Podoplanin Expression in Early-Stage Colorectal Cancer-Associated Fibroblasts and Its Utility as a Diagnostic Marker for Colorectal Lesions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tissue Samples
2.2. Immunohistochemistry and Special Staining
2.3. Immunofluorescence
2.4. Single-Cell RNA Sequence (scRNA-seq)
2.5. The Cancer Genome Atlas (TCGA) Database
2.6. Statistical Analyses
3. Results
3.1. Stroma of Early AC Exhibits High PDPN Expression, Lowering When the AC Invades Deeper
3.2. Stroma of Early AC or Adenoma and Inflamed LP Express Higher Levels of PDPN than NET Stroma, MPS, and Normal LP
3.3. Pericryptal Fibroblasts May Change into PDPN-Positive “Early-Stage CAFs”
3.4. Pericryptal PDPN Expression Is Indicative of Glandular Tumors
3.5. Pericryptal PDPN Expression Better Detects AC and Adenoma at Their Early Stage than p53 Aberrant Expression on IHC
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Augsten, M. Cancer-associated fibroblasts as another polarized cell type of the tumor microenvironment. Front. Oncol. 2014, 4, 62. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, M.; Nguyen, T.; Gundre, E.; Ogunlusi, O.; El-Sobky, M.; Giri, B.; Sarkar, T.R. Cancer-associated fibroblasts: The chief architect in the tumor microenvironment. Front. Cell Dev. Biol. 2023, 11, 1089068. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Liu, T.; Yin, R. Biomarkers for cancer-associated fibroblasts. Biomar. Res. 2020, 8, 64. [Google Scholar] [CrossRef] [PubMed]
- Semba, S.; Kodama, Y.; Ohnuma, K.; Mizuuchi, E.; Masuda, R.; Yashiro, M.; Hirakawa, K.; Yokozaki, H. Direct cancer-stromal interaction increases fibroblast proliferation and enhances invasive properties of scirrhous-type gastric carcinoma cells. Br. J. Cancer 2009, 101, 1365–1373. [Google Scholar] [CrossRef]
- Ishii, G.; Sangai, T.; Oda, T.; Aoyagi, Y.; Hasebe, T.; Kanomata, N.; Endoh, Y.; Okumura, C.; Okuhara, Y.; Magae, J.; et al. Bone-marrow-derived myofibroblasts contribute to the cancer-induced stromal reaction. Biochem. Biophys. Res. Commun. 2003, 309, 232–240. [Google Scholar] [CrossRef]
- Bochet, L.; Lehuédé, C.; Dauvillier, S.; Wang, Y.Y.; Dirat, B.; Laurent, V.; Dray, C.; Guiet, R.; Maridonneau-Parini, I.; Le Gonidec, S.; et al. Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res. 2013, 73, 5657–5668. [Google Scholar] [CrossRef]
- Higashino, N.; Koma, Y.I.; Hosono, M.; Takase, N.; Okamoto, M.; Kodaira, H.; Nishio, M.; Shigeoka, M.; Kakeji, Y.; Yokozaki, H. Fibroblast activation protein-positive fibroblasts promote tumor progression through secretion of CCL2 and interleukin-6 in esophageal squamous cell carcinoma. Lab. Investig. 2019, 99, 777–792. [Google Scholar] [CrossRef]
- Miyako, S.; Koma, Y.I.; Nakanishi, T.; Tsukamoto, S.; Yamanaka, K.; Ishihara, N.; Azumi, Y.; Urakami, S.; Shimizu, M.; Kodama, T.; et al. Periostin in cancer-associated fibroblasts promotes esophageal squamous cell carcinoma progression by enhancing cancer and stromal cell migration. Am. J. Pathol. 2024, 194, 828–848. [Google Scholar] [CrossRef]
- Quintanilla, M.; Montero-Montero, L.; Renart, J.; Martín-Villar, E. Podoplanin in inflammation and cancer. Int. J. Mol. Sci. 2019, 20, 707. [Google Scholar] [CrossRef]
- Shindo, K.; Aishima, S.; Ohuchida, K.; Fujiwara, K.; Fujino, M.; Mizuuchi, Y.; Hattori, M.; Mizumoto, K.; Tanaka, M.; Oda, Y. Podoplanin expression in cancer-associated fibroblasts enhances tumor progression of invasive ductal carcinoma of the pancreas. Mol. Cancer 2013, 12, 168. [Google Scholar] [CrossRef]
- Kawase, A.; Ishii, G.; Nagai, K.; Ito, T.; Nagano, T.; Murata, Y.; Hishida, T.; Nishimura, M.; Yoshida, J.; Suzuki, K.; et al. Podoplanin expression by cancer associated fibroblasts predicts poor prognosis of lung adenocarcinoma. Int. J. Cancer 2008, 123, 1053–1059. [Google Scholar] [CrossRef]
- Yamanashi, T.; Nakanishi, Y.; Fujii, G.; Akishima-Fukasawa, Y.; Moriya, Y.; Kanai, Y.; Watanabe, M.; Hirohashi, S. Podoplanin expression identified in stromal fibroblasts as a favorable prognostic marker in patients with colorectal carcinoma. Oncology 2009, 77, 53–62. [Google Scholar] [CrossRef]
- Nakayama, H.; Enzan, H.; Yasui, W. Expression of podoplanin/D2-40 in pericryptal stromal cells in superficial colorectal epithelial neoplasia. Med. Mol. Morphol. 2013, 46, 20–23. [Google Scholar] [CrossRef]
- WHO Classification of Tumours Editorial Board. WHO Classification of Tumours: Digestive System Tumours, 5th ed.; World Health Organization: Lyon, France, 2019. [Google Scholar]
- Japanese Society for Cancer of the Colon and Rectum. Japanese Classification of Colorectal, Appendiceal, and Anal Carcinoma, 9th ed.; Kanehara & Co., Ltd.: Tokyo, Japan, 2018. [Google Scholar]
- Li, A.; Hasui, K.; Yonezawa, S.; Tanaka, S.; Sato, E. Immunohistochemical analysis of pericryptal fibroblast sheath and proliferating epithelial cells in human colorectal adenomas and carcinomas with adenoma components. Pathol. Int. 1999, 49, 426–434. [Google Scholar] [CrossRef]
- Köbel, M.; Ronnett, B.M.; Singh, N.; Soslow, R.A.; Gilks, C.B.; McCluggage, W.G. Interpretation of P53 immunohistochemistry in endometrial carcinomas: Toward increased reproducibility. Int. J. Gynecol. Pathol. 2019, 38 (Suppl. S1), S123–S131. [Google Scholar] [CrossRef]
- Lee, H.O.; Hong, Y.; Etlioglu, H.E.; Cho, Y.B.; Pomella, V.; Van den Bosch, B.; Vanhecke, J.; Verbandt, S.; Hong, H.; Min, J.W.; et al. Lineage-dependent gene expression programs influence the immune landscape of colorectal cancer. Nat Genet. 2020, 52, 594–603. [Google Scholar] [CrossRef]
- Yao, T.; Tsuneyoshi, M. Significance of pericryptal fibroblasts in colorectal epithelial tumors: A special reference to the histologic features and growth patterns. Hum. Pathol. 1993, 24, 525–533. [Google Scholar] [CrossRef]
- Kaye, G.I.; Pascal, R.R.; Lane, N. The colonic pericryptal fibroblast sheath: Replication, migration, and cytodifferentiation of a mesenchymal cell system in adult tissue. 3. Replication and differentiation in human hyperplastic and adenomatous polyps. Gastroenterology 1971, 60, 515–536. [Google Scholar] [CrossRef]
- Powell, D.W.; Mifflin, R.C.; Valentich, J.D.; Crowe, S.E.; Saada, J.I.; West, A.B. Myofibroblasts. II. Intestinal subepithelial myofibroblasts. Am. J. Physiol. 1999, 277, C183–C201. [Google Scholar] [CrossRef]
- Adegboyega, P.A.; Mifflin, R.C.; DiMari, J.F.; Saada, J.I.; Powell, D.W. Immunohistochemical study of myofibroblasts in normal colonic mucosa, hyperplastic polyps, and adenomatous colorectal polyps. Arch. Pathol. Lab. Med. 2002, 126, 829–836. [Google Scholar] [CrossRef]
- Nishishita, R.; Morohashi, S.; Seino, H.; Wu, Y.; Yoshizawa, T.; Haga, T.; Saito, K.; Hakamada, K.; Fukuda, S.; Kijima, H. Expression of cancer-associated fibroblast markers in advanced colorectal cancer. Oncol. Lett. 2018, 15, 6195–6202. [Google Scholar] [CrossRef]
- Ueki, A.; Komura, M.; Koshino, A.; Wang, C.; Nagao, K.; Homochi, M.; Tsukada, Y.; Ebi, M.; Ogasawara, N.; Tsuzuki, T.; et al. Stromal POSTN enhances motility of both cancer and stromal cells and predicts poor survival in colorectal cancer. Cancers 2023, 15, 606. [Google Scholar] [CrossRef]
- Coto-Llerena, M.; Ercan, C.; Kancherla, V.; Taha-Mehlitz, S.; Eppenberger-Castori, S.; Soysal, S.D.; Ng, C.K.Y.; Bolli, M.; von Flüe, M.; Nicolas, G.P.; et al. High expression of FAP in colorectal cancer is associated with angiogenesis and immunoregulation processes. Front. Oncol. 2020, 10, 979. [Google Scholar] [CrossRef]
- Tentaku, A.; Kurisu, S.; Sejima, K.; Nagao, T.; Takahashi, A.; Yonemura, S. Proximal deposition of collagen IV by fibroblasts contributes to basement membrane formation by colon epithelial cells in vitro. FEBS J. 2022, 289, 7466–7485. [Google Scholar] [CrossRef]
- Hewitt, R.E.; Powe, D.G.; Carter, G.I.; Turner, D.R.; Price, J.E. Basement membrane collagen-IV synthesis in colorectal tumours. Int. J. Cancer 1992, 51, 530–536. [Google Scholar] [CrossRef]
- Onfroy-Roy, L.; Hamel, D.; Malaquin, L.; Ferrand, A. Colon fibroblasts and inflammation: Sparring partners in colorectal cancer initiation? Cancers 2021, 13, 1749. [Google Scholar] [CrossRef]
- Prados, A.; Onder, L.; Cheng, H.W.; Mörbe, U.; Lütge, M.; Gil-Cruz, C.; Perez-Shibayama, C.; Koliaraki, V.; Ludewig, B.; Kollias, G. Fibroblastic reticular cell lineage convergence in Peyer’s patches governs intestinal immunity. Nat. Immunol. 2021, 22, 510–519. [Google Scholar] [CrossRef]
- Brosens, L.A.; Montgomery, E.A.; Bhagavan, B.S.; Offerhaus, G.J.; Giardiello, F.M. Mucosal prolapse syndrome presenting as rectal polyposis. J. Clin. Pathol. 2009, 62, 1034–1036. [Google Scholar] [CrossRef]
- Brabletz, T.; Jung, A.; Reu, S.; Porzner, M.; Hlubek, F.; Kunz-Schughart, L.A.; Knuechel, R.; Kirchner, T. Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc. Natl. Acad. Sci. USA 2001, 98, 10356–10361. [Google Scholar] [CrossRef]
- Awad, H.; Saleh, T.; Alhesa, A.; Al, S.S.; Yousef, R.; Obeid, A.; Qteish, A.; Obeid, J. Beta catenin expression in colorectal carcinoma and its relation to survival and prognostic factors. Ann. Cancer Res. Ther. 2024, 32, 10–16. [Google Scholar] [CrossRef]
- Fearon, E.R.; Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 1990, 61, 759–767. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.M.; Ahn, A.R.; Park, H.S.; Jang, K.Y.; Moon, W.S.; Kang, M.J.; Ha, G.W.; Lee, M.R.; Chung, M.J. Clinical significance of p53 protein expression and TP53 variation status in colorectal cancer. BMC Cancer 2022, 22, 940. [Google Scholar] [CrossRef] [PubMed]
- Wikström, P.; Marusic, J.; Stattin, P.; Bergh, A. Low stroma androgen receptor level in normal and tumor prostate tissue is related to poor outcome in prostate cancer patients. Prostate 2009, 69, 799–809. [Google Scholar] [CrossRef]
- Kobayashi, H.; Gieniec, K.A.; Lannagan, T.R.M.; Wang, T.; Asai, N.; Mizutani, Y.; Iida, T.; Ando, R.; Thomas, E.M.; Sakai, A.; et al. The origin and contribution of cancer-associated fibroblasts in colorectal carcinogenesis. Gastroenterology 2022, 162, 890–906. [Google Scholar] [CrossRef]
Early AC (n = 73) b | Adenoma (n = 39) | NET (n = 11) | Inflammation (n = 36) c | MPS (n = 27) | |
---|---|---|---|---|---|
Sex | |||||
Male | 48 | 28 | 7 | 10 | 16 |
Female | 22 | 11 | 4 | 9 | 11 |
Method | |||||
ESD | 68 | 0 | 11 | 0 | 1 |
EMR | 5 | 7 | 0 | 0 | 0 |
CSP | 0 | 32 | 0 | 0 | 4 |
Biopsy | 0 | 0 | 0 | 36 | 22 |
Location a | |||||
Cecum | 10 | 3 | 0 | 7 | 0 |
Ascending colon | 11 | 10 | 0 | 4 | 0 |
Transverse colon | 12 | 11 | 0 | 7 | 0 |
Descending colon | 5 | 4 | 0 | 4 | 0 |
Sigmoid colon | 13 | 9 | 0 | 6 | 0 |
Rectosigmoid | 4 | 1 | 0 | 1 | 0 |
Rectum, part unspecified | 0 | 1 | 0 | 4 | 7 |
Upper rectum | 4 | 0 | 2 | 0 | 0 |
Lower rectum | 14 | 0 | 9 | 3 | 20 |
pT (Early AC) a | |||||
is | 8 | ||||
1a | 30 | ||||
1b | 35 | ||||
pT (NET) a | |||||
1a | 9 | ||||
1b | 2 | ||||
Lymphatic invasion a | |||||
Negative | 61 | 7 | |||
Positive | 12 | 4 | |||
Venous invasion a | |||||
Negative | 62 | 9 | |||
Positive | 11 | 2 | |||
Tumor budding a | |||||
BD1 | 59 | ||||
BD2 | 4 | ||||
BD3 | 2 |
Maximum PDPN Expression a | |||||
---|---|---|---|---|---|
Negative (%) | Low (%) | High (%) | p-Value (vs. Early AC) | p-Value (vs. Adenoma) | |
Early AC | 0 (0) | 2 (2.7) | 71 (97.3) | — | 0.92 c |
Early AC NNA | 16 (24.2) | 25 (37.9) | 25 (37.9) | <0.001 b | — |
Adenoma | 0 (0) | 4 (10.2) | 35 (89.8) | 0.92 c | — |
Adenoma NNA | 11 (28.2) | 20 (51.3) | 8 (20.5) | — | <0.001 b |
Inflammation | 7 (19.4) | 9 (25) | 20 (55.6) | <0.001 c | 0.002 c |
MPS | 7 (25.9) | 16 (59.3) | 4 (14.8) | <0.001 c | <0.001 c |
NET | 6 (54.5) | 3 (27.3) | 2 (18.2) | <0.001 c | <0.001 c |
NET NNA | 8 (72.7) | 3 (27.3) | 0 (0) | <0.001 c | <0.001 c |
p53 Expression Pattern (%) | Total | ||
---|---|---|---|
Wild-Type | Aberrant | ||
Early AC | 22 (32.8) | 45 (67.2) | 67 |
Early AC NNA | 62 (100) | 0 (0) | 62 |
Adenoma | 34 (87.2) | 5 (12.8) | 39 |
Adenoma NNA | 39 (100) | 0 (0) | 39 |
Inflammation | 36 (100) | 0 (0) | 36 |
MPS | 27 (100) | 0 (0) | 27 |
p53 Expression Pattern | p-Value | ||||
---|---|---|---|---|---|
Wild-Type | Aberrant | ||||
Early AC | Pericryptal positivity | <10% | 1 | 4 | 0.525 |
≥10% | 21 | 41 | |||
Adenoma | <10% | 8 | 1 | 0.861 | |
≥10% | 26 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsukamoto, S.; Kodama, T.; Nishio, M.; Shigeoka, M.; Itoh, T.; Yokozaki, H.; Koma, Y.-i. Podoplanin Expression in Early-Stage Colorectal Cancer-Associated Fibroblasts and Its Utility as a Diagnostic Marker for Colorectal Lesions. Cells 2024, 13, 1682. https://doi.org/10.3390/cells13201682
Tsukamoto S, Kodama T, Nishio M, Shigeoka M, Itoh T, Yokozaki H, Koma Y-i. Podoplanin Expression in Early-Stage Colorectal Cancer-Associated Fibroblasts and Its Utility as a Diagnostic Marker for Colorectal Lesions. Cells. 2024; 13(20):1682. https://doi.org/10.3390/cells13201682
Chicago/Turabian StyleTsukamoto, Shuichi, Takayuki Kodama, Mari Nishio, Manabu Shigeoka, Tomoo Itoh, Hiroshi Yokozaki, and Yu-ichiro Koma. 2024. "Podoplanin Expression in Early-Stage Colorectal Cancer-Associated Fibroblasts and Its Utility as a Diagnostic Marker for Colorectal Lesions" Cells 13, no. 20: 1682. https://doi.org/10.3390/cells13201682
APA StyleTsukamoto, S., Kodama, T., Nishio, M., Shigeoka, M., Itoh, T., Yokozaki, H., & Koma, Y. -i. (2024). Podoplanin Expression in Early-Stage Colorectal Cancer-Associated Fibroblasts and Its Utility as a Diagnostic Marker for Colorectal Lesions. Cells, 13(20), 1682. https://doi.org/10.3390/cells13201682