Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (209)

Search Parameters:
Keywords = behavioural assays

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6818 KB  
Article
Enhanced Osseointegration, Osteogenic Differentiation and Adherence Behaviour of Healthy Human Osteoblasts on a Roughened Titanium Surface by Vitamin K2 and Vitamin D3
by Katharina Tscheu, Ann Kathrin Bergmann, Christoph V. Suschek and Uwe Maus
Materials 2025, 18(21), 5012; https://doi.org/10.3390/ma18215012 - 3 Nov 2025
Viewed by 370
Abstract
The number of endoprosthetic implants is constantly increasing. Successful osseointegration of the inserted material into the bone is essential for a prosthesis to remain in the bone as long as possible. In the clinical setting, a roughened titanium surface of implants is used [...] Read more.
The number of endoprosthetic implants is constantly increasing. Successful osseointegration of the inserted material into the bone is essential for a prosthesis to remain in the bone as long as possible. In the clinical setting, a roughened titanium surface of implants is used as standard to enable the best possible osseointegration. Vitamin K2 and vitamin D3 play a decisive role in dynamic bone metabolism and therefore also influence osseointegration. For the first time, we carried out in vitro investigations with clinically relevant cells, primary healthy human osteoblasts (hOBs). We qualitatively compared the adhesion behaviour of hOBs on a plastic surface, a smooth, regular titanium surface structure and a roughened, irregular titanium surface structure by scanning electron microscopy and fluorescence microscopy. The osteogenic behaviour and the osteogenic differentiation capacity were quantitatively investigated by analysing the activity of alkaline phosphatase and the alizarin red S assay under the influence of vitamin K2, vitamin D3 and the combination of both vitamins. It was shown that more adhesion points formed between the cells and the titanium on the rough surface structure. In addition, a solid cell network developed more quickly on this side, with cell runners forming in three-dimensional space, which means the interactions between the cells across different cell layers. On the other hand, a structured cell network also appeared on the regular smooth surface structure, which means that the network seems to be formed and built up along a defined structure. The addition of vitamins further increased the osteogenic differentiation capacity on the rough titanium surface structure. In particular, the isolated addition of vitamin K2 showed an improved osteogenic differentiation in the long-term observation, whereas the combined addition of both vitamins promoted the initial osteogenic differentiation. Vitamin K2, therefore, plays a greater role in osseointegration than previously assumed. This opens up new possibilities for the use of vitamin K2 during and after the surgical insertion of an implant. The use of vitamin K2 should be reconsidered for clinical applications in implant care and further investigated clinically. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

19 pages, 7847 KB  
Article
Roles of GacSA and DJ41_1407 in Acinetobacter baumannii ATCC 19606
by Yee-Huan Toh, Meng-Yun Wen and Guang-Huey Lin
Int. J. Mol. Sci. 2025, 26(21), 10620; https://doi.org/10.3390/ijms262110620 - 31 Oct 2025
Viewed by 212
Abstract
Two-component systems (TCSs) in bacteria are often involved in the global regulation of various physiological activities and behaviours. This study investigated the GacSA TCS and DJ41_1407 transcriptional sensor adjacent to GacA in Acinetobacter baumannii ATCC 19606. The relationship between GacS, GacA, and DJ41_1407 [...] Read more.
Two-component systems (TCSs) in bacteria are often involved in the global regulation of various physiological activities and behaviours. This study investigated the GacSA TCS and DJ41_1407 transcriptional sensor adjacent to GacA in Acinetobacter baumannii ATCC 19606. The relationship between GacS, GacA, and DJ41_1407 and their functions and signal transduction mechanisms are described. A. baumannii ATCC 19606 mutants, ∆gacS, ∆gacA, and ∆DJ41_1407, were generated using markerless mutation and cultured in LB medium, then collected for RNA sequencing. It was found that GacS, GacA, and DJ41_1407 regulate a series of genes involved in carbon metabolism. Quantitative reverse transcription PCR (qRT-PCR) results showed that DJ41_1407 and GacA may regulate the expression of adh4, ipdC, iacH, and paa. Phos-tag™ results revealed that GacS plays a more significant role in GacA phosphorylation. GacA regulated colony size and growth conditions in rich medium. Compared to the wild-type strain, the ∆gacA and ∆gacSA mutants exhibited smaller colony sizes, and mutation of the gacS, gacA, and DJ41_1407 genes also reduced bacterial virulence as determined by the Galleria mellonella infection assay. GacA also plays a crucial role in modulating antibiotic resistance, and the ∆gacADJ41_1407 mutant demonstrated greater susceptibility to antibiotics. These results highlight the multiple functions regulated by the GacSA global TCS in A. baumannii ATCC 19606. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

18 pages, 271 KB  
Article
Ovarian Remnant Syndrome in Bitches and Queens: Clinical Aspects and Potential Neoplastic Transformations
by Daniele Zambelli, Giulia Ballotta, Dina Guerra and Marco Cunto
Animals 2025, 15(21), 3106; https://doi.org/10.3390/ani15213106 - 26 Oct 2025
Viewed by 493
Abstract
Ovarian remnant syndrome (ORS) is a recognized postoperative complication in spayed dogs and cats, resulting from incomplete excision or inadvertent revascularisation of ovarian tissue during gonadectomy. Affected animals typically exhibit recurrent oestrous behaviour and may develop serious sequelae, including stump pyometra, mammary neoplasia, [...] Read more.
Ovarian remnant syndrome (ORS) is a recognized postoperative complication in spayed dogs and cats, resulting from incomplete excision or inadvertent revascularisation of ovarian tissue during gonadectomy. Affected animals typically exhibit recurrent oestrous behaviour and may develop serious sequelae, including stump pyometra, mammary neoplasia, and granulosa cell tumours. This retrospective study evaluated 93 cases (70 dogs, 23 cats) diagnosed with ORS referred to the University Veterinary Hospital of Bologna, Italy, focusing on signalment, clinical presentation, diagnostic protocols, and treatment outcomes. Diagnosis relied on a multimodal approach combining clinical history, vaginal cytology, serum progesterone assays, ultrasonography, and histopathological examination of excised tissue. Surgical excision of residual ovarian tissue was the only curative treatment, with improved outcomes when performed during hormonally active phases of the oestrous cycle to optimize remnant localisation. Histopathology confirmed ovarian tissue in the majority of cases, with neoplastic transformation identified in 10% of dogs. Bilateral ovarian remnants were more prevalent than previously reported. Surgical revision was complicated by adhesions involving vital abdominal structures, emphasizing the need for meticulous technique. These findings highlight the critical importance of precise surgical technique during initial gonadectomy, early recognition of ORS, and comprehensive surgical management to prevent severe complications and promote companion animal welfare. Full article
(This article belongs to the Section Animal Reproduction)
14 pages, 1615 KB  
Article
Artificial Diet Assay Screening of Candidate RNAi Effectors Against Myzus persicae (Hemiptera)
by Amol Bharat Ghodke, Stephen J. Fletcher, Ritesh G. Jain, Narelle Manzie, Neena Mitter and Karl E. Robinson
Insects 2025, 16(11), 1086; https://doi.org/10.3390/insects16111086 - 23 Oct 2025
Viewed by 672
Abstract
Aphids are sap-sucking pests that cause substantial damage to fruit and fibre crops through direct feeding and transmission of plant viruses. While chemical pesticides remain the primary method of control, their use raises concerns related to human health, environmental contamination, pesticide resistance, and [...] Read more.
Aphids are sap-sucking pests that cause substantial damage to fruit and fibre crops through direct feeding and transmission of plant viruses. While chemical pesticides remain the primary method of control, their use raises concerns related to human health, environmental contamination, pesticide resistance, and impacts on beneficial insects. As a sustainable alternative, spray-on double-stranded RNA (dsRNA) technology offers a promising approach to induce RNA interference (RNAi) in target pests. For RNAi to be effective against sap-sucking insects like the green peach aphid (Myzus persicae), it is essential to identify genes whose silencing disrupts vital physiological functions. In this study, artificial diet (AD)-based feeding assays were used to evaluate dsRNAs targeting eight genes involved in neural function, osmoregulation, feeding behaviour, and nucleic acid/protein metabolism. dsRNAs were administered individually, in combinations, or as a multi-target stacked construct. After 98 h of feeding, aphid mortality ranged from 14 to 72% (individual targets), 78–85% (combinations), and 54% (stacked construct). Transcript knockdown varied from 6.3% to ~54%, though a consistent correlation with mortality was not always observed. The gene targets and combinatorial dsRNA strategies identified in this study provide a foundation for developing RNAi-based crop protection technologies against M. persicae infestation. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

26 pages, 3924 KB  
Review
Seaweed Polysaccharides: A Rational Approach for Food Safety Studies
by João Cotas, Mariana Lourenço, Artur Figueirinha, Ana Valado and Leonel Pereira
Mar. Drugs 2025, 23(11), 412; https://doi.org/10.3390/md23110412 - 22 Oct 2025
Viewed by 1362
Abstract
Marine macroalgae (seaweed) are a rich source of bioactive polysaccharides such as agar, carrageenan, and alginate. These three compounds are classified as food additive ingredients, widely used as gelling, thickening, stabilizing, and emulsifying agents in the food, nutraceutical, pharmaceutical, and cosmetic industries. However, [...] Read more.
Marine macroalgae (seaweed) are a rich source of bioactive polysaccharides such as agar, carrageenan, and alginate. These three compounds are classified as food additive ingredients, widely used as gelling, thickening, stabilizing, and emulsifying agents in the food, nutraceutical, pharmaceutical, and cosmetic industries. However, the growing concern for a safer world has sparked renewed interest in their safety evaluation. Unlike synthetic compounds with specified structures, seaweed polysaccharides exhibit substantial structural heterogeneity due to variations in species, habitat, and processing, affecting bioactivity, digestibility, and interactions within the gastrointestinal tract. Although the safety of these compounds is generally accepted, there are still significant gaps in our understanding of their physicochemical behaviour. This highlights the need to develop a standardized digestion model to ensure their safety and evaluate their potential long-term health effects. Most of these compounds are only partially absorbed in the upper gastrointestinal tract, where they are fermented into metabolites with varying health effects. The safety of carrageenan, in particular, remains a subject of debate due to ambiguous results reported by various researchers’ groups. This review highlights the importance of adopting standardized digestion assays, integrated analytical tools, and multidisciplinary approaches. These are crucial for thoroughly evaluating the molecular integrity, metabolism, and biological impact of seaweed polysaccharides, which will ultimately support evidence-based regulatory frameworks and ensure their safe use in human nutrition. This critical analysis focuses on food safety and security, with a methodology that can be applied to other foods or compounds. Full article
Show Figures

Figure 1

17 pages, 1247 KB  
Article
Nemertide Alpha-1 as a Biopesticide: Aphid Deterrence, Antimicrobial Activity, and Safety Aspects
by Quentin Laborde, Katarzyna Dancewicz, Erik Jacobsson, Adam A. Strömstedt, Taj Muhammad, Camilla Eriksson, Blazej Slazak, Ulf Göransson and Håkan S. Andersson
Mar. Drugs 2025, 23(10), 388; https://doi.org/10.3390/md23100388 - 29 Sep 2025
Viewed by 534
Abstract
Aphid control often relies on synthetic pesticides, but their overuse has raised concerns about resistance development and negative impact on wildlife and human health. Consequently, the search for new biopesticide agents has gained significant attention. Nemertide alpha-1, a peptide toxin from the marine [...] Read more.
Aphid control often relies on synthetic pesticides, but their overuse has raised concerns about resistance development and negative impact on wildlife and human health. Consequently, the search for new biopesticide agents has gained significant attention. Nemertide alpha-1, a peptide toxin from the marine nemertean worm Lineus longissimus (Gunnerus, 1770), is known for its pesticide activity but has less documented biological safety. This study investigates the aphid feeding deterrence and biological safety of the experimental biopesticide nemertide alpha-1. Nemertide alpha-1 demonstrated a clear dose-dependent repellent effect on the penetration behaviour of the green peach aphid (Myzus persicae, Sulzer). It also demonstrates bacteriostatic and bactericidal effects in an MIC (Minimum Inhibitory Concentration) assay, respectively, on E. coli (MIC: 112.5 µM) and S. aureus (MIC: 28.4 µM). In a bacterial liposome leakage assay, nemertide alpha-1 exhibits a less pronounced effect than the melittin control (20% maximum leakage at 100 µM), strengthening the hypothesis on the specificity of its neurotoxic mode of action. It is not toxic to mammalian cell U-937 GTB with only a slight decline in the percentage of survival at the highest concentration tested (80 µM). Finally, nemertide alpha-1 displays thermal stability over time for four weeks in three different conditions: cold (6 °C), room temperature (20–24 °C), and physiological temperature (37 °C). Nemertide alpha-1 deters green peach aphid feeding in the low micromolar range and exhibits low antimicrobial properties and very low toxicity to human cells. Its potential utility is further underscored by thermal stability over time. Full article
Show Figures

Graphical abstract

26 pages, 2258 KB  
Review
From Lab to Clinic and Farm: Leveraging Drosophila Feeding Studies to Combat Eating Disorders and Pest Challenges
by Ayesha Banu, Safa Salim and Farhan Mohammad
Biology 2025, 14(9), 1168; https://doi.org/10.3390/biology14091168 - 2 Sep 2025
Viewed by 1189
Abstract
Drosophila melanogaster has been a cornerstone of biological research, offering critical insights into genetics, neurobiology, and disease modelling. This review examines Drosophila feeding research, including the diverse assays available to study feeding behaviour, and explores its biomedical and entomological applications. We highlight studies [...] Read more.
Drosophila melanogaster has been a cornerstone of biological research, offering critical insights into genetics, neurobiology, and disease modelling. This review examines Drosophila feeding research, including the diverse assays available to study feeding behaviour, and explores its biomedical and entomological applications. We highlight studies that have advanced our understanding of human feeding and eating disorders, vector-borne infectious diseases, and agricultural pest control. In clinical applications, we discuss a two-pronged approach: using Drosophila to model human feeding and eating disorders, as well as to study insect vectors that contribute to human disease transmission. We explore how feeding studies in Drosophila provide valuable insights into energy homeostasis, metabolic regulation, pathogen–host interactions, and vector biology. Beyond clinical relevance, the entomological applications of Drosophila feeding research extend to sustainable pest management and insecticide resistance. Finally, we identify gaps in current research and suggest promising directions for further exploration. By leveraging the genetic and behavioural tools available in this model, researchers can continue to uncover conserved mechanisms with broad implications for human health, disease control, and agricultural sustainability. Full article
(This article belongs to the Section Neuroscience)
Show Figures

Figure 1

16 pages, 12248 KB  
Article
Plasma Treatment to Remove Titanium Surface Contaminants and Improve Implant Biocompatibility: An In Vitro Study
by Kailing Ho, Takahiko Shiba, Chia-Yu Chen and David M. Kim
Biomimetics 2025, 10(9), 571; https://doi.org/10.3390/biomimetics10090571 - 27 Aug 2025
Viewed by 794
Abstract
Plasma technology is an emerging method for implant surface decontamination and modification. This in vitro study evaluates the effects of plasma treatment on fibroblast and osteoblast adhesion, proliferation, and differentiation on titanium surfaces. Plasma was applied to machined and rough titanium discs, followed [...] Read more.
Plasma technology is an emerging method for implant surface decontamination and modification. This in vitro study evaluates the effects of plasma treatment on fibroblast and osteoblast adhesion, proliferation, and differentiation on titanium surfaces. Plasma was applied to machined and rough titanium discs, followed by surface characterization using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and hydrophilicity testing. SEM imaging, cell viability assays, and immunohistologic staining were used to assess cell behaviour in response to treatment, while RNA sequencing evaluated gene expression related to differentiation. Although no significant architecture changes were observed with plasma treatment, XPS revealed a significant reduction in carbon content (p < 0.001), indicating decreased hydrocarbon contamination. Plasma treatment significantly increased surface hydrophilicity in both machined and rough surfaces (p < 0.0001). SEM and IHC imaging showed greater early-stage cell attachment for both fibroblasts and osteoblasts, though differences diminished after 12 h. RNA sequencing revealed time-dependent gene expression in both cell types, with Apln and Crabp2 significantly upregulated at 6 h in the plasma-treated fibroblast group. In conclusion, plasma treatment reduces hydrocarbon buildup, enhances hydrophilicity, promotes early cell attachment, and upregulates genes linked to angiogenesis and proliferation. Further studies are needed to determine its clinical significance in managing peri-implant disease. Full article
Show Figures

Figure 1

9 pages, 608 KB  
Brief Report
“Big Events” and HIV Transmission Dynamics: Estimating Time Since HIV Infection from Deep Sequencing Data Among Sex Workers and Their Clients in Dnipro, Ukraine
by François Cholette, Nicole Herpai, Leigh M. McClarty, Olga Balakireva, Daryna Pavlova, Anna Lopatenko, Rupert Capiña, Paul Sandstrom, Michael Pickles, Evelyn Forget, Sharmistha Mishra, Marissa L. Becker and on behalf of the Dynamics Study Team
Viruses 2025, 17(8), 1148; https://doi.org/10.3390/v17081148 - 21 Aug 2025
Viewed by 976
Abstract
Background: Major geopolitical events and structural shocks are thought to play a significant role in shaping HIV epidemics by influencing individual behaviours, reshaping social networks, and impacting HIV prevention and treatment programs. Here, we describe individual-level measures of estimated time since HIV infection [...] Read more.
Background: Major geopolitical events and structural shocks are thought to play a significant role in shaping HIV epidemics by influencing individual behaviours, reshaping social networks, and impacting HIV prevention and treatment programs. Here, we describe individual-level measures of estimated time since HIV infection (ETI) from viral next-generation sequencing data among female sex workers and their clients in relation to significant geopolitical events in Ukraine. Methods: The Dynamics Study is a cross-sectional integrated biological and behavioural survey conducted among female sex workers and their clients in Dnipro, Ukraine (December 2017 to March 2018). We were able to successfully sequence a portion of the HIV pol gene on dried blood spot specimens among n = 5/9 clients and n = 5/16 female sex workers who tested positive for HIV (total n = 10/25) using an in-house drug resistance genotyping assay. The “HIV EVO” Intrapatient HIV Evolution web-based tool was used to infer ETI from viral diversity. Results: The median ETIs for female sex workers and their clients were 5.4 years (IQR = 2.9, 6.6) and 6.5 years (IQR = 5.4, 10.8), respectively. Nearly all HIV acquisition events (n = 7/10; 70%) were estimated to have occurred between the Great Recession (2008–2009) and the War in Donbas (May 2014–February 2022). In general, ETI suggests that HIV acquisition occurred earlier among clients (2012 [IQR = 2007, 2013]) compared to sex workers (2013 [IQR = 2012, 2016]). Conclusion: Our findings suggest that most HIV acquisition in this small subset of female sex workers and clients living with HIV occurred during periods of economic decline. Molecular studies on timing of HIV acquisition against timing of major geopolitical events offer a novel way to contextualize how such events may shape transmission patterns. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

14 pages, 764 KB  
Article
Effect of Coridothymus capitatus Essential Oil on Chrysanthemum Aphid Behaviour and Survival: Phytochemical Analysis and Antioxidant Potential
by Paraskevi Yfanti, Andreas Papavlasopoulos, Polyxeni Lazaridou, Dimitra Douma and Marilena E. Lekka
Molecules 2025, 30(16), 3437; https://doi.org/10.3390/molecules30163437 - 20 Aug 2025
Viewed by 1032
Abstract
There is a growing interest in using essential oils with phytoprotectant properties instead of synthetic pesticides to mitigate the risks of insect pesticide resistance, environmental harm, and adverse effects on non-target organisms and human health. This study focused on the effects of Coridothymus [...] Read more.
There is a growing interest in using essential oils with phytoprotectant properties instead of synthetic pesticides to mitigate the risks of insect pesticide resistance, environmental harm, and adverse effects on non-target organisms and human health. This study focused on the effects of Coridothymus capitatus essential oil on host selection, settling behaviour, and survival of Macrosiphoniella sanborni in dual-choice and no-choice tests. The essential oil and methanol extract of C. capitatus were analyzed using Gas Chromatography–Mass Spectrometry (GC-MS) and Liquid Chromatography–Mass Spectrometry (LTQ-LC-MS Orbitrap), respectively. The antioxidant activity was also tested through the radical scavenging assay. The settling inhibitory activity in the dual-choice test increased dose-dependently from 60% to 72% for essential oil concentrations of 0.1 to 0.3% (v/v) for up to 120 min exposure, but decreased thereafter. However, under no-choice conditions, the inhibitory effect after 60 min of exposure was inversely proportional to the concentration but became proportional by the end of the experiment (72 h). After 72 h, both assays produced a mortality rate of 15% to 17%. C. capitatus was classified as a Carvacrol chemotype. Fifteen phenolic compounds were identified in the MeOH extract, and both the extract and essential oil exhibited substantial antioxidant activity. In conclusion, our findings indicate that C. capitatus essential oil affects the behaviour and survival of M. sanborni. Full article
(This article belongs to the Special Issue Chemical Composition and Bioactivities of Essential Oils, 3rd Edition)
Show Figures

Figure 1

17 pages, 6704 KB  
Article
Effects of a Novel Mammalian-Derived Collagen Matrix on Human Articular Cartilage-Derived Chondrocytes from Osteoarthritis Patients
by Mingyuan Wang, Toru Iwahashi, Taisuke Kasuya, Mai Konishi, Katsuyuki Konishi, Miki Kawanaka, Takashi Kanamoto, Hiroyuki Tanaka and Ken Nakata
Int. J. Mol. Sci. 2025, 26(16), 7826; https://doi.org/10.3390/ijms26167826 - 13 Aug 2025
Viewed by 881
Abstract
Osteoarthritis (OA) is the most common joint disorder worldwide. Autologous chondrocyte implantation (ACI) is an established treatment for articular cartilage defects of the knee, but its effectiveness in OA is still under investigation. In this study, we investigated the effects of a newly [...] Read more.
Osteoarthritis (OA) is the most common joint disorder worldwide. Autologous chondrocyte implantation (ACI) is an established treatment for articular cartilage defects of the knee, but its effectiveness in OA is still under investigation. In this study, we investigated the effects of a newly developed mammalian-derived collagen matrix, NC-Col, on the proliferation, migration, adhesion, and gene expression of human articular cartilage-derived chondrocytes from OA patients in vitro, using proliferation assays, wound healing assays, adhesion assays, RT-qPCR, and RNA sequencing, respectively. In addition, the effects of NC-Col were compared with three different commercially available collagen matrices, and the underlying molecular mechanisms through which NC-Col influences these cellular behaviours were explored. Our results showed that NC-Col, used as a coating matrix, enhances cell proliferation, maintains the phenotype, and upregulates Proteoglycan 4 (PRG4) in human articular cartilage-derived chondrocytes. Inhibition of the PI3K-Akt signalling pathway was found to be involved in some of these effects. In conclusion, our findings suggest that NC-Col collagen may offer new strategies for improving therapeutic outcomes in OA, particularly in the context of ACI. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

25 pages, 9193 KB  
Article
Antibiotic-Loaded Bioglass 45S5 for the Treatment and Prevention of Staphylococcus aureus Infections in Orthopaedic Surgery: A Novel Strategy Against Antimicrobial Resistance
by Humera Sarwar, Richard A. Martin, Heather M. Coleman, Aaron Courtenay and Deborah Lowry
Pathogens 2025, 14(8), 760; https://doi.org/10.3390/pathogens14080760 - 1 Aug 2025
Viewed by 1031
Abstract
This study explores the potential of biodegradable Bioglass 45S5 formulations as a dual-function approach for preventing and treating Staphylococcus aureus infections in orthopaedic surgery while addressing the growing concern of antimicrobial resistance (AMR). The research focuses on the development and characterisation of antibiotic-loaded [...] Read more.
This study explores the potential of biodegradable Bioglass 45S5 formulations as a dual-function approach for preventing and treating Staphylococcus aureus infections in orthopaedic surgery while addressing the growing concern of antimicrobial resistance (AMR). The research focuses on the development and characterisation of antibiotic-loaded BG45S5 formulations, assessing parameters such as drug loading efficiency, release kinetics, antimicrobial efficacy, and dissolution behaviour. Key findings indicate that the F2l-BG45S5-T-T-1.5 and F2l-BG45S5-T-V-1.5 formulations demonstrated controlled antibiotic release for up to seven days, with size distributions of D(10): 7.11 ± 0.806 µm, 4.96 ± 0.007 µm; D(50): 25.34 ± 1.730 µm, 25.20.7 ± 0.425 µm; and D(90): 53.7 ± 7.95 µm, 56.10 ± 0.579 µm, respectively. These formulations facilitated hydroxyapatite formation on their surfaces, indicative of osteogenic potential. The antimicrobial assessments revealed zones of inhibition against methicillin-susceptible Staphylococcus aureus (MSSA, ATCC-6538) measuring 20.3 ± 1.44 mm and 24.6 ± 1.32 mm, while for methicillin-resistant Staphylococcus aureus (MRSA, ATCC-43300), the inhibition zones were 21.6 ± 1.89 mm and 22 ± 0.28 mm, respectively. Time-kill assay results showed complete bacterial eradication within eight hours. Additionally, biocompatibility testing via MTT assay confirmed cell viability of >75%. In conclusion, these findings highlight the promise of antibiotic-loaded BG45S5 as a multifunctional biomaterial capable of both combating bone infections and supporting bone regeneration. These promising results suggest that in vivo studies should be undertaken to expedite these materials into clinical applications. Full article
(This article belongs to the Special Issue Antimicrobial Resistance in the Post-COVID Era: A Silent Pandemic)
Show Figures

Figure 1

19 pages, 1599 KB  
Article
Nanopolystyrene (nanoPS) and Sodium Azide (NaN3) Toxicity in Danio rerio: Behavioural and Morphological Evaluation
by Wanda Komorowska, Łukasz Kurach and Agnieszka Dąbrowska
Microplastics 2025, 4(3), 45; https://doi.org/10.3390/microplastics4030045 - 29 Jul 2025
Viewed by 745
Abstract
Nano- (NPs) and microplastics (MPs) are ubiquitous and raising concerns about their toxicity. A popular model for studying acute toxicity is Danio rerio. This study investigated the acute toxicity in FET test of polystyrene nanoparticles (500 nm, nanoPS) at different concentrations (0.01, [...] Read more.
Nano- (NPs) and microplastics (MPs) are ubiquitous and raising concerns about their toxicity. A popular model for studying acute toxicity is Danio rerio. This study investigated the acute toxicity in FET test of polystyrene nanoparticles (500 nm, nanoPS) at different concentrations (0.01, 0.1, and 0.2 mg/mL), with different surface groups (non-modified, amine, carboxyl) and discuss the toxicological contribution of commercially added compounds. Different behavioural tests were used to investigate the neurotoxicity of nanoPS and sodium azide: coiling assay test, light–dark preference test, and colour preference test. Sodium azide and other preservatives are often present in commercially available NP and MP solutions frequently used in microplastic toxicity tests, but their effects on the results remain largely unknown. In the FET test, nanoPS did not increase mortality or affect the heart rate or body length. A higher hatching rate was observed at 48 hpf. Although nanoPS showed no acute toxicity, behavioural tests revealed subtle neurotoxic effects (changes in colour preference), suggesting a potential impact on neurological function. Additionally, sodium azide exhibited toxicity, indicating that additives may confound toxicity assessments. This highlights the need for careful consideration of preservatives in nanoparticle research to avoid misleading conclusions. Full article
Show Figures

Figure 1

20 pages, 377 KB  
Article
Exploring the Relationship Between Brain-Derived Neurotrophic Factor Haplotype Variants, Personality, and Nicotine Usage in Women
by Dominika Borowy, Agnieszka Boroń, Jolanta Chmielowiec, Krzysztof Chmielowiec, Milena Lachowicz, Jolanta Masiak, Anna Grzywacz and Aleksandra Suchanecka
Int. J. Mol. Sci. 2025, 26(15), 7109; https://doi.org/10.3390/ijms26157109 - 23 Jul 2025
Viewed by 948
Abstract
Brain-derived neurotrophic factor (BDNF) is associated with nicotine use behaviours, the intensity of nicotine cravings, and the experience of withdrawal symptoms. Given the established influence of sex, brain-derived neurotrophic factor variants, personality traits and anxiety levels on nicotine use, this study aimed to [...] Read more.
Brain-derived neurotrophic factor (BDNF) is associated with nicotine use behaviours, the intensity of nicotine cravings, and the experience of withdrawal symptoms. Given the established influence of sex, brain-derived neurotrophic factor variants, personality traits and anxiety levels on nicotine use, this study aimed to conduct a comprehensive association analysis of these factors within a cohort of women who use nicotine. The study included 239 female participants: 112 cigarette users (mean age = 29.19, SD = 13.18) and 127 never-smokers (mean age = 28.1, SD =10.65). Study participants were examined using the NEO Five-Factor Inventory and the State–Trait Anxiety Inventory. Genotyping of rs6265, rs10767664, and rs2030323 was performed by real-time PCR using an oligonucleotide assay. We did not observe significant differences in the distribution of either genotype or allele of rs6265, rs10767664 and rs2030323 between groups. However, compared to the never-smokers, cigarette users scored significantly lower on the Agreeableness (5.446 vs. 6.315; p = 0.005767; dCohen’s = 0.363; η2 = 0.032) and the Conscientiousness (5.571 vs. 6.882; p = 0.000012; dCohen’s = 0.591; η2= 0.08) scales. There was significant linkage disequilibrium between all three analysed polymorphic variants—between rs6265 and rs10767664 (D′ = 0.9994962; p < 2.2204 × 10−16), between rs6265 and rs2030323 (D′ = 0.9994935; p < 2.2204 × 10−16) and between rs10767664 and rs20330323 (D′ = 0.9838157; p < 2.2204 × 10−16), but the haplotype association analysis revealed no significant differences. While our study did not reveal an association between the investigated brain-derived neurotrophic factor polymorphisms (rs6265, rs10767664 and rs2030323) and nicotine use, it is essential to acknowledge that nicotine dependence is a complex, multifactorial phenotype. Our study expands the current knowledge of BDNF ’s potential role in addictive behaviours by exploring the understudied variants (rs10767664 and rs2030323), offering a novel contribution to the field and paving the way for future research into their functional relevance in addiction-related phenotypes. The lower Agreeableness and Conscientiousness scores observed in women who use nicotine compared to never-smokers suggest that personality traits play a significant role in nicotine use in women. The observed relationship between personality traits and nicotine use lends support to the self-medication hypothesis, suggesting that some women may initiate or maintain nicotine use as a coping mechanism for stress and negative affect. Public health initiatives targeting women should consider personality and psychological risk factors in addition to biological risks. Full article
(This article belongs to the Special Issue Molecular Insights into Addiction)
26 pages, 24382 KB  
Article
Carboxylated Mesoporous Carbon Nanoparticles as Bicalutamide Carriers with Improved Biopharmaceutical and Chemo-Photothermal Characteristics
by Teodora Popova, Borislav Tzankov, Marta Slavkova, Yordan Yordanov, Denitsa Stefanova, Virginia Tzankova, Diana Tzankova, Ivanka Spassova, Daniela Kovacheva and Christina Voycheva
Molecules 2025, 30(15), 3055; https://doi.org/10.3390/molecules30153055 - 22 Jul 2025
Viewed by 757
Abstract
Prostate cancer is a serious, life-threatening condition among men, usually requiring long-term chemotherapy. Due to its high efficacy, bicalutamide, a non-steroidal anti-androgen, has widespread use. However, its poor water solubility, low oral bioavailability, and nonspecific systemic exposure limit its application. To overcome these [...] Read more.
Prostate cancer is a serious, life-threatening condition among men, usually requiring long-term chemotherapy. Due to its high efficacy, bicalutamide, a non-steroidal anti-androgen, has widespread use. However, its poor water solubility, low oral bioavailability, and nonspecific systemic exposure limit its application. To overcome these obstacles, our study explored the potential of non-carboxylated and carboxylated mesoporous carbon nanoparticles (MCN) as advanced drug carriers for bicalutamide (MCN/B and MCN-COOH/B). The physicochemical properties and release behaviour were thoroughly characterized. Functionalization with carboxylic groups significantly improved wettability, dispersion stability, as well as loading efficiency due to enhanced hydrogen bonding and π–π stacking interactions. Moreover, all systems exhibited sustained and near-infrared (NIR) triggered drug release with reduced burst-effect, compared to the release of free bicalutamide. Higher particle size and stronger drug–carrier interactions determined a zero-order kinetics and notably slower release rate of MCN-COOH/B compared to non-functionalized MCN. Cytotoxicity assays on LNCaP prostate cancer cells demonstrated that both MCN/B and MCN-COOH/B possessed comparable antiproliferative activity as free bicalutamide, where MCN-COOH/B exhibited superior efficacy, especially under NIR exposure. These findings suggest that MCN-COOH nanoparticles could be considered as a prospective platform for controlled, NIR-accelerated delivery of bicalutamide in prostate cancer treatment. Full article
Show Figures

Graphical abstract

Back to TopTop