Autophagy-Mediated Cellular Remodeling during Terminal Differentiation of Keratinocytes in the Epidermis and Skin Appendages
Abstract
:1. Introduction
2. Evidence for Autophagy during Keratinocyte Differentiation
2.1. Detection of Autophagosomes in Differentiated Keratinocytes
2.2. Alteration of Keratinocyte Differentiation upon Suppression of Essential Autophagy-Related Genes
3. Autophagy Contributes to Intracellular Remodeling during Keratinocyte Differentiation
3.1. The Terminal Differentiation of Keratinocytes Leads to the Accumulation of Either Cytoskeletal Proteins or Lipids and the Removal of Many Other Cell Components
3.2. Autophagic Degradation of Cell Organelles during Keratinocyte Differentiation
3.2.1. Autophagic Degradation of the Nucleus (Nucleophagy) in Keratinocytes
3.2.2. Autophagic Degradation of Mitochondria (Mitophagy) in Keratinocytes
3.2.3. Autophagic Degradation of Other Organelles in Keratinocytes
3.3. Autophagic Degradation of Cytoplasmic Proteins in Keratinocytes
4. Non-Autophagic Degradation Mechanisms Are Active besides Autophagy in Differentiated Keratinocytes
4.1. Proteasomal Degradation of Proteins in Keratinocytes
4.2. Enzymatic Degradation of Proteins and DNA in Differentiated Keratinocytes
4.3. Degradative Enzymes Released from Lysosomes
5. Conclusions: Degradation and Synthesis of Proteins Are Complementary Processes Required for Cellular Remodeling during Terminal Differentiation of Keratinocytes
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hsu, Y.C.; Fuchs, E. Building and maintaining the skin. Cold Spring Harb. Perspect. Biol. 2022, 14, a040840. [Google Scholar] [CrossRef] [PubMed]
- Watt, F.M. Terminal differentiation of epidermal keratinocytes. Curr. Opin. Cell Biol. 1989, 1, 1107–1115. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, E. Epidermal differentiation: The bare essentials. J. Cell Biol. 1990, 111, 2807–2814. [Google Scholar] [CrossRef] [PubMed]
- Wertz, P. Epidermal lamellar granules. Skin Pharmacol. Physiol. 2018, 31, 262–268. [Google Scholar] [CrossRef] [PubMed]
- den Hollander, L.; Han, H.; de Winter, M.; Svensson, L.; Masich, S.; Daneholt, B.; Norlén, L. Skin lamellar bodies are not discrete vesicles but part of a tubuloreticular network. Acta Derm. Venereol. 2016, 96, 303–308. [Google Scholar] [CrossRef]
- Raymond, A.A.; Gonzalez de Peredo, A.; Stella, A.; Ishida-Yamamoto, A.; Bouyssie, D.; Serre, G.; Monsarrat, B.; Simon, M. Lamellar bodies of human epidermis: Proteomics characterization by high throughput mass spectrometry and possible involvement of CLIP-170 in their trafficking/secretion. Mol. Cell. Proteom. 2008, 7, 2151–2175. [Google Scholar] [CrossRef]
- Candi, E.; Schmidt, R.; Melino, G. The cornified envelope: A model of cell death in the skin. Nat. Rev. Mol. Cell Biol. 2005, 6, 328–340. [Google Scholar] [CrossRef]
- Matsui, T.; Amagai, M. Dissecting the formation, structure and barrier function of the stratum corneum. Int. Immunol. 2015, 27, 269–280. [Google Scholar] [CrossRef]
- Harland, D.P.; Plowman, J.E. Development of hair fibres. Adv. Exp. Med. Biol. 2018, 1054, 109–154. [Google Scholar] [CrossRef]
- Matsui, T.; Kadono-Maekubo, N.; Suzuki, Y.; Furuichi, Y.; Shiraga, K.; Sasaki, H.; Ishida, A.; Takahashi, S.; Okada, T.; Toyooka, K.; et al. A unique mode of keratinocyte death requires intracellular acidification. Proc. Natl. Acad. Sci. USA 2021, 118, e2020722118. [Google Scholar] [CrossRef]
- Matsui, T. Epidermal barrier development via corneoptosis: A unique form of cell death in stratum granulosum cells. J. Dev. Biol. 2023, 11, 43. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.A.; Harland, D.P.; Jarrold, B.B.; Connolly, J.E.; Davis, M.G. The walking dead: Sequential nuclear and organelle destruction during hair development. Br. J. Dermatol. 2018, 178, 1341–1352. [Google Scholar] [CrossRef]
- Schneider, M.R.; Paus, R. Sebocytes, multifaceted epithelial cells: Lipid production and holocrine secretion. Int. J. Biochem. Cell Biol. 2010, 42, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Fischer, H.; Fumicz, J.; Rossiter, H.; Napirei, M.; Buchberger, M.; Tschachler, E.; Eckhart, L. Holocrine secretion of sebum is a unique DNase2-dependent mode of programmed cell death. J. Investig. Dermatol. 2017, 137, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Perrin, C.; Langbein, L.; Schweizer, J. Expression of hair keratins in the adult nail unit: An immunohistochemical analysis of the onychogenesis in the proximal nail fold, matrix and nail bed. Br. J. Dermatol. 2004, 151, 362–371. [Google Scholar] [CrossRef] [PubMed]
- McLean, W.H.; Moore, C.B. Keratin disorders: From gene to therapy. Hum. Mol. Genet. 2011, 20, R189–R197. [Google Scholar] [CrossRef] [PubMed]
- Ortner-Tobider, D.; Trafoier, T.; Moosbrugger-Martinz, V.; Tollinger, S.; Gruber, R.; Schmuth, M. Keratin variants in monilethrix. Br. J. Dermatol. 2024, ljae340. [Google Scholar] [CrossRef]
- Sun, T.T.; Green, H. Keratin filaments of cultured human epidermal cells. Formation of intermolecular disulfide bonds during terminal differentiation. J. Biol. Chem. 1978, 253, 2053–2060. [Google Scholar] [CrossRef]
- Henry, J.; Toulza, E.; Hsu, C.Y.; Pellerin, L.; Balica, S.; Mazereeuw-Hautier, J.; Paul, C.; Serre, G.; Jonca, N.; Simon, M. Update on the epidermal differentiation complex. Front. Biosci. (Landmark Ed.) 2012, 17, 1517–1532. [Google Scholar] [CrossRef]
- Peskoller, M.; Bhosale, A.; Göbel, K.; Löhr, J.; Miceli, S.; Perot, S.; Persa, O.; Rübsam, M.; Shah, J.; Zhang, H.; et al. How to build and regenerate a functional skin barrier: The adhesive and cell shaping travels of a keratinocyte. J. Investig. Dermatol. 2022, 142, 1020–1025. [Google Scholar] [CrossRef]
- Yokouchi, M.; Kubo, A. Maintenance of tight junction barrier integrity in cell turnover and skin diseases. Exp. Dermatol. 2018, 27, 876–883. [Google Scholar] [CrossRef] [PubMed]
- Atsugi, T.; Yokouchi, M.; Hirano, T.; Hirabayashi, A.; Nagai, T.; Ohyama, M.; Abe, T.; Kaneko, M.; Zouboulis, C.C.; Amagai, M.; et al. Holocrine secretion occurs outside the tight junction barrier in multicellular glands: Lessons from claudin-1-deficient mice. J. Investig. Dermatol. 2020, 140, 298–308.e5. [Google Scholar] [CrossRef] [PubMed]
- Norlén, L.; Lundborg, M.; Wennberg, C.; Narangifard, A.; Daneholt, B. The skin’s barrier: A cryo-EM based overview of its architecture and stepwise Formation. J. Investig. Dermatol. 2022, 142, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Méchin, M.C.; Simon, M. Deimination in epidermal barrier and hair formation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2023, 378, 20220245. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.Y.; Li, S.T.; Lin, S.C.; Kao, C.H.; Hong, C.H.; Lee, C.H.; Yang, L.T. Gasdermin A is required for epidermal cornification during skin barrier regeneration and in an atopic dermatitis-like model. J. Investig. Dermatol. 2023, 143, 1735–1745.e11. [Google Scholar] [CrossRef]
- Yamamoto, H.; Zhang, S.; Mizushima, N. Autophagy genes in biology and disease. Nat. Rev. Genet. 2023, 24, 382–400. [Google Scholar] [CrossRef]
- Kaushik, S.; Cuervo, A.M. The coming of age of chaperone-mediated autophagy. Nat. Rev. Mol. Cell Biol. 2018, 19, 365–381. [Google Scholar] [CrossRef]
- Kuchitsu, Y.; Taguchi, T. Lysosomal microautophagy: An emerging dimension in mammalian autophagy. Trends Cell Biol. 2024, 34, 606–616. [Google Scholar] [CrossRef]
- Eckhart, L.; Tschachler, E.; Gruber, F. Autophagic control of skin aging. Front. Cell Dev. Biol. 2019, 7, 143. [Google Scholar] [CrossRef]
- Liu, C.; Gu, L.; Ding, J.; Meng, Q.; Li, N.; Dai, G.; Li, Q.; Wu, X. Autophagy in skin barrier and immune-related skin diseases. J. Dermatol. 2021, 48, 1827–1837. [Google Scholar] [CrossRef]
- Van Hove, L.; Toniolo, A.; Ghiasloo, M.; Lecomte, K.; Boone, F.; Ciers, M.; Raaijmakers, K.; Vandamme, N.; Roels, J.; Maschalidi, S.; et al. Autophagy critically controls skin inflammation and apoptosis-induced stem cell activation. Autophagy 2023, 19, 2958–2971. [Google Scholar] [CrossRef] [PubMed]
- Mizushima, N.; Komatsu, M. Autophagy: Renovation of cells and tissues. Cell 2011, 147, 728–741. [Google Scholar] [CrossRef] [PubMed]
- Morishita, H.; Mizushima, N. Diverse cellular roles of autophagy. Annu. Rev. Cell Dev. Biol. 2019, 35, 453–475. [Google Scholar] [CrossRef] [PubMed]
- Klionsky, D.J.; Petroni, G.; Amaravadi, R.K.; Baehrecke, E.H.; Ballabio, A.; Boya, P.; Bravo-San Pedro, J.M.; Cadwell, K.; Cecconi, F.; Choi, A.M.K.; et al. Autophagy in major human diseases. EMBO J. 2021, 40, e108863. [Google Scholar] [CrossRef]
- Akinduro, O.; Sully, K.; Patel, A.; Robinson, D.J.; Chikh, A.; McPhail, G.; Braun, K.M.; Philpott, M.P.; Harwood, C.A.; Byrne, C.; et al. Constitutive autophagy and nucleophagy during epidermal differentiation. J. Investig. Dermatol. 2016, 136, 1460–1470. [Google Scholar] [CrossRef]
- Soma-Nagae, T.; Nada, S.; Kitagawa, M.; Takahashi, Y.; Mori, S.; Oneyama, C.; Okada, M. The lysosomal signaling anchor p18/LAMTOR1 controls epidermal development by regulating lysosome-mediated catabolic processes. J. Cell Sci. 2013, 126, 3575–3584. [Google Scholar] [CrossRef]
- Cau, L.; Takahara, H.; Thompson, P.R.; Serre, G.; Méchin, M.C.; Simon, M. Peptidylarginine deiminase inhibitor Cl-amidine attenuates cornification and interferes with the regulation of autophagy in reconstructed human epidermis. J. Investig. Dermatol. 2019, 139, 1889–1897.e4. [Google Scholar] [CrossRef]
- Orwin, D.F. Acid phosphatase distribution in the wool follicle. I. Cortex and fiber cuticle. J. Ultrastruct. Res. 1976, 55, 312–324. [Google Scholar] [CrossRef]
- Parodi, C.; Hardman, J.A.; Allavena, G.; Marotta, R.; Catelani, T.; Bertolini, M.; Paus, R.; Grimaldi, B. Autophagy is essential for maintaining the growth of a human (mini-)organ: Evidence from scalp hair follicle organ culture. PLoS Biol. 2018, 16, e2002864. [Google Scholar] [CrossRef]
- Mizushima, N.; Yamamoto, A.; Matsui, M.; Yoshimori, T.; Ohsumi, Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell. 2004, 15, 1101–1111. [Google Scholar] [CrossRef]
- Rossiter, H.; König, U.; Barresi, C.; Buchberger, M.; Ghannadan, M.; Zhang, C.-F.; Mlitz, V.; Gmeiner, R.; Sukseree, S.; Födinger, D.; et al. Epidermal keratinocytes form a functional skin barrier in the absence of Atg7 dependent autophagy. J. Dermatol. Sci. 2013, 71, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Koenig, U.; Robenek, H.; Barresi, C.; Brandstetter, M.; Resch, G.P.; Gröger, M.; Pap, T.; Hartmann, C. Cell death induced autophagy contributes to terminal differentiation of skin and skin appendages. Autophagy 2020, 16, 932–945. [Google Scholar] [CrossRef] [PubMed]
- Rossiter, H.; Stübiger, G.; Gröger, M.; König, U.; Gruber, F.; Sukseree, S.; Mlitz, V.; Buchberger, M.; Oskolkova, O.; Bochkov, V.; et al. Inactivation of autophagy leads to changes in sebaceous gland morphology and function. Exp. Dermatol. 2018, 27, 1142–1151. [Google Scholar] [CrossRef] [PubMed]
- Rossiter, H.; Copic, D.; Direder, M.; Gruber, F.; Zoratto, S.; Marchetti-Deschmann, M.; Kremslehner, C.; Sochorová, M.; Nagelreiter, I.M.; Mlitz, V.; et al. Autophagy protects murine preputial glands against premature aging, and controls their sebum phospholipid and pheromone profile. Autophagy 2022, 18, 1005–1019. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, K.; Sukseree, S.; Zhong, S.; Phinney, B.S.; Mlitz, V.; Buchberger, M.; Narzt, M.S.; Gruber, F.; Tschachler, E.; Rice, R.H.; et al. Cornification of nail keratinocytes requires autophagy for bulk degradation of intracellular proteins while sparing components of the cytoskeleton. Apoptosis 2019, 24, 62–73. [Google Scholar] [CrossRef]
- Liu, W.; Li, K.; Wang, G.; Yang, L.; Qu, Q.; Fan, Z.; Sun, Y.; Huang, J.; Miao, Y.; Hu, Z. Impairment of autophagy may be associated with follicular miniaturization in androgenetic alopecia by inducing premature catagen. J. Dermatol. 2021, 48, 289–300. [Google Scholar] [CrossRef]
- Sukseree, S.; Bergmann, S.; Pajdzik, K.; Sipos, W.; Gruber, F.; Tschachler, E.; Eckhart, L. Suppression of epithelial autophagy compromises the homeostasis of sweat glands during aging. J. Investig. Dermatol. 2018, 138, 2061–2063. [Google Scholar] [CrossRef]
- Sukseree, S.; Bergmann, S.; Pajdzik, K.; Tschachler, E.; Eckhart, L. Suppression of autophagy perturbs turnover of sequestosome-1/p62 in Merkel cells but not in keratinocytes. J. Dermatol. Sci. 2018, 90, 209–211. [Google Scholar] [CrossRef]
- Haruna, K.; Suga, Y.; Muramatsu, S.; Taneda, K.; Mizuno, Y.; Ikeda, S.; Ueno, T.; Kominami, E.; Tanida, I.; Tanida, I.; et al. Differentiation-specific expression and localization of an autophagosomal marker protein (LC3) in human epidermal keratinocytes. J. Dermatol. Sci. 2008, 52, 213–215. [Google Scholar] [CrossRef]
- Kuma, A.; Komatsu, M.; Mizushima, N. Autophagy-monitoring and autophagy-deficient mice. Autophagy 2017, 13, 1619–1628. [Google Scholar] [CrossRef]
- Kuma, A.; Hatano, M.; Matsui, M.; Yamamoto, A.; Nakaya, H.; Yoshimori, T.; Ohsumi, Y.; Tokuhisa, T.; Mizushima, N. The role of autophagy during the early neonatal starvation period. Nature 2004, 432, 1032–1036. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, M.; Waguri, S.; Ueno, T.; Iwata, J.; Murata, S.; Tanida, I.; Ezaki, J.; Mizushima, N.; Ohsumi, Y.; Uchiyama, Y.; et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol. 2005, 169, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Yoshihara, N.; Ueno, T.; Takagi, A.; Oliva Trejo, J.A.; Haruna, K.; Suga, Y.; Komatsu, M.; Tanaka, K.; Ikeda, S. The significant role of autophagy in the granular layer in normal skin differentiation and hair growth. Arch. Dermatol. Res. 2015, 307, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Tarutani, M.; Itami, S.; Okabe, M.; Ikawa, M.; Tezuka, T.; Yoshikawa, K.; Kinoshita, T.; Takeda, J. Tissue-specific knockout of the mouse Pig-a gene reveals important roles for GPI-anchored proteins in skin development. Proc. Natl. Acad. Sci. USA 1997, 94, 7400–7405. [Google Scholar] [CrossRef] [PubMed]
- Turksen, K.; Kupper, T.; Degenstein, L.; Williams, I.; Fuchs, E. Interleukin 6: Insights to its function in skin by overexpression in transgenic mice. Proc. Natl. Acad. Sci. USA 1992, 89, 5068–5072. [Google Scholar] [CrossRef]
- Sukseree, S.; Rossiter, H.; Mildner, M.; Pammer, J.; Buchberger, M.; Gruber, F.; Watanapokasin, R.; Tschachler, E.; Eckhart, L. Targeted deletion of Atg5 reveals differential roles of autophagy in keratin K5-expressing epithelia. Biochem. Biophys. Res. Commun. 2013, 430, 689–694. [Google Scholar] [CrossRef]
- Qiang, L.; Yang, S.; Cui, Y.H.; He, Y.Y. Keratinocyte autophagy enables the activation of keratinocytes and fibroblasts and facilitates wound healing. Autophagy 2021, 17, 2128–2143. [Google Scholar] [CrossRef]
- Xiao, T.; Liang, J.; Li, M.; Guo, Y.; Chen, S.; Ke, Y.; Gao, X.; Gu, H.; Chen, X. ATG5-mediated keratinocyte ferroptosis promotes M1 polarization of macrophages to aggravate UVB-induced skin inflammation. J. Photochem. Photobiol. B Biol. 2024, 257, 112948. [Google Scholar] [CrossRef]
- Noguchi, S.; Honda, S.; Saitoh, T.; Matsumura, H.; Nishimura, E.; Akira, S.; Shimizu, S. Beclin 1 regulates recycling endosome and is required for skin development in mice. Commun. Biol. 2019, 2, 37. [Google Scholar] [CrossRef]
- Sukseree, S.; Mildner, M.; Rossiter, H.; Pammer, J.; Zhang, C.F.; Watanapokasin, R.; Tschachler, E.; Eckhart, L. Autophagy in the thymic epithelium is dispensable for the development of self-tolerance in a novel mouse model. PLoS ONE 2012, 7, e38933. [Google Scholar] [CrossRef]
- Qiang, L.; Sample, A.; Shea, C.R.; Soltani, K.; Macleod, K.F.; He, Y.Y. Autophagy gene ATG7 regulates ultraviolet radiation-induced inflammation and skin tumorigenesis. Autophagy 2017, 13, 2086–2103. [Google Scholar] [CrossRef] [PubMed]
- Ida-Yonemochi, H.; Otsu, K.; Irié, T.; Ohazama, A.; Harada, H.; Ohshima, H. Loss of autophagy disrupts stemness of ameloblast-lineage cells in aging. J. Dent. Res. 2024, 103, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Huyghe, J.; Priem, D.; Van Hove, L.; Gilbert, B.; Fritsch, J.; Uchiyama, Y.; Hoste, E.; van Loo, G.; Bertrand, M.J.M. ATG9A prevents TNF cytotoxicity by an unconventional lysosomal targeting pathway. Science 2022, 378, 1201–1207. [Google Scholar] [CrossRef] [PubMed]
- Medzhitov, R.; Schneider, D.S.; Soares, M.P. Disease tolerance as a defense strategy. Science 2012, 335, 936–941. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.H.Y.; Hansen, M.; Kumsta, C. Molecular mechanisms of autophagy decline during aging. Cells 2024, 13, 1364. [Google Scholar] [CrossRef]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. Hallmarks of aging: An expanding universe. Cell 2023, 186, 243–278. [Google Scholar] [CrossRef]
- Yang, Y.; Kremslehner, C.; Derdak, S.; Bauer, C.; Jelleschitz, S.; Nagelreiter, I.M.; Rossiter, H.; Narzt, M.S.; Gruber, F.; Sochorová, M. Consequences of autophagy deletion on the age-related changes in the epidermal lipidome of mice. Int. J. Mol. Sci. 2022, 23, 11110. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, C.F.; Rossiter, H.; Eckhart, L.; König, U.; Karner, S.; Mildner, M.; Bochkov, V.N.; Tschachler, E.; Gruber, F. Autophagy is induced by UVA and promotes removal of oxidized phospholipids and protein aggregates in epidermal keratinocytes. J. Investig. Dermatol. 2013, 133, 1629–1637. [Google Scholar] [CrossRef]
- Qiang, L.; Wu, C.; Ming, M.; Viollet, B.; He, Y.Y. Autophagy controls p38 activation to promote cell survival under genotoxic stress. J. Biol. Chem. 2013, 288, 1603–1611. [Google Scholar] [CrossRef]
- Song, X.; Narzt, M.S.; Nagelreiter, I.M.; Hohensinner, P.; Terlecki-Zaniewicz, L.; Tschachler, E.; Grillari, J.; Gruber, F. Autophagy deficient keratinocytes display increased DNA damage, senescence and aberrant lipid composition after oxidative stress in vitro and in vivo. Redox Biol. 2017, 11, 219–230. [Google Scholar] [CrossRef]
- Megyeri, K.; Orosz, L.; Bolla, S.; Erdei, L.; Rázga, Z.; Seprényi, G.; Urbán, E.; Szabó, K.; Kemény, L. Propionibacterium acnes induces autophagy in keratinocytes: Involvement of multiple mechanisms. J. Investig. Dermatol. 2018, 138, 750–759. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhou, H.; Zheng, H.; Zhou, X.; Shen, G.; Teng, X.; Liu, X.; Zhang, J.; Wei, X.; Hu, Z.; et al. Autophagy-based unconventional secretion of HMGB1 by keratinocytes plays a pivotal role in psoriatic skin inflammation. Autophagy 2021, 17, 529–552. [Google Scholar] [CrossRef] [PubMed]
- Pino-Belmar, C.; Aguilar, R.; Valenzuela-Nieto, G.E.; Cavieres, V.A.; Cerda-Troncoso, C.; Navarrete, V.C.; Salazar, P.; Burgos, P.V.; Otth, C.; Bustamante, H.A. An intrinsic host defense against HSV-1 relies on the activation of xenophagy with the active clearance of autophagic receptors. Cells 2024, 13, 1256. [Google Scholar] [CrossRef] [PubMed]
- Barresi, C.; Rossiter, H.; Buchberger, M.; Pammer, J.; Sukseree, S.; Sibilia, M.; Tschachler, E.; Eckhart, L. Inactivation of autophagy in keratinocytes reduces tumor growth in mouse models of epithelial skin cancer. Cells 2022, 11, 3691. [Google Scholar] [CrossRef] [PubMed]
- Ikutama, R.; Peng, G.; Tsukamoto, S.; Umehara, Y.; Trujillo-Paez, J.V.; Yue, H.; Nguyen, H.L.T.; Takahashi, M.; Kageyama, S.; Komatsu, M.; et al. Cathelicidin LL-37 activates human keratinocyte autophagy through the P2X7, mechanistic target of rapamycin, and MAPK pathways. J. Investig. Dermatol. 2023, 143, 751–761.e7. [Google Scholar] [CrossRef]
- Lousada, M.B.; Edelkamp, J.; Lachnit, T.; Fehrholz, M.; Pastar, I.; Jimenez, F.; Erdmann, H.; Bosch, T.C.G.; Paus, R. Spatial distribution and functional impact of human scalp hair Follicle microbiota. J. Investig. Dermatol. 2024, 144, 1353–1367.e15. [Google Scholar] [CrossRef]
- Vietri Rudan, M.; Watt, F.M. Mammalian epidermis: A compendium of lipid functionality. Front. Physiol. 2022, 12, 804824. [Google Scholar] [CrossRef]
- Morioka, K.; Takano-Ohmuro, H.; Sameshima, M.; Ueno, T.; Kominami, E.; Sakuraba, H.; Ihara, S. Extinction of organelles in differentiating epidermis. Acta Histochem. Cytochem. 1999, 32, 465–476. [Google Scholar] [CrossRef]
- Simpson, C.L.; Patel, D.M.; Green, K.J. Deconstructing the skin: Cytoarchitectural determinants of epidermal morphogenesis. Nat. Rev. Mol. Cell Biol. 2011, 12, 565–580. [Google Scholar] [CrossRef]
- Evrard, C.; Lambert de Rouvroit, C.; Poumay, Y. Epidermal hyaluronan in barrier alteration-related disease. Cells 2021, 10, 3096. [Google Scholar] [CrossRef]
- Schmuth, M.; Eckmann, S.; Moosbrugger-Martinz, V.; Ortner-Tobider, D.; Blunder, S.; Trafoier, T.; Gruber, R.; Elias, P.M. Skin barrier in atopic dermatitis. J. Investig. Dermatol. 2024, 144, 989–1000.e1. [Google Scholar] [CrossRef] [PubMed]
- Simpson, C.L.; Tokito, M.K.; Uppala, R.; Sarkar, M.K.; Gudjonsson, J.E.; Holzbaur, E.L.F. NIX initiates mitochondrial fragmentation via DRP1 to drive epidermal differentiation. Cell Rep. 2021, 34, 108689. [Google Scholar] [CrossRef] [PubMed]
- Petukhova, L.; Patel, A.V.; Rigo, R.K.; Bian, L.; Verbitsky, M.; Sanna-Cherchi, S.; Erjavec, S.O.; Abdelaziz, A.R.; Cerise, J.E.; Jabbari, A.; et al. Integrative analysis of rare copy number variants and gene expression data in alopecia areata implicates an aetiological role for autophagy. Exp. Dermatol. 2020, 29, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Wu, X.; Yang, Y.; Wu, Y.; Xiang, L.; Zhang, C. The multifaceted role of autophagy in skin autoimmune disorders: A guardian or culprit? Front. Immunol. 2024, 15, 1343987. [Google Scholar] [CrossRef]
- Klapan, K.; Frangež, Ž.; Markov, N.; Yousefi, S.; Simon, D.; Simon, H.U. Evidence for lysosomal dysfunction within the epidermis in psoriasis and atopic dermatitis. J. Investig. Dermatol. 2021, 141, 2838–2848.e4. [Google Scholar] [CrossRef]
- Klapan, K.; Simon, D.; Karaulov, A.; Gomzikova, M.; Rizvanov, A.; Yousefi, S.; Simon, H.U. Autophagy and skin diseases. Front. Pharmacol. 2022, 13, 844756. [Google Scholar] [CrossRef]
- Sukseree, S.; Karim, N.; Jaeger, K.; Zhong, S.; Rossiter, H.; Nagelreiter, I.M.; Gruber, F.; Tschachler, E.; Rice, R.H.; Eckhart, L. Autophagy controls the protein composition of hair shafts. J. Investig. Dermatol. 2024, 144, 170–173.e4. [Google Scholar] [CrossRef]
- Kirkin, V.; Rogov, V.V. A diversity of selective autophagy receptors determines the specificity of the autophagy pathway. Mol. Cell 2019, 76, 268–285. [Google Scholar] [CrossRef]
- Ipponjima, S.; Umino, Y.; Nagayama, M.; Denda, M. Live imaging of alterations in cellular morphology and organelles during cornification using an epidermal equivalent model. Sci. Rep. 2020, 10, 5515. [Google Scholar] [CrossRef]
- Cardoso, J.C.; Veraitch, O.; Gianotti, R.; Ferrara, G.; Tomasini, C.F.; Singh, M.; Zalaudek, I.; Stefanato, C.M. ‘Hints’ in the horn: Diagnostic clues in the stratum corneum. J. Cutan. Pathol. 2017, 44, 256–278. [Google Scholar] [CrossRef]
- Orwin, D.F. Acid phosphatase distribution in the wool follicle. III. Fate of organelles in keratinized cells. J. Ultrastruct. Res. 1976, 55, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Fischer, H.; Szabo, S.; Scherz, J.; Jaeger, K.; Rossiter, H.; Buchberger, M.; Ghannadan, M.; Hermann, M.; Theussl, H.C.; Tobin, D.J.; et al. Essential role of the keratinocyte-specific endonuclease DNase1L2 in the removal of nuclear DNA from hair and nails. J. Investig. Dermatol. 2011, 131, 1208–1215. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Su, P.; Li, Y.; Hoover, A.; Hu, S.; King, S.A.; Zhao, J.; Guan, J.L.; Chen, S.Y.; Zhao, Y.; et al. VAMP2 controls murine epidermal differentiation and carcinogenesis by regulation of nucleophagy. Dev. Cell 2024, 59, 2005–2016.e4. [Google Scholar] [CrossRef] [PubMed]
- Rogerson, C.; Wotherspoon, D.J.; Tommasi, C.; Button, R.W.; O’Shaughnessy, R.F.L. Akt1-associated actomyosin remodelling is required for nuclear lamina dispersal and nuclear shrinkage in epidermal terminal differentiation. Cell Death Differ. 2021, 28, 1849–1864. [Google Scholar] [CrossRef] [PubMed]
- Moriyama, M.; Moriyama, H.; Uda, J.; Matsuyama, A.; Osawa, M.; Hayakawa, T. BNIP3 plays crucial roles in the differentiation and maintenance of epidermal keratinocytes. J. Investig. Dermatol. 2014, 134, 1627–1635. [Google Scholar] [CrossRef]
- Chevalier, F.P.; Rorteau, J.; Ferraro, S.; Martin, L.S.; Gonzalez-Torres, A.; Berthier, A.; El Kholti, N.; Lamartine, J. MiR-30a-5p alters epidermal terminal differentiation during aging by regulating BNIP3L/NIX-dependent mitophagy. Cells 2022, 11, 836. [Google Scholar] [CrossRef]
- Prashar, A.; Bussi, C.; Fearns, A.; Capurro, M.I.; Gao, X.; Sesaki, H.; Gutierrez, M.G.; Jones, N.L. Lysosomes drive the piecemeal removal of mitochondrial inner membrane. Nature 2024, 632, 1110–1117. [Google Scholar] [CrossRef]
- Lemasters, J.J.; Ramshesh, V.K.; Lovelace, G.L.; Lim, J.; Wright, G.D.; Harland, D.; Dawson, T.L., Jr. Compartmentation of mitochondrial and oxidative metabolism in growing hair follicles: A ring of fire. J. Investig. Dermatol. 2017, 137, 1434–1444. [Google Scholar] [CrossRef]
- Kimura, T.; Mandell, M.; Deretic, V. Precision autophagy directed by receptor regulators—Emerging examples within the TRIM family. J. Cell Sci. 2016, 129, 881–891. [Google Scholar] [CrossRef]
- Nthiga, T.M.; Shrestha, B.K.; Bruun, J.A.; Larsen, K.B.; Lamark, T.; Johansen, T. Regulation of Golgi turnover by CALCOCO1-mediated selective autophagy. J. Cell Biol. 2021, 220, e202006128. [Google Scholar] [CrossRef]
- Chino, H.; Hatta, T.; Natsume, T.; Mizushima, N. Intrinsically disordered protein TEX264 mediates ER-phagy. Mol. Cell 2019, 74, 909–921.e6. [Google Scholar] [CrossRef] [PubMed]
- Grumati, P.; Morozzi, G.; Hölper, S.; Mari, M.; Harwardt, M.I.; Yan, R.; Müller, S.; Reggiori, F.; Heilemann, M.; Dikic, I. Full length RTN3 regulates turnover of tubular endoplasmic reticulum via selective autophagy. eLife 2017, 6, e25555. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Xiao, Y.; Chai, P.; Zheng, P.; Teng, J.; Chen, J. ATL3 is a tubular ER-phagy receptor for GABARAP-mediated selective autophagy. Curr. Biol. 2019, 29, 846–855.e6. [Google Scholar] [CrossRef] [PubMed]
- Hoyer, M.J.; Swarup, S.; Harper, J.W. Mechanisms controlling selective elimination of damaged lysosomes. Curr. Opin. Physiol. 2022, 29, 100590. [Google Scholar] [CrossRef]
- Gahlot, P.; Kravic, B.; Rota, G.; van den Boom, J.; Levantovsky, S.; Schulze, N.; Maspero, E.; Polo, S.; Behrends, C.; Meyer, H. Lysosomal damage sensing and lysophagy initiation by SPG20-ITCH. Mol. Cell 2024, 84, 1556–1569.e10. [Google Scholar] [CrossRef]
- Waite, K.A.; Burris, A.; Vontz, G.; Lang, A.; Roelofs, J. Proteaphagy is specifically regulated and requires factors dispensable for general autophagy. J. Biol. Chem. 2022, 298, 101494. [Google Scholar] [CrossRef]
- Date, Y.; Matsuura, A.; Itakura, E. Disruption of actin dynamics induces autophagy of the eukaryotic chaperonin TRiC/CCT. Cell Death Discov. 2022, 8, 37. [Google Scholar] [CrossRef]
- Beese, C.J.; Brynjólfsdóttir, S.H.; Frankel, L.B. Selective autophagy of the protein homeostasis machinery: Ribophagy, proteaphagy and ER-phagy. Front. Cell Dev. Biol. 2020, 7, 373. [Google Scholar] [CrossRef]
- Ciechanover, A. Intracellular protein degradation: From a vague idea, through the lysosome and the ubiquitin-proteasome system, and onto human diseases and drug targeting (Nobel lecture). Angew. Chem. Int. Ed. Engl. 2005, 44, 5944–5967. [Google Scholar] [CrossRef]
- Liu, Y.; Cui, J.; Zhang, J.; Chen, Z.; Song, Z.; Bao, D.; Xiang, R.; Li, D.; Yang, Y. Excess KLHL24 impairs skin wound healing through the degradation of vimentin. J. Investig. Dermatol. 2023, 143, 1289–1298.e15. [Google Scholar] [CrossRef]
- Vermeer, M.C.S.C.; Silljé, H.H.W.; Pas, H.H.; Andrei, D.; van der Meer, P.; Bolling, M.C. Keratin 14 degradation and aging in epidermolysis bullosa simplex due to KLHL24 gain-of-function variants. J. Investig. Dermatol. 2022, 142, 2271–2274.e6. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Zhao, Q.; Song, Z.; Chen, Z.; Zeng, X.; Wang, C.; Lin, Z.; Wang, F.; Yang, Y. KLHL24-mediated hair follicle stem cells structural disruption causes alopecia. J. Investig. Dermatol. 2022, 142, 2079–2087.e8. [Google Scholar] [CrossRef] [PubMed]
- Büchau, F.; Munz, C.; Has, C.; Lehmann, R.; Magin, T.M. KLHL16 degrades epidermal keratins. J. Investig. Dermatol. 2018, 138, 1871–1873. [Google Scholar] [CrossRef] [PubMed]
- Dahlqvist, J.; Klar, J.; Tiwari, N.; Schuster, J.; Törmä, H.; Badhai, J.; Pujol, R.; van Steensel, M.A.; Brinkhuizen, T.; Gijezen, L.; et al. A single-nucleotide deletion in the POMP 5′ UTR causes a transcriptional switch and altered epidermal proteasome distribution in KLICK genodermatosis. Am. J. Hum. Genet. 2010, 86, 596–603. [Google Scholar] [CrossRef] [PubMed]
- Paul, A.A.; Szulc, N.A.; Kobiela, A.; Brown, S.J.; Pokrzywa, W.; Gutowska-Owsiak, D. In silico analysis of the profilaggrin sequence indicates alterations in the stability, degradation route, and intracellular protein fate in filaggrin null mutation carriers. Front. Mol. Biosci. 2023, 10, 1105678. [Google Scholar] [CrossRef]
- Briot, J.; Arbey, E.; Goudounèche, D.; Bernard, D.; Simon, M.; Méchin, M.C. Human filaggrin monomer does not seem to be a proteasome target. Exp. Dermatol. 2024, 33, e14772. [Google Scholar] [CrossRef]
- Lippens, S.; Kockx, M.; Knaapen, M.; Mortier, L.; Polakowska, R.; Verheyen, A.; Garmyn, M.; Zwijsen, A.; Formstecher, P.; Huylebroeck, D.; et al. Epidermal differentiation does not involve the pro-apoptotic executioner caspases, but is associated with caspase-14 induction and processing. Cell Death Differ. 2000, 7, 1218–1224. [Google Scholar] [CrossRef]
- Fischer, H.; Stichenwirth, M.; Dockal, M.; Ghannadan, M.; Buchberger, M.; Bach, J.; Kapetanopoulos, A.; Declercq, W.; Tschachler, E.; Eckhart, L. Stratum corneum-derived caspase-14 is catalytically active. FEBS Lett. 2004, 577, 446–450. [Google Scholar] [CrossRef]
- Denecker, G.; Hoste, E.; Gilbert, B.; Hochepied, T.; Ovaere, P.; Lippens, S.; Van den Broecke, C.; Van Damme, P.; D’Herde, K.; Hachem, J.P.; et al. Caspase-14 protects against epidermal UVB photodamage and water loss. Nat. Cell Biol. 2007, 9, 666–674. [Google Scholar] [CrossRef]
- Zeeuwen, P.L. Epidermal differentiation: The role of proteases and their inhibitors. Eur. J. Cell Biol. 2004, 83, 761–773. [Google Scholar] [CrossRef]
- Peled, A.; Sprecher, E. Proteolytic and antiproteolytic activity in the skin: Gluing the pieces together. J. Investig. Dermatol. 2024, 144, 466–473. [Google Scholar] [CrossRef] [PubMed]
- Fischer, H.; Buchberger, M.; Napirei, M.; Tschachler, E.; Eckhart, L. Inactivation of DNase1L2 and DNase2 in keratinocytes suppresses DNA degradation during epidermal cornification and results in constitutive parakeratosis. Sci. Rep. 2017, 7, 6433. [Google Scholar] [CrossRef] [PubMed]
- Manils, J.; Fischer, H.; Climent, J.; Casas, E.; García-Martínez, C.; Bas, J.; Sukseree, S.; Vavouri, T.; Ciruela, F.; de Anta, J.M.; et al. Double deficiency of Trex2 and DNase1L2 nucleases leads to accumulation of DNA in lingual cornifying keratinocytes without activating inflammatory responses. Sci. Rep. 2017, 7, 11902. [Google Scholar] [CrossRef] [PubMed]
- Monteleon, C.L.; Agnihotri, T.; Dahal, A.; Liu, M.; Rebecca, V.W.; Beatty, G.L.; Amaravadi, R.K.; Ridky, T.W. Lysosomes support the degradation, signaling, and mitochondrial metabolism necessary for human epidermal differentiation. J. Investig. Dermatol. 2018, 138, 1945–1954. [Google Scholar] [CrossRef]
- Hailfinger, S.; Schulze-Osthoff, K. Impaired autophagy in psoriasis and atopic dermatitis: A new therapeutic target? J. Investig. Dermatol. 2021, 141, 2775–2777. [Google Scholar] [CrossRef]
- Neto, M.V.; Hall, M.J.; Charneca, J.; Escrevente, C.; Seabra, M.C.; Barral, D.C. Photoprotective melanin is maintained within keratinocytes in storage lysosomes. J. Investig. Dermatol. 2024. [Google Scholar] [CrossRef]
- Wang, F.; Gómez-Sintes, R.; Boya, P. Lysosomal membrane permeabilization and cell death. Traffic 2018, 19, 918–931. [Google Scholar] [CrossRef]
- Meyer, H.; Kravic, B. The endo-lysosomal damage response. Annu. Rev. Biochem. 2024, 93, 367–387. [Google Scholar] [CrossRef]
- Fischer, H.; Scherz, J.; Szabo, S.; Mildner, M.; Benarafa, C.; Torriglia, A.; Tschachler, E.; Eckhart, L. DNase 2 is the main DNA-degrading enzyme of the stratum corneum. PLoS ONE 2011, 6, e17581. [Google Scholar] [CrossRef]
- Kroemer, G.; Jäättelä, M. Lysosomes and autophagy in cell death control. Nat. Rev. Cancer 2005, 5, 886–897. [Google Scholar] [CrossRef]
- Fukuda, K.; Ito, Y.; Furuichi, Y.; Matsui, T.; Horikawa, H.; Miyano, T.; Okada, T.; van Logtestijn, M.; Tanaka, R.J.; Miyawaki, A.; et al. Three stepwise pH progressions in stratum corneum for homeostatic maintenance of the skin. Nat. Commun. 2024, 15, 4062. [Google Scholar] [CrossRef] [PubMed]
- Murata, T.; Honda, T.; Egawa, G.; Yamamoto, Y.; Ichijo, R.; Toyoshima, F.; Dainichi, T.; Kabashima, K. Transient elevation of cytoplasmic calcium ion concentration at a single cell level precedes morphological changes of epidermal keratinocytes during cornification. Sci. Rep. 2018, 8, 6610. [Google Scholar] [CrossRef]
- Murase, D.; Kusaka-Kikushima, A.; Hachiya, A.; Fullenkamp, R.; Stepp, A.; Imai, A.; Ueno, M.; Kawabata, K.; Takahashi, Y.; Hase, T.; et al. Autophagy declines with premature skin aging resulting in dynamic alterations in skin pigmentation and epidermal differentiation. Int. J. Mol. Sci. 2020, 21, 5708. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.H.; Jung, J.Y.; Park, K.; Hossini, A.M.; Zouboulis, C.C.; Lee, S.E. Autophagy regulates lipid production and contributes to the sebosuppressive effect of retinoic acid in human SZ95 sebocytes. J. Dermatol. Sci. 2020, 98, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Jiang, J.; Wang, M.; Li, K.; Liang, H.; Wang, N.; Liu, W.; Wang, M.; Zhou, S.; Zhang, M.; et al. Mitophagy promotes hair regeneration by activating glutathione metabolism. Research 2024, 7, 0433. [Google Scholar] [CrossRef] [PubMed]
- Gund, R.; Christiano, A.M. Impaired autophagy promotes hair loss in the C3H/HeJ mouse model of alopecia areata. Autophagy 2023, 19, 296–305. [Google Scholar] [CrossRef]
- Jin, X.; Song, X. Autophagy dysfunction: The kernel of hair loss? Clin. Cosmet. Investig. Dermatol. 2024, 17, 1165–1181. [Google Scholar] [CrossRef]
- Chai, M.; Jiang, M.; Vergnes, L.; Fu, X.; de Barros, S.C.; Doan, N.B.; Huang, W.; Chu, J.; Jiao, J.; Herschman, H.; et al. Stimulation of hair growth by small molecules that activate autophagy. Cell Rep. 2019, 27, 3413–3421.e3. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eckhart, L.; Gruber, F.; Sukseree, S. Autophagy-Mediated Cellular Remodeling during Terminal Differentiation of Keratinocytes in the Epidermis and Skin Appendages. Cells 2024, 13, 1675. https://doi.org/10.3390/cells13201675
Eckhart L, Gruber F, Sukseree S. Autophagy-Mediated Cellular Remodeling during Terminal Differentiation of Keratinocytes in the Epidermis and Skin Appendages. Cells. 2024; 13(20):1675. https://doi.org/10.3390/cells13201675
Chicago/Turabian StyleEckhart, Leopold, Florian Gruber, and Supawadee Sukseree. 2024. "Autophagy-Mediated Cellular Remodeling during Terminal Differentiation of Keratinocytes in the Epidermis and Skin Appendages" Cells 13, no. 20: 1675. https://doi.org/10.3390/cells13201675
APA StyleEckhart, L., Gruber, F., & Sukseree, S. (2024). Autophagy-Mediated Cellular Remodeling during Terminal Differentiation of Keratinocytes in the Epidermis and Skin Appendages. Cells, 13(20), 1675. https://doi.org/10.3390/cells13201675