Chowdhury, S.; et al. Enzalutamide in Metastatic Prostate Cancer before Chemotherapy. N. Engl. J. Med. 2014, 371, 424–433. [Google Scholar] [CrossRef]
- Scher, H.I.; Fizazi, K.; Saad, F.; Taplin, M.-E.; Sternberg, C.N.; Miller, K.; de Wit, R.; Mulders, P.; Chi, K.N.; Shore, N.D.; et al. Increased Survival with Enzalutamide in Prostate Cancer after Chemotherapy. N. Engl. J. Med. 2012, 367, 1187–1197. [Google Scholar] [CrossRef]
- Beltran, H.; Tomlins, S.; Aparicio, A.; Arora, V.; Rickman, D.; Ayala, G.; Huang, J.; True, L.; Gleave, M.E.; Soule, H.; et al. Aggressive Variants of Castration-Resistant Prostate Cancer. Clin. Cancer Res. 2014, 20, 2846–2850. [Google Scholar] [CrossRef]
- Conteduca, V.; Oromendia, C.; Eng, K.W.; Bareja, R.; Sigouros, M.; Molina, A.; Faltas, B.M.; Sboner, A.; Mosquera, J.M.; Elemento, O.; et al. Clinical Features of Neuroendocrine Prostate Cancer. Eur. J. Cancer 2019, 121, 7–18. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Ci, X.; Choi, S.Y.C.; Crea, F.; Lin, D.; Wang, Y. Molecular Events in Neuroendocrine Prostate Cancer Development. Nat. Rev. Urol. 2021, 18, 581–596. [Google Scholar] [CrossRef] [PubMed]
- Puca, L.; Vlachostergios, P.J.; Beltran, H. Neuroendocrine Differentiation in Prostate Cancer: Emerging Biology, Models, and Therapies. Cold Spring Harb. Perspect. Med. 2019, 9, a030593. [Google Scholar] [CrossRef]
- Aparicio, A.M.; Shen, L.; Tapia, E.L.N.; Lu, J.-F.; Chen, H.-C.; Zhang, J.; Wu, G.; Wang, X.; Troncoso, P.; Corn, P.; et al. Combined Tumor Suppressor Defects Characterize Clinically Defined Aggressive Variant Prostate Cancers. Clin. Cancer Res. 2016, 22, 1520–1530. [Google Scholar] [CrossRef]
- Lee, D.-K.; Liu, Y.; Liao, L.; Li, W.; Danielpour, D.; Xu, J. Neuroendocrine Prostate Carcinoma Cells Originate from the P63-Expressing Basal Cells but Not the Pre-Existing Adenocarcinoma Cells in Mice. Cell Res. 2019, 29, 420–422. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-H.; Zhang, Y.-Q.; Huang, J.-T. Neuroendocrine Cells of Prostate Cancer: Biologic Functions and Molecular Mechanisms. Asian J. Androl. 2019, 21, 291–295. [Google Scholar] [CrossRef]
- Richard, G.; Dalle, S.; Monet, M.-A.; Ligier, M.; Boespflug, A.; Pommier, R.M.; de la Fouchardière, A.; Perier-Muzet, M.; Depaepe, L.; Barnault, R.; et al. ZEB1-Mediated Melanoma Cell Plasticity Enhances Resistance to MAPK Inhibitors. EMBO Mol. Med. 2016, 8, 1143–1161. [Google Scholar] [CrossRef]
- Sequist, L.V.; Waltman, B.A.; Dias-Santagata, D.; Digumarthy, S.; Turke, A.B.; Fidias, P.; Bergethon, K.; Shaw, A.T.; Gettinger, S.; Cosper, A.K.; et al. Genotypic and Histological Evolution of Lung Cancers Acquiring Resistance to EGFR Inhibitors. Sci. Transl. Med. 2011, 3, 75ra26. [Google Scholar] [CrossRef]
- Beltran, H.; Prandi, D.; Mosquera, J.M.; Benelli, M.; Puca, L.; Cyrta, J.; Marotz, C.; Giannopoulou, E.; Chakravarthi, B.V.S.K.; Varambally, S.; et al. Divergent Clonal Evolution of Castration-Resistant Neuroendocrine Prostate Cancer. Nat. Med. 2016, 22, 298–305. [Google Scholar] [CrossRef]
- Wang, W.; Epstein, J.I. Small Cell Carcinoma of the Prostate. A Morphologic and Immunohistochemical Study of 95 Cases. Am. J. Surg. Pathol. 2008, 32, 65–71. [Google Scholar] [CrossRef]
- Vlachostergios, P.J.; Puca, L.; Beltran, H. Emerging Variants of Castration-Resistant Prostate Cancer. Curr. Oncol. Rep. 2017, 19, 32. [Google Scholar] [CrossRef]
- Beltran, H.; Demichelis, F. Therapy Considerations in Neuroendocrine Prostate Cancer: What Next? Endocr. Relat. Cancer 2021, 28, T67–T78. [Google Scholar] [CrossRef]
- Fine, S.W. Neuroendocrine Tumors of the Prostate. Mod. Pathol. 2018, 31, 122–132. [Google Scholar] [CrossRef]
- Brady, L.; Kriner, M.; Coleman, I.; Morrissey, C.; Roudier, M.; True, L.D.; Gulati, R.; Plymate, S.R.; Zhou, Z.; Birditt, B.; et al. Inter- and Intra-Tumor Heterogeneity of Metastatic Prostate Cancer Determined by Digital Spatial Gene Expression Profiling. Nat. Commun. 2021, 12, 1426. [Google Scholar] [CrossRef]
- Aggarwal, R.; Huang, J.; Alumkal, J.J.; Zhang, L.; Feng, F.Y.; Thomas, G.V.; Weinstein, A.S.; Friedl, V.; Zhang, C.; Witte, O.N.; et al. Clinical and Genomic Characterization of Treatment-Emergent Small-Cell Neuroendocrine Prostate Cancer: A Multi-Institutional Prospective Study. J. Clin. Oncol. 2018, 36, 2492–2503. [Google Scholar] [CrossRef]
- Heck, M.M.; Thaler, M.A.; Schmid, S.C.; Seitz, A.-K.; Tauber, R.; Kübler, H.; Maurer, T.; Thalgott, M.; Hatzichristodoulou, G.; Höppner, M.; et al. Chromogranin A and Neurone-Specific Enolase Serum Levels as Predictors of Treatment Outcome in Patients with Metastatic Castration-Resistant Prostate Cancer Undergoing Abiraterone Therapy. BJU Int. 2017, 119, 30–37. [Google Scholar] [CrossRef]
- Conteduca, V.; Burgio, S.L.; Menna, C.; Carretta, E.; Rossi, L.; Bianchi, E.; Masini, C.; Amadori, D.; De Giorgi, U. Chromogranin A Is a Potential Prognostic Marker in Prostate Cancer Patients Treated with Enzalutamide. Prostate 2014, 74, 1691–1696. [Google Scholar] [CrossRef]
- Conteduca, V.; Scarpi, E.; Salvi, S.; Casadio, V.; Lolli, C.; Gurioli, G.; Schepisi, G.; Wetterskog, D.; Farolfi, A.; Menna, C.; et al. Plasma Androgen Receptor and Serum Chromogranin A in Advanced Prostate Cancer. Sci. Rep. 2018, 8, 15442. [Google Scholar] [CrossRef]
- Ploussard, G.; Rozet, F.; Roubaud, G.; Stanbury, T.; Sargos, P.; Roupret, M. Chromogranin A: A Useful Biomarker in Castration-Resistant Prostate Cancer. World J. Urol. 2023, 41, 361–369. [Google Scholar] [CrossRef]
- Pregun, I.; Herszényi, L.; Juhász, M.; Miheller, P.; Hritz, I.; Patócs, A.; Rácz, K.; Tulassay, Z. Effect of Proton-Pump Inhibitor Therapy on Serum Chromogranin a Level. Digestion 2011, 84, 22–28. [Google Scholar] [CrossRef]
- Peracchi, M.; Gebbia, C.; Basilisco, G.; Quatrini, M.; Tarantino, C.; Vescarelli, C.; Massironi, S.; Conte, D. Plasma Chromogranin A in Patients with Autoimmune Chronic Atrophic Gastritis, Enterochromaffin-like Cell Lesions and Gastric Carcinoids. Eur. J. Endocrinol. 2005, 152, 443–448. [Google Scholar] [CrossRef]
- Massironi, S.; Fraquelli, M.; Paggi, S.; Sangiovanni, A.; Conte, D.; Sciola, V.; Ciafardini, C.; Colombo, M.; Peracchi, M. Chromogranin A Levels in Chronic Liver Disease and Hepatocellular Carcinoma. Dig. Liver Dis. 2009, 41, 31–35. [Google Scholar] [CrossRef]
- Merkens, L.; Sailer, V.; Lessel, D.; Janzen, E.; Greimeier, S.; Kirfel, J.; Perner, S.; Pantel, K.; Werner, S.; von Amsberg, G. Aggressive Variants of Prostate Cancer: Underlying Mechanisms of Neuroendocrine Transdifferentiation. J. Exp. Clin. Cancer Res. 2022, 41, 46. [Google Scholar] [CrossRef]
- Buttigliero, C.; Tucci, M.; Bertaglia, V.; Vignani, F.; Bironzo, P.; Di Maio, M.; Scagliotti, G.V. Understanding and Overcoming the Mechanisms of Primary and Acquired Resistance to Abiraterone and Enzalutamide in Castration Resistant Prostate Cancer. Cancer Treat. Rev. 2015, 41, 884–892. [Google Scholar] [CrossRef]
- Chedgy, E.C.; Vandekerkhove, G.; Herberts, C.; Annala, M.; Donoghue, A.J.; Sigouros, M.; Ritch, E.; Struss, W.; Konomura, S.; Liew, J.; et al. Biallelic Tumour Suppressor Loss and DNA Repair Defects in de Novo Small-Cell Prostate Carcinoma. J. Pathol. 2018, 246, 244–253. [Google Scholar] [CrossRef]
- Beltran, H.; Rickman, D.S.; Park, K.; Chae, S.S.; Sboner, A.; MacDonald, T.Y.; Wang, Y.; Sheikh, K.L.; Terry, S.; Tagawa, S.T.; et al. Molecular Characterization of Neuroendocrine Prostate Cancer and Identification of New Drug Targets. Cancer Discov. 2011, 1, 487–495. [Google Scholar] [CrossRef]
- Beltran, H.; Hruszkewycz, A.; Scher, H.I.; Hildesheim, J.; Isaacs, J.; Yu, E.Y.; Kelly, K.; Lin, D.; Dicker, A.; Arnold, J.; et al. The Role of Lineage Plasticity in Prostate Cancer Therapy Resistance. Clin. Cancer Res. 2019, 25, 6916–6924. [Google Scholar] [CrossRef]
- Zou, M.; Toivanen, R.; Mitrofanova, A.; Floch, N.; Hayati, S.; Sun, Y.; Le Magnen, C.; Chester, D.; Mostaghel, E.A.; Califano, A.; et al. Transdifferentiation as a Mechanism of Treatment Resistance in a Mouse Model of Castration-Resistant Prostate Cancer. Cancer Discov. 2017, 7, 736–749. [Google Scholar] [CrossRef]
- Quintanal-Villalonga, Á.; Chan, J.M.; Yu, H.A.; Pe’er, D.; Sawyers, C.L.; Sen, T.; Rudin, C.M. Lineage Plasticity in Cancer: A Shared Pathway of Therapeutic Resistance. Nat. Rev. Clin. Oncol. 2020, 17, 360–371. [Google Scholar] [CrossRef]
- Ku, S.Y.; Rosario, S.; Wang, Y.; Mu, P.; Seshadri, M.; Goodrich, Z.W.; Goodrich, M.M.; Labbé, D.P.; Gomez, E.C.; Wang, J.; et al. Rb1 and Trp53 Cooperate to Suppress Prostate Cancer Lineage Plasticity, Metastasis, and Antiandrogen Resistance. Science 2017, 355, 78–83. [Google Scholar] [CrossRef]
- Aparicio, A.M.; Harzstark, A.L.; Corn, P.G.; Wen, S.; Araujo, J.C.; Tu, S.-M.; Pagliaro, L.C.; Kim, J.; Millikan, R.E.; Ryan, C.J.; et al. Platinum-Based Chemotherapy for Variant Castrate-Resistant Prostate Cancer. Clin. Cancer Res. 2013, 19, 3621–3630. [Google Scholar] [CrossRef]
- Akamatsu, S.; Inoue, T.; Ogawa, O.; Gleave, M.E. Clinical and Molecular Features of Treatment-Related Neuroendocrine Prostate Cancer. Int. J. Urol. 2018, 25, 345–351. [Google Scholar] [CrossRef]
- Conteduca, V.; Ku, S.-Y.; Puca, L.; Slade, M.; Fernandez, L.; Hess, J.; Bareja, R.; Vlachostergios, P.J.; Sigouros, M.; Mosquera, J.M.; et al. SLFN11 Expression in Advanced Prostate Cancer and Response to Platinum-Based Chemotherapy. Mol. Cancer Ther. 2020, 19, 1157–1164. [Google Scholar] [CrossRef]
- Puca, L.; Gavyert, K.; Sailer, V.; Conteduca, V.; Dardenne, E.; Sigouros, M.; Isse, K.; Kearney, M.; Vosoughi, A.; Fernandez, L.; et al. Delta-like Protein 3 Expression and Therapeutic Targeting in Neuroendocrine Prostate Cancer. Sci. Transl. Med. 2019, 11, eaav0891. [Google Scholar] [CrossRef]
- Pilié, P.G.; Slack Tidwell, R.; Viscuse, P.V.; Subudhi, S.K.; Corn, P.G.; Tu, S.-M.; Araujo, J.C.; Zurita, A.J.; Wang, J.; Efstathiou, E.; et al. Randomized Phase II Study of Olaparib (Ola) Maintenance Following Cabazitaxel-Carboplatin Induction Chemotherapy (CabCarb) in Men with Aggressive Variant Prostate Cancer (AVPC). J. Clin. Oncol. 2023, 41, 196. [Google Scholar] [CrossRef]
- Aggarwal, R.R.; Rottey, S.; Aparicio, A.; Greil, R.; Reimers, M.A.; Sandhu, S.K.; Zhang, Y.; Salvati, M.; Hashemi Sadraei, N. Phase 1b Study of Tarlatamab, a Half-Life Extended Bispecific T-Cell Engager (HLE BiTE Immune Therapy) Targeting DLL3, in de Novo or Treatment Emergent Neuroendocrine Prostate Cancer (NEPC). J. Clin. Oncol. 2022, 40, TPS197. [Google Scholar] [CrossRef]
- Berchuck, J.E.; Baca, S.C.; McClure, H.M.; Korthauer, K.; Tsai, H.K.; Nuzzo, P.V.; Kelleher, K.M.; He, M.; Steinharter, J.A.; Zacharia, S.; et al. Detecting Neuroendocrine Prostate Cancer Through Tissue-Informed Cell-Free DNA Methylation Analysis. Clin. Cancer Res. 2022, 28, 928–938. [Google Scholar] [CrossRef]
- Brown, L.C.; Halabi, S.; Schonhoft, J.D.; Yang, Q.; Luo, J.; Nanus, D.M.; Giannakakou, P.; Szmulewitz, R.Z.; Danila, D.C.; Barnett, E.S.; et al. Circulating Tumor Cell Chromosomal Instability and Neuroendocrine Phenotype by Immunomorphology and Poor Outcomes in Men with mCRPC Treated with Abiraterone or Enzalutamide. Clin. Cancer Res. 2021, 27, 4077–4088. [Google Scholar] [CrossRef]
- Xu, N.; Zhao, J.; Zhao, F.; Liu, H.; Yin, W.; Zhu, S.; Nie, L.; Sun, G.; Zheng, L.; Liu, Z.; et al. Neuroendocrine Differentiation Predicts the Therapeutic Efficacy of Abiraterone and Docetaxel as First-Line Therapy in Metastatic Castration-Resistant Prostate Cancer. J. Cancer Res. Clin. Oncol. 2023, 149, 7247–7258. [Google Scholar] [CrossRef]
- Nadal, R.; Schweizer, M.; Kryvenko, O.N.; Epstein, J.I.; Eisenberger, M.A. Small Cell Carcinoma of the Prostate. Nat. Rev. Urol. 2014, 11, 213–219. [Google Scholar] [CrossRef]
- Butler, W.; Huang, J. Neuroendocrine Cells of the Prostate: Histology, Biological Functions, and Molecular Mechanisms. Precis. Clin. Med. 2021, 4, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Aparicio, A.; Logothetis, C.J.; Maity, S.N. Understanding the Lethal Variant of Prostate Cancer: Power of Examining Extremes. Cancer Discov. 2011, 1, 466–468. [Google Scholar] [CrossRef] [PubMed]
- Abida, W.; Cyrta, J.; Heller, G.; Prandi, D.; Armenia, J.; Coleman, I.; Cieslik, M.; Benelli, M.; Robinson, D.; Van Allen, E.M.; et al. Genomic Correlates of Clinical Outcome in Advanced Prostate Cancer. Proc. Natl. Acad. Sci. USA 2019, 116, 11428–11436. [Google Scholar] [CrossRef]
- Ahmed, M.; Li, L.-C. Adaptation and Clonal Selection Models of Castration-Resistant Prostate Cancer: Current Perspective. Int. J. Urol. 2013, 20, 362–371. [Google Scholar] [CrossRef]
- Fizazi, K.; Shore, N.; Tammela, T.L.; Ulys, A.; Vjaters, E.; Polyakov, S.; Jievaltas, M.; Luz, M.; Alekseev, B.; Kuss, I.; et al. Darolutamide in Nonmetastatic, Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2019, 380, 1235–1246. [Google Scholar] [CrossRef]
- Freedland, S.J.; de Almeida Luz, M.; De Giorgi, U.; Gleave, M.; Gotto, G.T.; Pieczonka, C.M.; Haas, G.P.; Kim, C.S.; Ramirez-Backhaus, M.; Rannikko, A.; et al. Improved Outcomes with Enzalutamide in Biochemically Recurrent Prostate Cancer. N. Engl. J. Med. 2023, 389, 1453–1465. [Google Scholar] [CrossRef]
- Vlachostergios, P.J.; Karathanasis, A.; Papandreou, C.N.; Tzortzis, V. Early mRNA Expression of Neuroendocrine Differentiation Signals Predicts Recurrence After Radical Prostatectomy: A Transcriptomic Analysis. World J. Oncol. 2021, 12, 232–239. [Google Scholar] [CrossRef]
- Aggarwal, R.R.; Zhang, J.; Monk, P.; Zhu, X.; Costin, D.; Petrylak, D.P.; Borderies, P.; Deshpande, R.M.; Hafeez, A.; O’Neill, V.J.; et al. First-in-Class Oral Innate Immune Activator BXCL701 Combined with Pembrolizumab, in Patients with Metastatic Castration-Resistant Prostate Cancer (mCRPC) of Small Cell Neuroendocrine (SCNC) Variant: Randomized Phase 2b Trial. J. Clin. Oncol. 2023, 41, TPS5109. [Google Scholar] [CrossRef]
- Chin, A.I.; Ly, A.; Rodriguez, S.; Sachdeva, A.; Zomorodian, N.; Zhang, H.; Kim, J.; Li, G.; Rettig, M.; Liu, S.; et al. Updated Results of a Phase Ib Single-Center Study of Pembrolizumab in Combination with Chemotherapy in Patients with Locally Advanced or Metastatic Small Cell/Neuroendocrine Cancers of the Prostate and Urothelium. J. Clin. Oncol. 2023, 41, 165. [Google Scholar] [CrossRef]
- Beltran, H.; Dowlati, A.; Jain, P.; Johnson, M.L.; Sanborn, R.E.; Thompson, J.R.; Mamdani, H.; Schenk, E.L.; Aggarwal, R.R.; Sankar, K.; et al. Interim Results from a Phase 1/2 Study of HPN328, a Tri-Specific, Half-Life (T1/2) Extended DLL3-Targeting T-Cell Engager, in Patients (Pts) with Neuroendocrine Prostate Cancer (NEPC) and Other Neuroendocrine Neoplasms (NEN). J. Clin. Oncol. 2024, 42, 121. [Google Scholar] [CrossRef]
Baseline Characteristics | Overall Population | mCRPC with NED | mCRPC w/o NED | p |
---|---|---|---|---|
Number of patients | 327 | 32 | 295 | |
Median age at diagnosis (range) | 66.0 (47–87) | 66.2 (47–86) | 65.9 (87–47) | 0.911 |
Age at diagnosis > 70 y (%) | 108 (33.2) | 11 (34.40) | 97 (32.80) | 0.926 |
Prostatectomy (%) | 123 (37.7) | 8 (25) | 115 (39.1) | 0.118 |
Prostate RT (%) | 92 (28.1) | 9 (28.1) | 83 (28.1) | 0.999 |
M1 at diagnosis (%) | 153 (46.8) | 22 (68.8) | 131 (44.4) | 0.014 |
ISUP GRADE (%) | ||||
1–3 | 96 (34.3) | 6 (19.4) | 90 (36.1) | 0.072 |
4–5 | 184 (65.7) | 26 (80.6) | 158 (63.9) | 0.072 |
Neuroendocrine proportion (%) | ||||
1–10% | 17 (5.2) | 17 (53) | NA | |
10–50% | 3 (1) | 3 (9.5) | NA | |
>50% | 12 (3.7) | 12 (37.5) | NA | |
CHARTEED (%) | 32 (9.8) | 4 (12.5) | 28 (9.5) | 0.1 |
Previous-DOCETAXEL for mCRPC (%) | 128 (39.2) | 18 (56.3) | 110 (37.3) | 0.037 |
Drugs (%) | ||||
Abiraterone | 179 (54.7) | 19 (59.4) | 160 (54.2) | 0.579 |
Enzalutamide | 148 (45.3) | 13 (40.6) | 135 (45.8) | 0.579 |
ECOG (%) | ||||
0–1 | 313 (95.7) | 30 (93.7) | 283 (96) | 0.784 |
2–3 | 14 (4) | 2 (6.3) | 12 (4) | 0.784 |
Median PSA (min–max) | 29.1 (0.1–5500) | 29.5 (0.1–887) | 24 (0.1–5500) | 0.593 |
PSA > 50 ng/mL | 126 (38.5) | 14 (43.8) | 112 (38) | 0.481 |
Median Hb (min–max) | 12.8 (6.8–17.9) | 12.5 (6.8–14.4) | 12.8 (7.6–17.9) | 0.058 |
Hb > 12 g/L | 222 (67.9) | 20 (62.5) | 202 (68.5) | 0.067 |
Median ALP (min–max) | 91.5 (35–1825) | 100 (40–1825) | 91 (35–1091) | 0.383 |
ALP > 160 U/L | 68 (20.8) | 9 (28.1) | 59 (20.1) | 0.546 |
Median LDH (min–max) | 235.5 (120–2273) | 240 (156–1829) | 235 (120–2273) | 0.703 |
LDH > 240 U/L | 125 (38.2) | 12 (37.5) | 113 (38.3) | 0.616 |
Symptoms (%) | 111 (33.9) | 16 (50.6) | 95 (32.2) | 0.125 |
Use of opioid (%) | 93 (28.4) | 11 (34.3) | 82 (27.9) | 0.375 |
Metastatic site | ||||
Bone metastasis (%) | 262 (80.4) | 27 (84.4) | 235 (79.7) | 0.321 |
Lymph nodes metastasis (%) | 200 (61.2) | 22 (68.8) | 178 (60.3) | 0.354 |
Visceral metastasis (%) | 39 (12.1) | 9 (28.1) | 30 (10.3) | 0.003 |
Liver metastasis (%) | 13 (4) | 7 (24.1) | 6 (2) | 0.001 |
Treatment Outcomes | mCRPC with NED | mCRPC w/o NED | Odds-Ratio/Hazard-Ratio | p |
---|---|---|---|---|
Best PSA response PD | ||||
Overall POP (%) | 43.80 | 20.10 | OR 3.09 [IC95 1.45–6.61] | 0.002 |
Pre-DOCETAXEL (%) | 28.60 | 15.60 | OR 2.16 [IC95 0.63–7.36] | 0.21 |
Post-DOCETAXEL (%) | 55.60 | 28.40 | OR 3.15 [IC95 1.23–8.83] | 0.024 |
PSA response > 50% | ||||
Overall POP (%) | 46.90 | 67.50 | OR 0.42 [IC95 0.20–0.89] | 0.02 |
Pre-DOCETAXEL (%) | 64.30 | 73.70 | OR 0.64 [IC95 0.20–2.0] | 0.422 |
Post-DOCETAXEL (%) | 33.30 | 55.80 | OR 0.40 [IC95 0.14–1.14] | 0.08 |
DCR (SD + PR + CR) | ||||
Overall POP (%) | 24.10 | 62.10 | OR 0.20 [IC95 0.47–0.1] | 0.001 |
Pre-DOCETAXEL (%) | 38.50 | 66.50 | OR 0.32 [IC95 1.02–0.1] | 0.067 |
Post-DOCETAXEL (%) | 11.80 | 53.20 | OR 0.12 [IC95 0.03–0.55] | 0.02 |
Median PFS (months) | ||||
Overall POP (%) | 4.38 | 11.48 | HR 2.51 [IC95 1.71–3.68] | 0.01 |
Pre-DOCETAXEL (%) | 8.49 | 14.93 | HR 2.11 [IC95 1.16–3.82] | 0.012 |
Post-DOCETAXEL (%) | 4.01 | 7.47 | HR 2.43 [IC95 1.45–4.05] | 0.01 |
Median OS (months) | ||||
Overall POP (%) | 17.3 | 23.1 | HR 1.37 [IC95 0.92–2.04] | 0.122 |
Pre-DOCETAXEL (%) | 43.1 | 29.2 | HR 0.88 [IC95 0.45–1.75] | 0.732 |
Post-DOCETAXEL (%) | 12.53 | 18.03 | HR 1.86 [IC 95 1.11–3.10] | 0.016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farinea, G.; Calabrese, M.; Carfì, F.; Saporita, I.; Poletto, S.; Delcuratolo, M.D.; Turco, F.; Audisio, M.; Di Stefano, F.R.; Tucci, M.; et al. Impact of Neuroendocrine Differentiation (NED) on Enzalutamide and Abiraterone Efficacy in Metastatic Castration-Resistant Prostate Cancer (mCRPC): A Retrospective Analysis. Cells 2024, 13, 1396. https://doi.org/10.3390/cells13161396
Farinea G, Calabrese M, Carfì F, Saporita I, Poletto S, Delcuratolo MD, Turco F, Audisio M, Di Stefano FR, Tucci M, et al. Impact of Neuroendocrine Differentiation (NED) on Enzalutamide and Abiraterone Efficacy in Metastatic Castration-Resistant Prostate Cancer (mCRPC): A Retrospective Analysis. Cells. 2024; 13(16):1396. https://doi.org/10.3390/cells13161396
Chicago/Turabian StyleFarinea, Giovanni, Mariangela Calabrese, Federica Carfì, Isabella Saporita, Stefano Poletto, Marco Donatello Delcuratolo, Fabio Turco, Marco Audisio, Francesco Rosario Di Stefano, Marcello Tucci, and et al. 2024. "Impact of Neuroendocrine Differentiation (NED) on Enzalutamide and Abiraterone Efficacy in Metastatic Castration-Resistant Prostate Cancer (mCRPC): A Retrospective Analysis" Cells 13, no. 16: 1396. https://doi.org/10.3390/cells13161396
APA StyleFarinea, G., Calabrese, M., Carfì, F., Saporita, I., Poletto, S., Delcuratolo, M. D., Turco, F., Audisio, M., Di Stefano, F. R., Tucci, M., & Buttigliero, C. (2024). Impact of Neuroendocrine Differentiation (NED) on Enzalutamide and Abiraterone Efficacy in Metastatic Castration-Resistant Prostate Cancer (mCRPC): A Retrospective Analysis. Cells, 13(16), 1396. https://doi.org/10.3390/cells13161396