Levels of Amyloid Beta (Aβ) Expression in the Caenorhabditis elegans Neurons Influence the Onset and Severity of Neuronally Mediated Phenotypes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plasmid Construction
2.2. C. elegans Maintenance and Strain Details
2.3. Microscopy Details for Imaging the Pan-Neuronal GFP Expressing Strains
2.4. Generation of Transgenic Integrated Strains
2.5. Single Worm Lysis and Copy Number PCR Assay
2.6. Total RNA Isolation and Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
2.7. Lifespan Analysis
2.8. Brood Size Assay
2.9. Egg Retention Assay
2.10. Chemotaxis Assay
2.11. Odorant Preference Associative Learning Assay
2.12. Motility Assays
2.13. Basal Slowing Response Locomotion Assays
2.14. Statistical Analysis
3. Results
3.1. Pan Neuronal Aβ1-42-Expressing Strains Show Variation in Copy Number and Expression
3.2. Pan-Neuronal Aβ1-42-Expressing Transgenic C. elegans Strains Show Variation in Lifespan Reduction
3.3. Pan-Neuronal Aβ1-42-Expressing Strains Show Defects in Healthspan
3.4. Pan-Neuronal Aβ1-42-Expressing Strains Show a Significant Reduction in Motility Parameters on Solid and Liquid Media
3.5. Pan-Neuronal Aβ1-42-Expressing Strains Show Defects in Neuronal Function
3.6. Pan-Neuronal Aβ1-42-Expressing Strains Exhibit Behavioural Deficits Potentially Linked to Dopaminergic Signalling
4. Discussion
4.1. Transgenic Aβ1-42-Expressing C. elegans Strains Show Variation in Aβ Expression
4.2. Pan-Neuronal Aβ1-42-Expressing Strain Shows Premature Death and Reduction in Fecundity
4.3. Pan-Neuronal Aβ1-42-Expressing Strains snb-1p::Aβ and rgef-1p::Aβ Show a Severe Decline in Motility
4.4. Defects in Chemotaxis and Learning Behaviours Observed in All Aβ1-42-Expressing Strains
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Glenner, G.G.; Wong, C.W. Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 1984, 120, 885–890. [Google Scholar] [CrossRef] [PubMed]
- Masters, C.L.; Simms, G.; Weinman, N.A.; Multhaup, G.; McDonald, B.L.; Beyreuther, K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl. Acad. Sci. USA 1985, 82, 4245–4249. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, R.H.; Nam, E.E.; Edgar, M.; Gouras, G.K. Alzheimer beta-amyloid peptides: Normal and abnormal localization. Histol. Histopathol. 2002, 17, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Haass, C.; Selkoe, D.J. Cellular processing of beta-amyloid precursor protein and the genesis of amyloid beta-peptide. Cell 1993, 75, 1039–1042. [Google Scholar] [CrossRef]
- Selkoe, D.J. SnapShot: Pathobiology of Alzheimer’s disease. Cell 2013, 154, 468. [Google Scholar] [CrossRef]
- Barage, S.H.; Sonawane, K.D. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides 2015, 52, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Hardy, J.A.; Higgins, G.A. Alzheimer’s disease: The amyloid cascade hypothesis. Science 1992, 256, 184–185. [Google Scholar] [CrossRef]
- Reitz, C. Alzheimer’s disease and the amyloid cascade hypothesis: A critical review. Int. J. Alzheimers Dis. 2012, 2012, 369808. [Google Scholar] [CrossRef]
- Alexander, A.G.; Marfil, V.; Li, C. Use of Caenorhabditis elegans as a model to study Alzheimer’s disease and other neurodegenerative diseases. Front. Genet. 2014, 5, 279. [Google Scholar] [CrossRef]
- Di Carlo, M. Simple model systems: A challenge for Alzheimer’s disease. Immun. Ageing 2012, 9, 3. [Google Scholar] [CrossRef]
- Schon, E.A.; Area-Gomez, E. Is Alzheimer’s disease a disorder of mitochondria-associated membranes? J. Alzheimers Dis. 2010, 20 (Suppl. S2), S281–S292. [Google Scholar] [CrossRef]
- Murphy, M.P.; LeVine, H., 3rd. Alzheimer’s disease and the amyloid-beta peptide. J. Alzheimers Dis. 2010, 19, 311–323. [Google Scholar] [CrossRef] [PubMed]
- McLean, C.A.; Cherny, R.A.; Fraser, F.W.; Fuller, S.J.; Smith, M.J.; Beyreuther, K.; Bush, A.I.; Masters, C.L. Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann. Neurol. 1999, 46, 860–866. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Petyuk, V.A.; Tasaki, S.; Boyle, P.A.; Gaiteri, C.; Schneider, J.A.; De Jager, P.L.; Bennett, D.A. Association of Cortical beta-Amyloid Protein in the Absence of Insoluble Deposits With Alzheimer Disease. JAMA Neurol. 2019, 76, 818–826. [Google Scholar] [CrossRef] [PubMed]
- Harkany, T.; Abraham, I.; Timmerman, W.; Laskay, G.; Toth, B.; Sasvari, M.; Konya, C.; Sebens, J.B.; Korf, J.; Nyakas, C.; et al. beta-amyloid neurotoxicity is mediated by a glutamate-triggered excitotoxic cascade in rat nucleus basalis. Eur. J. Neurosci. 2000, 12, 2735–2745. [Google Scholar] [CrossRef] [PubMed]
- Sadigh-Eteghad, S.; Talebi, M.; Farhoudi, M.; Golzari, S.E.J.; Sabermarouf, B.; Mahmoudi, J. Beta-amyloid exhibits antagonistic effects on alpha 7 nicotinic acetylcholine receptors in orchestrated manner. J. Med. Hypotheses Ideas 2014, 8, 49–52. [Google Scholar] [CrossRef]
- Sadigh-Eteghad, S.; Sabermarouf, B.; Majdi, A.; Talebi, M.; Farhoudi, M.; Mahmoudi, J. Amyloid-beta: A crucial factor in Alzheimer’s disease. Med. Princ. Pract. 2015, 24, 1–10. [Google Scholar] [CrossRef]
- Chalfie, M.; Sulston, J.E.; White, J.G.; Southgate, E.; Thomson, J.N.; Brenner, S. The neural circuit for touch sensitivity in Caenorhabditis elegans. J. Neurosci. 1985, 5, 956–964. [Google Scholar] [CrossRef]
- White, J.G.; Southgate, E.; Thomson, J.N.; Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 1986, 314, 1–340. [Google Scholar]
- de Bono, M.; Maricq, A.V. Neuronal substrates of complex behaviors in C. elegans. Annu. Rev. Neurosci. 2005, 28, 451–501. [Google Scholar] [CrossRef]
- Croll, N.A. Behavioural analysis of nematode movement. Adv. Parasitol. 1975, 13, 71–122. [Google Scholar]
- Bargmann, C.I.; Horvitz, H.R. Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron 1991, 7, 729–742. [Google Scholar] [CrossRef] [PubMed]
- Hobert, O. Behavioral plasticity in C. elegans: Paradigms, circuits, genes. J. Neurobiol. 2003, 54, 203–223. [Google Scholar] [CrossRef] [PubMed]
- Schafer, W.F. Genetics of egg-laying in worms. Annu. Rev. Genet. 2006, 40, 487–509. [Google Scholar] [CrossRef]
- Byrne, J.H.; Walker, D.S.; Chew, Y.L.; Schafer, W.R. Genetics of Behavior in C. elegans; Oxford University Press: Oxford, UK, 2017. [Google Scholar] [CrossRef]
- McColl, G.; Roberts, B.R.; Pukala, T.L.; Kenche, V.B.; Roberts, C.M.; Link, C.D.; Ryan, T.M.; Masters, C.L.; Barnham, K.J.; Bush, A.I.; et al. Utility of an improved model of amyloid-beta (Abeta(1)(-)(4)(2)) toxicity in Caenorhabditis elegans for drug screening for Alzheimer’s disease. Mol. Neurodegener. 2012, 7, 57. [Google Scholar] [CrossRef] [PubMed]
- Fong, S.; Teo, E.; Ng, L.F.; Chen, C.B.; Lakshmanan, L.N.; Tsoi, S.Y.; Moore, P.K.; Inoue, T.; Halliwell, B.; Gruber, J. Energy crisis precedes global metabolic failure in a novel Caenorhabditis elegans Alzheimer Disease model. Sci. Rep. 2016, 6, 33781. [Google Scholar] [CrossRef]
- Sinnige, T.; Ciryam, P.; Casford, S.; Dobson, C.M.; de Bono, M.; Vendruscolo, M. Expression of the amyloid-beta peptide in a single pair of C. elegans sensory neurons modulates the associated behavioural response. PLoS ONE 2019, 14, e0217746. [Google Scholar] [CrossRef]
- Fire, A.; Harrison, S.W.; Dixon, D. A modular set of lacZ fusion vectors for studying gene expression in Caenorhabditis elegans. Gene 1990, 93, 189–198. [Google Scholar] [CrossRef]
- Nonet, M.L.; Saifee, O.; Zhao, H.; Rand, J.B.; Wei, L. Synaptic transmission deficits in Caenorhabditis elegans synaptobrevin mutants. J. Neurosci. 1998, 18, 70–80. [Google Scholar] [CrossRef]
- Chen, L.; Fu, Y.; Ren, M.; Xiao, B.; Rubin, C.S. A RasGRP, C. elegans RGEF-1b, couples external stimuli to behavior by activating LET-60 (Ras) in sensory neurons. Neuron 2011, 70, 51–65. [Google Scholar] [CrossRef]
- Stiernagle, T. Maintenance of C. elegans; WormBook: Pasadena, CA, USA, 2006; pp. 1–11. [Google Scholar] [CrossRef]
- Brenner, S. The genetics of Caenorhabditis elegans. Genetics 1974, 77, 71–94. [Google Scholar] [CrossRef]
- Miedel, M.T.; Graf, N.J.; Stephen, K.E.; Long, O.S.; Pak, S.C.; Perlmutter, D.H.; Silverman, G.A.; Luke, C.J. A pro-cathepsin L mutant is a luminal substrate for endoplasmic-reticulum-associated degradation in C. elegans. PLoS ONE 2012, 7, e40145. [Google Scholar] [CrossRef] [PubMed]
- Mariol, M.C.; Walter, L.; Bellemin, S.; Gieseler, K. A rapid protocol for integrating extrachromosomal arrays with high transmission rate into the C. elegans genome. J. Vis. Exp. 2013, 82, e50773. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, D.; Smith, M.A.; Zhang, B.; Pan, X. Selection of reliable reference genes in Caenorhabditis elegans for analysis of nanotoxicity. PLoS ONE 2012, 7, e31849. [Google Scholar] [CrossRef]
- Rao, X.; Huang, X.; Zhou, Z.; Lin, X. An improvement of the 2^(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat. Bioinforma Biomath. 2013, 3, 71–85. [Google Scholar]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, research0034.1. [Google Scholar] [CrossRef]
- Hellemans, J.; Mortier, G.; De Paepe, A.; Speleman, F.; Vandesompele, J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007, 8, R19. [Google Scholar] [CrossRef] [PubMed]
- Hoogewijs, D.; Houthoofd, K.; Matthijssens, F.; Vandesompele, J.; Vanfleteren, J.R. Selection and validation of a set of reliable reference genes for quantitative sod gene expression analysis in C. elegans. BMC Mol. Biol. 2008, 9, 9. [Google Scholar] [CrossRef]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef]
- Han, S.K.; Lee, D.; Lee, H.; Kim, D.; Son, H.G.; Yang, J.S.; Lee, S.V.; Kim, S. OASIS 2: Online application for survival analysis 2 with features for the analysis of maximal lifespan and healthspan in aging research. Oncotarget 2016, 7, 56147–56152. [Google Scholar] [CrossRef]
- Wang, C.; Li, Q.; Redden, D.T.; Weindruch, R.; Allison, D.B. Statistical methods for testing effects on “maximum lifespan”. Mech. Ageing Dev. 2004, 125, 629–632. [Google Scholar] [CrossRef]
- Gao, G.; Wan, W.; Zhang, S.; Redden, D.T.; Allison, D.B. Testing for differences in distribution tails to test for differences in ‘maximum’ lifespan. BMC Med. Res. Methodol. 2008, 8, 49. [Google Scholar] [CrossRef] [PubMed]
- Yen, K.; Steinsaltz, D.; Mobbs, C.V. Validated analysis of mortality rates demonstrates distinct genetic mechanisms that influence lifespan. Exp. Gerontol. 2008, 43, 1044–1051. [Google Scholar] [CrossRef] [PubMed]
- Bansal, A.; Zhu, L.J.; Yen, K.; Tissenbaum, H.A. Uncoupling lifespan and healthspan in Caenorhabditis elegans longevity mutants. Proc. Natl. Acad. Sci. USA 2015, 112, E277–E286. [Google Scholar] [CrossRef]
- Gardner, M.; Rosell, M.; Myers, E.M. Measuring the effects of bacteria on C. elegans behavior using an egg retention assay. J. Vis. Exp. 2013, 80, e51203. [Google Scholar] [CrossRef]
- Bargmann, C.I.; Hartwieg, E.; Horvitz, H.R. Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 1993, 74, 515–527. [Google Scholar] [CrossRef] [PubMed]
- Dosanjh, L.E.; Brown, M.K.; Rao, G.; Link, C.D.; Luo, Y. Behavioral phenotyping of a transgenic Caenorhabditis elegans expressing neuronal amyloid-beta. J. Alzheimers Dis. 2010, 19, 681–690. [Google Scholar] [CrossRef] [PubMed]
- Sawin, E.R.; Ranganathan, R.; Horvitz, H.R. C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 2000, 26, 619–631. [Google Scholar] [CrossRef]
- Tissenbaum, H.A. Using C. elegans for aging research. Invertebr. Reprod. Dev. 2015, 59, 59–63. [Google Scholar] [CrossRef]
- Andux, S.; Ellis, R.E. Apoptosis maintains oocyte quality in aging Caenorhabditis elegans females. PLoS Genet. 2008, 4, e1000295. [Google Scholar] [CrossRef]
- Hughes, S.E.; Evason, K.; Xiong, C.; Kornfeld, K. Genetic and pharmacological factors that influence reproductive aging in nematodes. PLoS Genet. 2007, 3, e25. [Google Scholar] [CrossRef]
- Mendenhall, A.R.; Wu, D.; Park, S.K.; Cypser, J.R.; Tedesco, P.M.; Link, C.D.; Phillips, P.C.; Johnson, T.E. Genetic dissection of late-life fertility in Caenorhabditis elegans. J. Gerontol. A Biol. Sci. Med. Sci. 2011, 66, 842–854. [Google Scholar] [CrossRef]
- Maulik, M.; Mitra, S.; Bult-Ito, A.; Taylor, B.E.; Vayndorf, E.M. Behavioral Phenotyping and Pathological Indicators of Parkinson’s Disease in C. elegans Models. Front. Genet. 2017, 8, 77. [Google Scholar] [CrossRef]
- Mignerot, L.; Gimond, C.; Bolelli, L.; Bouleau, C.; Sandjak, A.; Boulin, T.; Braendle, C. Natural variation in the Caenorhabditis elegans egg-laying circuit modulates an intergenerational fitness trade-off. Elife 2024, 12, RP88253. [Google Scholar] [CrossRef] [PubMed]
- Hahm, J.H.; Kim, S.; DiLoreto, R.; Shi, C.; Lee, S.J.; Murphy, C.T.; Nam, H.G. C. elegans maximum velocity correlates with healthspan and is maintained in worms with an insulin receptor mutation. Nat. Commun. 2015, 6, 8919. [Google Scholar] [CrossRef] [PubMed]
- Rollins, J.A.; Howard, A.C.; Dobbins, S.K.; Washburn, E.H.; Rogers, A.N. Assessing Health Span in Caenorhabditis elegans: Lessons From Short-Lived Mutants. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 72, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Mesce, K.A.; Pierce-Shimomura, J.T. Shared Strategies for Behavioral Switching: Understanding How Locomotor Patterns are Turned on and Off. Front. Behav. Neurosci. 2010, 4, 49. [Google Scholar] [CrossRef]
- Pierce-Shimomura, J.T.; Chen, B.L.; Mun, J.J.; Ho, R.; Sarkis, R.; McIntire, S.L. Genetic analysis of crawling and swimming locomotory patterns in C. elegans. Proc. Natl. Acad. Sci. USA 2008, 105, 20982–20987. [Google Scholar] [CrossRef]
- Vidal-Gadea, A.; Topper, S.; Young, L.; Crisp, A.; Kressin, L.; Elbel, E.; Maples, T.; Brauner, M.; Erbguth, K.; Axelrod, A.; et al. Caenorhabditis elegans selects distinct crawling and swimming gaits via dopamine and serotonin. Proc. Natl. Acad. Sci. USA 2011, 108, 17504–17509. [Google Scholar] [CrossRef]
- Ranganathan, R.; Sawin, E.R.; Trent, C.; Horvitz, H.R. Mutations in the Caenorhabditis elegans serotonin reuptake transporter MOD-5 reveal serotonin-dependent and -independent activities of fluoxetine. J. Neurosci. 2001, 21, 5871–5884. [Google Scholar] [CrossRef]
- Huang, X.; Atwood, C.S.; Hartshorn, M.A.; Multhaup, G.; Goldstein, L.E.; Scarpa, R.C.; Cuajungco, M.P.; Gray, D.N.; Lim, J.; Moir, R.D.; et al. The A beta peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 1999, 38, 7609–7616. [Google Scholar] [CrossRef]
- Huang, C.; Xiong, C.; Kornfeld, K. Measurements of age-related changes of physiological processes that predict lifespan of Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 2004, 101, 8084–8089. [Google Scholar] [CrossRef] [PubMed]
- Trent, C.; Tsuing, N.; Horvitz, H.R. Egg-laying defective mutants of the nematode Caenorhabditis elegans. Genetics 1983, 104, 619–647. [Google Scholar] [CrossRef]
- Waggoner, L.E.; Zhou, G.T.; Schafer, R.W.; Schafer, W.R. Control of alternative behavioral states by serotonin in Caenorhabditis elegans. Neuron 1998, 21, 203–214. [Google Scholar] [CrossRef]
- Laranjeiro, R.; Harinath, G.; Burke, D.; Braeckman, B.P.; Driscoll, M. Single swim sessions in C. elegans induce key features of mammalian exercise. BMC Biol. 2017, 15, 30. [Google Scholar] [CrossRef]
- Glenn, C.F.; Chow, D.K.; David, L.; Cooke, C.A.; Gami, M.S.; Iser, W.B.; Hanselman, K.B.; Goldberg, I.G.; Wolkow, C.A. Behavioral deficits during early stages of aging in Caenorhabditis elegans result from locomotory deficits possibly linked to muscle frailty. J. Gerontol. A Biol. Sci. Med. Sci. 2004, 59, 1251–1260. [Google Scholar] [CrossRef] [PubMed]
- Gieseler, K.; Qadota, H.; Benian, G.M. Development, structure, and maintenance of C. elegans body wall muscle. WormBook 2017, 2017, 1–59. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.H.; Raji, C.A.; Maceachern, M.P.; Burke, J.F. Olfactory identification testing as a predictor of the development of Alzheimer’s dementia: A systematic review. Laryngoscope 2012, 122, 1455–1462. [Google Scholar] [CrossRef] [PubMed]
- Herndon, L.A.; Schmeissner, P.J.; Dudaronek, J.M.; Brown, P.A.; Listner, K.M.; Sakano, Y.; Paupard, M.C.; Hall, D.H.; Driscoll, M. Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 2002, 419, 808–814. [Google Scholar] [CrossRef]
- Kauffman, A.; Parsons, L.; Stein, G.; Wills, A.; Kaletsky, R.; Murphy, C. C. elegans positive butanone learning, short-term, and long-term associative memory assays. J. Vis. Exp. 2011, 49, 2490. [Google Scholar] [CrossRef]
- Kauffman, A.L.; Ashraf, J.M.; Corces-Zimmerman, M.R.; Landis, J.N.; Murphy, C.T. Insulin signaling and dietary restriction differentially influence the decline of learning and memory with age. PLoS Biol. 2010, 8, e1000372. [Google Scholar] [CrossRef]
- Morrison, J.H.; Hof, P.R. Life and death of neurons in the aging brain. Science 1997, 278, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Nuttley, W.M.; Atkinson-Leadbeater, K.P.; Van Der Kooy, D. Serotonin mediates food-odor associative learning in the nematode Caenorhabditiselegans. Proc. Natl. Acad. Sci. USA 2002, 99, 12449–12454. [Google Scholar] [CrossRef] [PubMed]
- Bernhard, N.; van der Kooy, D. A behavioral and genetic dissection of two forms of olfactory plasticity in Caenorhabditis elegans: Adaptation and habituation. Learn. Mem. 2000, 7, 199–212. [Google Scholar] [CrossRef] [PubMed]
- Nuttley, W.M.; Harbinder, S.; van der Kooy, D. Regulation of distinct attractive and aversive mechanisms mediating benzaldehyde chemotaxis in Caenorhabditis elegans. Learn. Mem. 2001, 8, 170–181. [Google Scholar] [CrossRef]
- Tsalik, E.L.; Hobert, O. Functional mapping of neurons that control locomotory behavior in Caenorhabditis elegans. J. Neurobiol. 2003, 56, 178–197. [Google Scholar] [CrossRef]
- Sanyal, S.; Wintle, R.F.; Kindt, K.S.; Nuttley, W.M.; Arvan, R.; Fitzmaurice, P.; Bigras, E.; Merz, D.C.; Hebert, T.E.; van der Kooy, D.; et al. Dopamine modulates the plasticity of mechanosensory responses in Caenorhabditis elegans. EMBO J. 2004, 23, 473–482. [Google Scholar] [CrossRef]
- Omura, D.T.; Clark, D.A.; Samuel, A.D.; Horvitz, H.R. Dopamine signaling is essential for precise rates of locomotion by C. elegans. PLoS ONE 2012, 7, e38649. [Google Scholar] [CrossRef]
- Li, J.; Li, D.; Yang, Y.; Xu, T.; Li, P.; He, D. Acrylamide induces locomotor defects and degeneration of dopamine neurons in Caenorhabditis elegans. J. Appl. Toxicol. 2016, 36, 60–67. [Google Scholar] [CrossRef]
- Ezcurra, M.; Tanizawa, Y.; Swoboda, P.; Schafer, W.R. Food sensitizes C. elegans avoidance behaviours through acute dopamine signalling. EMBO J. 2011, 30, 1110–1122. [Google Scholar] [CrossRef]
- Mattson, M.P. Pathways towards and away from Alzheimer’s disease. Nature 2004, 430, 631–639. [Google Scholar] [CrossRef]
- Mahoney, T.R.; Luo, S.; Nonet, M.L. Analysis of synaptic transmission in Caenorhabditis elegans using an aldicarb-sensitivity assay. Nat. Protoc. 2006, 1, 1772–1777. [Google Scholar] [CrossRef] [PubMed]
- Nance, J.; Frokjaer-Jensen, C. The Caenorhabditis elegans Transgenic Toolbox. Genetics 2019, 212, 959–990. [Google Scholar] [CrossRef] [PubMed]
Strain Name | Median LS (Mean ± SEM) | % Change | Maximum LS (Mean ± SEM) | % Change |
---|---|---|---|---|
N2 control strain | 19.3 ± 0.3 | 32.3 ± 0.3 | NA | |
mCherry control | 17.7 ± 0.3 | NA | 30.7 ± 0.7 | NA |
snb-1p::Aβ1-42 | 13.2 ± 0.2 | −26% | 19.3 ± 0.3 | −36.9% |
rgef-1p::Aβ1-42 | 14 ± 0.6 | −21% | 22.7 ± 0.7 | −26.1% |
YFP control | 16 ± 0.0 | NA | 28 ± 0.0 | NA |
unc-119p::Aβ1-42 | 15 ± 0.0 | −6.25% | 22 ± 0.0 | −21% |
Strain Name | Initial Mortality Rate (A) | Gompertz Value (G) | Rate of Aging (MRDT) |
---|---|---|---|
N2 | 3.65 × 103 | 0.1667 | 4.15 |
mCherry control | 6.00 × 103 | 0.1677 | 4.13 |
snb-1p::Aβ1-42 | 3.89 × 103 | 0.3217 ** | 2.16 |
rgef-1p::Aβ1-42 | 1.91 × 103 | 0.3881 * | 1.79 |
YFP control | 3.06 × 103 | 0.2274 | 3.05 |
unc-119p::Aβ1-42 | 3.95 × 103 | 0.2602 | 2.66 |
snb-1p:: Aβ1-42 | rgef-1p:: Aβ1-42 | unc-119p:: Aβ1-42 | |
---|---|---|---|
Expression level | High | Medium | Low |
Lifespan | 3 | 2 | 1 |
Brood size | 3 | 2 | 1 |
Egg retention | 3 | 2 | 1 |
Chemotaxis (diacetyl) | 3 | 2 | 1 |
Motility on solid media | 3 | 3 | 1 |
Motility in liquid media | 3 | 2 | 1 |
Basal slowing response | 3 | 3 | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirwani, N.; Hedtke, S.M.; Grant, K.; McColl, G.; Grant, W.N. Levels of Amyloid Beta (Aβ) Expression in the Caenorhabditis elegans Neurons Influence the Onset and Severity of Neuronally Mediated Phenotypes. Cells 2024, 13, 1598. https://doi.org/10.3390/cells13181598
Sirwani N, Hedtke SM, Grant K, McColl G, Grant WN. Levels of Amyloid Beta (Aβ) Expression in the Caenorhabditis elegans Neurons Influence the Onset and Severity of Neuronally Mediated Phenotypes. Cells. 2024; 13(18):1598. https://doi.org/10.3390/cells13181598
Chicago/Turabian StyleSirwani, Neha, Shannon M. Hedtke, Kirsten Grant, Gawain McColl, and Warwick N. Grant. 2024. "Levels of Amyloid Beta (Aβ) Expression in the Caenorhabditis elegans Neurons Influence the Onset and Severity of Neuronally Mediated Phenotypes" Cells 13, no. 18: 1598. https://doi.org/10.3390/cells13181598
APA StyleSirwani, N., Hedtke, S. M., Grant, K., McColl, G., & Grant, W. N. (2024). Levels of Amyloid Beta (Aβ) Expression in the Caenorhabditis elegans Neurons Influence the Onset and Severity of Neuronally Mediated Phenotypes. Cells, 13(18), 1598. https://doi.org/10.3390/cells13181598