Progress in Dentin-Derived Bone Graft Materials: A New Xenogeneic Dentin-Derived Material with Retained Organic Component Allows for Broader and Easier Application
Abstract
:1. Introduction
2. Desirable Properties of an Ideal Bone Graft
2.1. Normal Bone Structure
2.2. Normal Bone Growth and Remodeling
2.3. Bone Repair and Optimal Graft Material Properties
- bridge the defect with a structure that supports the growth of bone-generating cells such as mesenchymal stem cells (MSCs) and osteoblasts (osteoconductivity);
- attract and sustain host cell ingrowth into the defect, particularly of bone producing cells (osteoinductivity);
- create an environment that favors healing over inflammation;
- not release any substances that are detrimental to healing or induce a tissue reaction (biocompatibility);
- resorb slowly to retain defect/bone volume;
- have mechanical properties that allow the transmission of forces in a range that encourages maintenance of host bone and remodeling of new regenerated bone as early as possible;
- maintain defect site integrity during the remodeling to form mature bone;
- eventually be resorbed or replaced by the host bone;
- not interfere with host bone integration with prosthetic implants.
- adequate quantity of component/source materials readily available at a reasonable price;
- readily controllable and economic production process;
- consistent and reproducible properties and quality;
- sterility and freedom from infection risk;
- ease of storage and ready availability where required;
- easy application to bone defect.
3. Existing Bone Graft Materials
3.1. Autogenous Bone Grafts
3.2. Allogeneic Bone Grafts
3.3. Xenogeneic Bone Grafts
3.4. Synthetic Alloplastic Grafts
3.5. Summary of Existing Graft Materials
4. Properties of Autogenous Dentin
4.1. Ankylosis and Replacement Resorption
4.2. Osteoinductivity
4.3. Preparation and Clinical Use of Autogenous Dentin as a Bone Graft
4.4. In Vivo and Clinical Evidence for Dentin Efficacy as a Bone Graft
4.5. Current Limitations of Autogenous Dentin Material
5. Theoretical Optimal Use of Autogenous Dentin
5.1. Initial Inflammatory Phase
5.2. Regeneration Phase with Osteogenic Cell Infiltration, Woven Bone Formation, and Vascularization
5.3. Remodeling to Form Mechanically Optimized Bone Structure
5.4. Summary of Optimal Dentin-Derived Graft Use
6. Development of a Xenogeneic Dentin-Derived Material
6.1. Restrictions on Autogenous Dentin Graft Material Use
6.2. Development of a Xenogeneic Dentin-Derived Bone Graft Material
6.2.1. Selection of Porcine Material
6.2.2. Processing and Characterization of Porcine Dentin-Derived Graft Material
6.2.3. Testing of Performance and Safety
6.2.4. Summary of New Porcine Dentin-Derived Graft Material
7. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gillman, C.E.; Jayasuriya, A.C. FDA-approved bone grafts and bone graft substitute devices in bone regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 130, 112466. [Google Scholar] [CrossRef] [PubMed]
- Haugen, H.J.; Lyngstadaas, S.P.; Rossi, F.; Perale, G. Bone grafts: Which is the ideal biomaterial? J. Clin. Periodontol. 2019, 46 (Suppl. 21), 92–102. [Google Scholar] [CrossRef] [PubMed]
- Miron, R.J.; Fujioka-Kobayashi, M.; Pikos, M.A.; Nakamura, T.; Imafuji, T.; Zhang, Y.; Shinohara, Y.; Sculean, A.; Shirakata, Y. The development of non-resorbable bone allografts: Biological background and clinical perspectives. Periodontol. 2000 2024, 94, 161–179. [Google Scholar] [CrossRef]
- Schmidt, A.H. Autologous bone graft: Is it still the gold standard? Injury 2021, 52 (Suppl. 2), S18–S22. [Google Scholar] [CrossRef]
- Rupp, M.; Klute, L.; Baertl, S.; Walter, N.; Mannala, G.K.; Frank, L.; Pfeifer, C.; Alt, V.; Kerschbaum, M. The clinical use of bone graft substitutes in orthopedic surgery in Germany-A 10-years survey from 2008 to 2018 of 1,090,167 surgical interventions. J. Biomed. Mater. Res. B Appl. Biomater. 2022, 110, 350–357. [Google Scholar] [CrossRef]
- Montoya, C.; Du, Y.; Gianforcaro, A.L.; Orrego, S.; Yang, M.; Lelkes, P.I. On the road to smart biomaterials for bone research: Definitions, concepts, advances, and outlook. Bone Res. 2021, 9, 12. [Google Scholar] [CrossRef]
- Rifai, A.; Weerasinghe, D.K.; Tilaye, G.A.; Nisbet, D.; Hodge, J.M.; Pasco, J.A.; Williams, L.J.; Samarasinghe, R.M.; Williams, R.J. Biofabrication of functional bone tissue: Defining tissue-engineered scaffolds from nature. Front. Bioeng. Biotechnol. 2023, 11, 1185841. [Google Scholar] [CrossRef]
- Wei, H.; Cui, J.; Lin, K.; Xie, J.; Wang, X. Recent advances in smart stimuli-responsive biomaterials for bone therapeutics and regeneration. Bone Res. 2022, 10, 17. [Google Scholar] [CrossRef]
- Sallent, I.; Capella-Monsonís, H.; Procter, P.; Bozo, I.Y.; Deev, R.V.; Zubov, D.; Vasyliev, R.; Perale, G.; Pertici, G.; Baker, J.; et al. The Few Who Made It: Commercially and Clinically Successful Innovative Bone Grafts. Front. Bioeng. Biotechnol. 2020, 8, 952. [Google Scholar] [CrossRef]
- Ghelich, P.; Kazemzadeh-Narbat, M.; Najafabadi, A.H.; Samandari, M.; Memic, A.; Tamayol, A. (Bio)manufactured Solutions for Treatment of Bone Defects with Emphasis on US-FDA Regulatory Science Perspective. Adv. Nanobiomed. Res. 2022, 2, 2100073. [Google Scholar] [CrossRef]
- Binderman, I.; Hallel, G.; Nardy, C.; Yaffe, A.; Sapoznikov, L. A Novel Procedure to Process Extracted Teeth for Immediate Grafting of Autogenous Dentin. J. Interdiscipl. Med. Dent. Sci. 2014, 2, 154. [Google Scholar] [CrossRef]
- Kim, Y.K.; Kim, S.G.; Byeon, J.H.; Lee, H.J.; Um, I.U.; Lim, S.C.; Kim, S.Y. Development of a novel bone grafting material using autogenous teeth. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2010, 109, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-K.; Lee, J.H.; Kim, K.; Um, I.; Murata, M.; Ito, K. Analysis of Organic Components and Osteoinductivity in Autogenous Tooth Bone Graft Material. J. Korean Assoc. Maxillofac. Plast. Reconstr. Surg. 2013, 35, 353–359. [Google Scholar] [CrossRef]
- Murata, M.; Nezu, T.; Takebe, H.; Hirose, Y.; Okubo, N.; Saito, T.; Akazawa, T. Human dentin materials for minimally invasive bone regeneration: Animal studies and clinical cases. J. Oral Biosci. 2023, 65, 13–18. [Google Scholar] [CrossRef]
- Florencio-Silva, R.; Sasso, G.R.; Sasso-Cerri, E.; Simões, M.J.; Cerri, P.S. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells. Biomed. Res. Int. 2015, 2015, 421746. [Google Scholar] [CrossRef]
- Wang, L.; You, X.; Zhang, L.; Zhang, C.; Zou, W. Mechanical regulation of bone remodeling. Bone Res. 2022, 10, 16. [Google Scholar] [CrossRef]
- Buss, D.J.; Kröger, R.; McKee, M.D.; Reznikov, N. Hierarchical organization of bone in three dimensions: A twist of twists. J. Struct. Biol. X 2021, 6, 100057. [Google Scholar] [CrossRef]
- Al-Qudsy, L.; Hu, Y.W.; Xu, H.; Yang, P.F. Mineralized Collagen Fibrils: An Essential Component in Determining the Mechanical Behavior of Cortical Bone. ACS Biomater. Sci. Eng. 2023, 9, 2203–2219. [Google Scholar] [CrossRef]
- Rho, J.Y.; Kuhn-Spearing, L.; Zioupos, P. Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 1998, 20, 92–102. [Google Scholar] [CrossRef]
- Kono, T.; Sakae, T.; Nakada, H.; Kaneda, T.; Hiroyuki, O. Confusion between Carbonate Apatite and Biological Apatite (Carbonated Hydroxyapatite) in Bone and Teeth. Minerals 2022, 12, 170. [Google Scholar] [CrossRef]
- Tavoni, M.; Dapporto, M.; Tampieri, A.; Sprio, S. Bioactive Calcium Phosphate-Based Composites for Bone Regeneration. J. Compos. Sci. 2021, 5, 227. [Google Scholar] [CrossRef]
- Reznikov, N.; Shahar, R.; Weiner, S. Three-dimensional structure of human lamellar bone: The presence of two different materials and new insights into the hierarchical organization. Bone 2014, 59, 93–104. [Google Scholar] [CrossRef]
- Ma, Q.; Miri, Z.; Haugen, H.J.; Moghanian, A.; Loca, D. Significance of mechanical loading in bone fracture healing, bone regeneration, and vascularization. J. Tissue Eng. 2023, 14, 20417314231172573. [Google Scholar] [CrossRef]
- Bigham-Sadegh, A.; Oryan, A. Basic concepts regarding fracture healing and the current options and future directions in managing bone fractures. Int. Wound J. 2015, 12, 238–247. [Google Scholar] [CrossRef]
- Huiskes, R.; Ruimerman, R.; van Lenthe, G.H.; Janssen, J.D. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 2000, 405, 704–706. [Google Scholar] [CrossRef]
- Lo Sicco, C.; Tasso, R. Harnessing Endogenous Cellular Mechanisms for Bone Repair. Front. Bioeng. Biotechnol. 2017, 5, 52. [Google Scholar] [CrossRef]
- Lopes, D.; Martins-Cruz, C.; Oliveira, M.B.; Mano, J.F. Bone physiology as inspiration for tissue regenerative therapies. Biomaterials 2018, 185, 240–275. [Google Scholar] [CrossRef]
- Papachristou, D.J.; Georgopoulos, S.; Giannoudis, P.V.; Panagiotopoulos, E. Insights into the Cellular and Molecular Mechanisms That Govern the Fracture-Healing Process: A Narrative Review. J. Clin. Med. 2021, 10, 3554. [Google Scholar] [CrossRef]
- Tourolle Né Betts, D.C.; Wehrle, E.; Paul, G.R.; Kuhn, G.A.; Christen, P.; Hofmann, S.; Müller, R. The association between mineralised tissue formation and the mechanical local in vivo environment: Time-lapsed quantification of a mouse defect healing model. Sci. Rep. 2020, 10, 1100. [Google Scholar] [CrossRef]
- Wähnert, D.; Miersbach, M.; Colcuc, C.; Brianza, S.; Vordemvenne, T.; Plecko, M.; Schwarz, A. Promoting bone callus formation by taking advantage of the time-dependent fracture gap strain modulation. Front. Surg. 2024, 11, 1376441. [Google Scholar] [CrossRef]
- Georgeanu, V.A.; Gingu, O.; Antoniac, I.V.; Manolea, H.O. Current Options and Future Perspectives on Bone Graft and Biomaterials Substitutes for Bone Repair, from Clinical Needs to Advanced Biomaterials Research. Appl. Sci. 2023, 13, 8471. [Google Scholar] [CrossRef]
- Yamada, M.; Egusa, H. Current bone substitutes for implant dentistry. J. Prosthodont. Res. 2018, 62, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, P.; Li, D.J.; Auston, D.A.; Mir, H.S.; Yoon, R.S.; Koval, K.J. Autograft, Allograft, and Bone Graft Substitutes: Clinical Evidence and Indications for Use in the Setting of Orthopaedic Trauma Surgery. J. Orthop. Trauma 2019, 33, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, M.; Henriques, J.; Martins, G.; Guerra, F.; Judas, F.; Figueiredo, H. Physicochemical characterization of biomaterials commonly used in dentistry as bone substitutes—Comparison with human bone. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 92, 409–419. [Google Scholar] [CrossRef]
- Pabst, A.; Becker, P.; Götz, W.; Heimes, D.; Thiem, D.G.E.; Blatt, S.; Kämmerer, P.W. A comparative analysis of particulate bovine bone substitutes for oral regeneration: A narrative review. Int. J. Implant Dent. 2024, 10, 26. [Google Scholar] [CrossRef]
- Galindo-Moreno, P.; Hernández-Cortés, P.; Mesa, F.; Carranza, N.; Juodzbalys, G.; Aguilar, M.; O’Valle, F. Slow resorption of anorganic bovine bone by osteoclasts in maxillary sinus augmentation. Clin. Implant Dent. Relat. Res. 2013, 15, 858–866. [Google Scholar] [CrossRef]
- Galindo-Moreno, P.; Abril-García, D.; Carrillo-Galvez, A.B.; Zurita, F.; Martín-Morales, N.; O’Valle, F.; Padial-Molina, M. Maxillary sinus floor augmentation comparing bovine versus porcine bone xenografts mixed with autogenous bone graft. A split-mouth randomized controlled trial. Clin. Oral Implants Res. 2022, 33, 524–536. [Google Scholar] [CrossRef]
- Tadic, D.; Epple, M. A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone. Biomaterials 2004, 25, 987–994. [Google Scholar] [CrossRef]
- Trzaskowska, M.; Vivcharenko, V.; Przekora, A. The Impact of Hydroxyapatite Sintering Temperature on Its Microstructural, Mechanical, and Biological Properties. Int. J. Mol. Sci. 2023, 24, 5083. [Google Scholar] [CrossRef]
- Carmagnola, D.; Adriaens, P.; Berglundh, T. Healing of human extraction sockets filled with Bio-Oss. Clin. Oral Implants Res. 2003, 14, 137–143. [Google Scholar] [CrossRef]
- Marconcini, S.; Giammarinaro, E.; Derchi, G.; Alfonsi, F.; Covani, U.; Barone, A. Clinical outcomes of implants placed in ridge-preserved versus nonpreserved sites: A 4-year randomized clinical trial. Clin. Implant Dent. Relat. Res. 2018, 20, 906–914. [Google Scholar] [CrossRef] [PubMed]
- Romasco, T.; Tumedei, M.; Inchingolo, F.; Pignatelli, P.; Montesani, L.; Iezzi, G.; Petrini, M.; Piattelli, A.; Di Pietro, N. A Narrative Review on the Effectiveness of Bone Regeneration Procedures with OsteoBiol® Collagenated Porcine Grafts: The Translational Research Experience over 20 Years. J. Funct. Biomater. 2022, 13, 121. [Google Scholar] [CrossRef] [PubMed]
- Bracey, D.N.; Cignetti, N.E.; Jinnah, A.H.; Stone, A.V.; Gyr, B.M.; Whitlock, P.W.; Scott, A.T. Bone xenotransplantation: A review of the history, orthopedic clinical literature, and a single-center case series. Xenotransplantation 2020, 27, e12600. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, E.B.; Kranzler, L.I. Cervical Interbody fusion using calf bone. Surg. Neurol. 1982, 18, 37–39. [Google Scholar] [CrossRef]
- Nowzari, H.; Teoh, C.; Rodriguez, A.E. The migration of the bovine-derived xenograft particles: A case series. J. Indian Soc. Periodontol. 2022, 26, 178–185. [Google Scholar] [CrossRef]
- Consolaro, A.; Ribiero, P.D.; Cardoso, M.A.; Miranda, D.A.O.; Salfatis, M. Decoronation followed by dental implants placement: Fundamentals, applications and explanations. Dent. Press J. Orthod. 2018, 23, 24–36. [Google Scholar] [CrossRef]
- Mancini, G.; Francini, E.; Vichi, M.; Tollaro, I.; Romagnoli, P. Primary tooth ankylosis: Report of case with histological analysis. ASDC J. Dent. Child. 1995, 62, 215–219. [Google Scholar] [PubMed]
- Abbott, P.V.; Lin, S. Tooth resorption—Part 2: A clinical classification. Dent. Traumatol. 2022, 38, 267–285. [Google Scholar] [CrossRef]
- Andersson, L.; Ramzi, A.; Joseph, B. Studies on dentin grafts to bone defects in rabbit tibia and mandible; development of an experimental model. Dent. Traumatol. 2009, 25, 78–83. [Google Scholar] [CrossRef]
- Andersson, L. Dentin xenografts to experimental bone defects in rabbit tibia are ankylosed and undergo osseous replacement. Dent. Traumatol. 2010, 26, 398–402. [Google Scholar] [CrossRef]
- Balooch, M.; Habelitz, S.; Kinney, J.H.; Marshall, S.J.; Marshall, G.W. Mechanical properties of mineralized collagen fibrils as influenced by demineralization. J. Struct. Biol. 2008, 162, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Suchanek, W.; Yoshimura, M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J. Mater. Res. 1998, 13, 94–117. [Google Scholar] [CrossRef]
- Orlovskii, V.P.; Komlev, V.S.; Barinov, S.M. Hydroxyapatite and Hydroxyapatite-Based Ceramics. Inorg. Mater. 2002, 38, 973–984. [Google Scholar] [CrossRef]
- Tanaka, M.; Naito, T.; Yokota, M.; Kohno, M. Finite element analysis of the possible mechanism of cervical lesion formation by occlusal force. J. Oral Rehabil. 2003, 30, 60–67. [Google Scholar] [CrossRef]
- Imbeni, V.; Kruzic, J.J.; Marshall, G.W.; Marshall, S.J.; Ritchie, R.O. The dentin-enamel junction and the fracture of human teeth. Nat. Mater. 2005, 4, 229–232. [Google Scholar] [CrossRef]
- Gerhardt, L.C.; Boccaccini, A.R. Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering. Materials 2010, 3, 3867–3910. [Google Scholar] [CrossRef]
- Sano, H.; Takatsu, T.; Ciucchi, B.; Russell, C.M.; Pashley, D.H. Tensile properties of resin-infiltrated demineralized human dentin. J. Dent. Res. 1995, 74, 1093–1102. [Google Scholar] [CrossRef]
- Ryou, H.; Turco, G.; Breschi, L.; Tay, F.R.; Pashley, D.H.; Arola, D. On the stiffness of demineralized dentin matrices. Dent. Mater. 2016, 32, 161–170. [Google Scholar] [CrossRef]
- Enoki, S.; Sato, M.; Tanaka, K.; Katayama, T. Mechanical properties of a single cancellous bone trabeculae taken from bovine femur. Int. J. Mod. Phys. Conf. Ser. 2012, 06, 349–354. [Google Scholar] [CrossRef]
- Patil, C.R.; Uppin, V. Effect of endodontic irrigating solutions on the microhardness and roughness of root canal dentin: An in vitro study. Indian J. Dent. Res. 2011, 22, 22–27. [Google Scholar] [CrossRef]
- Kim, K.W. Bone Induction by Demineralized Dentin Matrix in Nude Mouse Muscles. Maxillofac. Plast. Reconstr. Surg. 2014, 36, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Yeomans, J.D.; Urist, M.R. Bone induction by decalcified dentine implanted into oral, osseous and muscle tissues. Arch. Oral Biol. 1967, 12, 999–1008. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.J.; Scheven, B.A.; Takahashi, Y.; Ferracane, J.L.; Shelton, R.M.; Cooper, P.R. Dentine as a bioactive extracellular matrix. Arch. Oral Biol. 2012, 57, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Urist, M.R.; Strates, B.S. Bone morphogenetic protein. J. Dent. Res. 1971, 50, 1392–1406. [Google Scholar] [CrossRef] [PubMed]
- Conover, M.A.; Urist, M.R. Transmembrane bone morphogenesis by implants of dentin matrix. J. Dent. Res. 1979, 58, 1911. [Google Scholar] [CrossRef]
- Wang, E.A.; Rosen, V.; Cordes, P.; Hewick, R.M.; Kriz, M.J.; Luxenberg, D.P.; Sibley, B.S.; Wozney, J.M. Purification and characterization of other distinct bone-inducing factors. Proc. Natl. Acad. Sci. USA 1988, 85, 9484–9488. [Google Scholar] [CrossRef]
- MacDougall, M.J.; Javed, A. Dentin and Bone: Similar Collagenous Mineralized Tissues. In Bone and Development. Topics in Bone Biology; Bronner, F., Farach-Carson, M., Roach, H., Eds.; Springer: London, UK, 2010; Volume 6, pp. 183–200. [Google Scholar] [CrossRef]
- Carvalho, M.S.; Cabral, J.M.S.; da Silva, C.L.; Vashishth, D. Bone Matrix Non-Collagenous Proteins in Tissue Engineering: Creating New Bone by Mimicking the Extracellular Matrix. Polymers 2021, 13, 1095. [Google Scholar] [CrossRef]
- Goldberg, M.; Kulkarni, A.B.; Young, M.; Boskey, A. Dentin: Structure, composition and mineralization. Front. Biosci. 2011, 3, 711–735. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, L.; Yu, J.; Lei, G.; Yan, M.; Smith, G.; Cooper, P.R.; Tang, C.; Zhang, G.; Smith, A.J. Dentin matrix proteins (DMPs) enhance differentiation of BMMSCs via ERK and P38 MAPK pathways. Cell Tissue Res. 2014, 356, 171–182. [Google Scholar] [CrossRef]
- Avery, S.J.; Sadaghiani, L.; Sloan, A.J.; Waddington, R.J. Analysing the bioactive makeup of demineralised dentine matrix on bone marrow mesenchymal stem cells for enhanced bone repair. Eur. Cells Mater. 2017, 34, 1–14. [Google Scholar] [CrossRef]
- Gao, X.; Qin, W.; Wang, P.; Wang, L.; Weir, M.D.; Reynolds, M.A.; Zhao, L.; Lin, Z.; Xu, H.H.K. Nano-Structured Demineralized Human Dentin Matrix to Enhance Bone and Dental Repair and Regeneration. Appl. Sci. 2019, 9, 1013. [Google Scholar] [CrossRef]
- Brunello, G.; Zanotti, F.; Scortecci, G.; Sapoznikov, L.; Sivolella, S.; Zavan, B. Dentin Particulate for Bone Regeneration: An In Vitro Study. Int. J. Mol. Sci. 2022, 23, 9283. [Google Scholar] [CrossRef] [PubMed]
- Bessho, K.; Tanaka, N.; Matsumoto, J.; Tagawa, T.; Murata, M. Human dentin-matrix-derived bone morphogenetic protein. J. Dent. Res. 1991, 70, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Um, I.W.; Ku, J.K.; Lee, B.K.; Yun, P.Y.; Lee, J.K.; Nam, J.H. Postulated release profile of recombinant human bone morphogenetic protein-2 (rhBMP-2) from demineralized dentin matrix. J. Korean Assoc. Oral Maxillofac. Surg. 2019, 45, 123–128. [Google Scholar] [CrossRef]
- Baker, S.M.; Sugars, R.V.; Wendel, M.; Smith, A.J.; Waddington, R.J.; Cooper, P.R.; Sloan, A.J. TGF-beta/extracellular matrix interactions in dentin matrix: A role in regulating sequestration and protection of bioactivity. Calcif. Tissue Int. 2009, 85, 66–74. [Google Scholar] [CrossRef]
- Sadaghiani, L.; Alshumrani, A.M.; Gleeson, H.B.; Ayre, W.N.; Sloan, A.J. Growth factor release and dental pulp stem cell attachment following dentine conditioning: An in vitro study. Int. Endod. J. 2022, 55, 858–869. [Google Scholar] [CrossRef]
- Quijano-Guauque, S.; Bernal-Cepeda, L.J.; Delgado, F.G.; Castellanos, J.E.; García-Guerrero, C. Effect of chitosan irrigant solutions on the release of bioactive proteins from root dentin. Clin. Oral Investig. 2023, 27, 691–703. [Google Scholar] [CrossRef]
- Roberts-Clark, D.J.; Smith, A.J. Angiogenic growth factors in human dentine matrix. Arch. Oral Biol. 2000, 45, 1013–1016. [Google Scholar] [CrossRef]
- Zhang, R.; Cooper, P.R.; Smith, G.; Nör, J.E.; Smith, A.J. Angiogenic activity of dentin matrix components. J. Endod. 2011, 37, 26–30. [Google Scholar] [CrossRef]
- Wang, S.; Mao, S.; Huang, G.; Jia, P.; Dong, Y.; Zheng, J. Alkali-extracted proteins from the tooth dentin matrix as a mixture of bioactive molecules for cartilage repair and regeneration. Regen. Ther. 2024, 26, 407–414. [Google Scholar] [CrossRef]
- Bi, F.; Zhang, Z.; Guo, W. Treated Dentin Matrix in Tissue Regeneration: Recent Advances. Pharmaceutics 2023, 15, 91. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Schultz, T.H.; Schultz, M. Intact growth factors are conserved in the extracellular matrix of ancient human bone and teeth: A storehouse for the study of human evolution in health and disease. Biol. Chem. 2005, 386, 767–776. [Google Scholar] [CrossRef] [PubMed]
- Staines, K.A.; MacRae, V.E.; Farquharson, C. The importance of the SIBLING family of proteins on skeletal mineralisation and bone remodelling. J. Endocrinol. 2012, 214, 241–255. [Google Scholar] [CrossRef]
- Butler, W.T.; Mikulski, A.; Urist, M.R.; Bridges, G.; Uyeno, S. Noncollagenous proteins of a rat dentin matrix possessing bone morphogenetic activity. J. Dent. Res. 1977, 56, 228–232. [Google Scholar] [CrossRef]
- Xiong, Y.; Shen, T.; Xie, X. Effects of different methods of demineralized dentin matrix preservation on the proliferation and differentiation of human periodontal ligament stem cells. J. Dent. Sci. 2022, 17, 1135–1143. [Google Scholar] [CrossRef]
- O’Neill, E.; Awale, G.; Daneshmandi, L.; Umerah, O.; Lo, K.W. The roles of ions on bone regeneration. Drug Discov. Today 2018, 23, 879–890. [Google Scholar] [CrossRef]
- Lei, G.; Wang, Y.; Yu, Y.; Li, Z.; Lu, J.; Ge, X.; Li, N.; Manduca, A.G.C.; Yu, J. Dentin-Derived Inorganic Minerals Promote the Osteogenesis of Bone Marrow-Derived Mesenchymal Stem Cells: Potential Applications for Bone Regeneration. Stem Cells Int. 2020, 2020, 8889731. [Google Scholar] [CrossRef]
- Wen, B.; Dai, Y.; Han, X.; Huo, F.; Xie, L.; Yu, M.; Wang, Y.; An, N.; Li, Z.; Guo, W. Biomineralization-inspired mineralized hydrogel promotes the repair and regeneration of dentin/bone hard tissue. npj Regen. Med. 2023, 8, 11. [Google Scholar] [CrossRef]
- Agrawal, P.; Nikhade, P.; Chandak, M.; Ikhar, A.; Bhonde, R. Dentin Matrix Metalloproteinases: A Futuristic Approach Toward Dentin Repair and Regeneration. Cureus 2022, 14, e27946. [Google Scholar] [CrossRef]
- Guirado, E.; George, A. Dentine matrix metalloproteinases as potential mediators of dentine regeneration. Eur. Cells Mater. 2021, 42, 392–400. [Google Scholar] [CrossRef]
- Okamoto, M.; Takahashi, Y.; Komichi, S.; Cooper, P.R.; Hayashi, M. Dentinogenic effects of extracted dentin matrix components digested with matrix metalloproteinases. Sci. Rep. 2018, 8, 10690. [Google Scholar] [CrossRef] [PubMed]
- Kurzepa, J.; Baran, M.; Wątroba, S.; Barud, M.; Babula, D. Collagenases and gelatinases in bone healing. The focus on mandibular fractures. Curr. Issues Pharm. Med. Sci. 2014, 27, 121–126. [Google Scholar] [CrossRef]
- Tjäderhane, L.; Nascimento, F.D.; Breschi, L.; Mazzoni, A.; Tersariol, I.L.; Geraldeli, S.; Tezvergil-Mutluay, A.; Carrilho, M.R.; Carvalho, R.M.; Tay, F.R.; et al. Optimizing dentin bond durability: Control of collagen degradation by matrix metalloproteinases and cysteine cathepsins. Dent. Mater. 2013, 29, 116–135. [Google Scholar] [CrossRef]
- Sulkala, M.; Tervahartiala, T.; Sorsa, T.; Larmas, M.; Salo, T.; Tjäderhane, L. Matrix metalloproteinase-8 (MMP-8) is the major collagenase in human dentin. Arch. Oral Biol. 2007, 52, 121–127. [Google Scholar] [CrossRef]
- Hedenbjörk-Lager, A.; Hamberg, K.; Pääkkönen, V.; Tjäderhane, L.; Ericson, D. Collagen degradation and preservation of MMP-8 activity in human dentine matrix after demineralization. Arch. Oral Biol. 2016, 68, 66–72. [Google Scholar] [CrossRef]
- Kim, Y.; Um, I.; Murata, M. Tooth Bank System for Bone Regeneration—Safety Report. J. Hard Tissue Biol. 2014, 23, 371–376. [Google Scholar] [CrossRef]
- Um, I.-W.; Ku, J.K.; Kim, Y.; Yun, P.-Y.; Chang, N.-H.; Kim, Y.-K.; Choi, Y. Allogeneic Demineralized Dentin Matrix Graft for Guided Bone Regeneration in Dental Implants. Appl. Sci. 2020, 10, 4661. [Google Scholar] [CrossRef]
- Mahardawi, B.; Jiaranuchart, S.; Dhanesuan, K.; Arunjaroensuk, S.; Mattheos, N.; Pimkhaokham, A. The clinical efficacy of the allogenic demineralized dentin matrix graft for implant placement: A systematic review. Oral Maxillofac. Surg. 2024, 28, 585–593. [Google Scholar] [CrossRef]
- Cervera-Maillo, J.M.; Morales-Schwarz, D.; Morales-Melendez, H.; Mahesh, L.; Calvo-Guirado, J.L. Autologous Tooth Dentin Graft: A Retrospective Study in Humans. Medicina 2021, 58, 56. [Google Scholar] [CrossRef]
- Inchingolo, A.M.; Patano, A.; Di Pede, C.; Inchingolo, A.D.; Palmieri, G.; de Ruvo, E.; Campanelli, M.; Buongiorno, S.; Carpentiere, V.; Piras, F.; et al. Autologous Tooth Graft: Innovative Biomaterial for Bone Regeneration. Tooth Transformer® and the Role of Microbiota in Regenerative Dentistry. A Systematic Review. J. Funct. Biomater. 2023, 14, 132. [Google Scholar] [CrossRef]
- Farhan, Y.A.A.; Abdelsameaa, S.E.; Elgamily, M.; Awad, S. Impact of Different Preparations of Tooth Graft vs Xenogeneic Bone Graft on Bone Healing: An Experimental Study. J. Contemp. Dent. Pract. 2022, 23, 1163–1172. [Google Scholar] [CrossRef] [PubMed]
- Özkahraman, N.; Balcıoğlu, N.B.; Soluk Tekkesin, M.; Altundağ, Y.; Yalçın, S. Evaluation of the Efficacy of Mineralized Dentin Graft in the Treatment of Intraosseous Defects: An Experimental In Vivo Study. Medicina 2022, 58, 103. [Google Scholar] [CrossRef] [PubMed]
- Ramanauskaite, A.; Sahin, D.; Sader, R.; Becker, J.; Schwarz, F. Efficacy of autogenous teeth for the reconstruction of alveolar ridge deficiencies: A systematic review. Clin. Oral Investig. 2019, 23, 4263–4287. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, X.; Qi, Y.; Ma, X.; Qiao, S.; Cai, H.; Zhao, B.C.; Jiang, H.B.; Lee, E.S. Comparison of Autogenous Tooth Materials and Other Bone Grafts. Tissue Eng. Regen. Med. 2021, 18, 327–341. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, W.; Li, P.; Luo, Q.; Li, A.; Zhang, X. Comparison of the osteogenic effectiveness of an autogenous demineralised dentin matrix and Bio-Oss® in bone augmentation: A systematic review and meta-analysis. Br. J. Oral Maxillofac. Surg. 2022, 60, 868–876. [Google Scholar] [CrossRef]
- Mahardawi, B.; Jiaranuchart, S.; Tompkins, K.A.; Pimkhaokham, A. Efficacy of the autogenous dentin graft for implant placement: A systematic review and meta-analysis of randomized controlled trials. Int. J. Oral Maxillofac. Surg. 2023, 52, 604–612. [Google Scholar] [CrossRef]
- Sánchez-Labrador, L.; Bazal-Bonelli, S.; Pérez-González, F.; Sáez-Alcaide, L.M.; Cortés-Bretón Brinkmann, J.; Martínez-González, J.M. Autogenous particulated dentin for alveolar ridge preservation. A systematic review. Ann. Anat. 2023, 246, 152024. [Google Scholar] [CrossRef]
- Madi, M.; Almindil, I.; Alrassasi, M.; Alramadan, D.; Zakaria, O.; Alagl, A.S. Cone-Beam Computed Tomography and Histological Findings for Socket Preservation Techniques Using Different Grafting Materials: A Systematic Review. J. Funct. Biomater. 2023, 14, 282. [Google Scholar] [CrossRef]
- Mahardawi, B.; Kyaw, T.T.; Mattheos, N.; Pimkhaokham, A. The clinical efficacy of autogenous dentin blocks prepared chairside for alveolar ridge augmentation: A systematic review and meta-analysis. Clin. Oral Implants Res. 2023, 34, 1025–1037. [Google Scholar] [CrossRef]
- Feng, Y.; Zhao, R.; Li, J.; Yuan, Z.; Xu, X.; Gong, J. Efficacy of autogenous particulated dentin graft for alveolar ridge preservation: A systematic review and meta-analysis of randomized controlled trials. Medicine 2023, 102, e36391. [Google Scholar] [CrossRef]
- Hashemi, S.; Tabatabaei, S.; Fathi, A.; Asadinejad, S.M.; Atash, R. Tooth Graft: An Umbrella Overview. Eur. J. Dent. 2024, 18, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Khurshid, Z.; Ratnayake, J.; Dias, G.; Cooper, P.R. Demineralized dentin matrix for bone regeneration in dentistry: A critical update. Saudi Dent. J. 2024, 36, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Mahendra, D.A.; Bilbalqish, K.; Nugraha, A.P.; Cahyanto, A.; Sengupta, K.; Hanna, K.; Meizarini, A.; Hariyani, N. Dentin-derived alveolar bone graft for alveolar augmentation: A systematic review. J. Oral Biol. Craniofac. Res. 2024, 14, 395–406. [Google Scholar] [CrossRef]
- Sun, H.; Yin, X.; Yang, C.; Kuang, H.; Luo, W. Advances in autogenous dentin matrix graft as a promising biomaterial for guided bone regeneration in maxillofacial region: A review. Medicine 2024, 103, e39422. [Google Scholar] [CrossRef] [PubMed]
- Olchowy, A.; Olchowy, C.; Zawiślak, I.; Matys, J.; Dobrzyński, M. Revolutionizing Bone Regeneration with Grinder-Based Dentin Biomaterial: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 9583. [Google Scholar] [CrossRef]
- Wysłouch, E.; Sipika, A.; Grabowska-Jasik, N.; Tyrakowski, M.; Kaczmarzyk, T.; Szuta, M. Use of autologous dentin matrix in bone defects augmentation—A literature review. Folia Medica Cracoviensia 2024, 64, 87–91. [Google Scholar] [CrossRef]
- Sánchez-Labrador, L.; Martín-Ares, M.; Ortega-Aranegui, R.; López-Quiles, J.; Martínez-González, J.M. Autogenous Dentin Graft in Bone Defects After Lower Third Molar Extraction: A Split-Mouth Clinical Trial. Materials 2020, 13, 3090. [Google Scholar] [CrossRef]
- Kuperschlag, A.; Keršytė, G.; Kurtzman, G.M.; Horowitz, R.A. Autogenous Dentin Grafting of Osseous Defects Distal to Mandibular Second Molars After Extraction of Impacted Third Molars. Compend. Contin. Educ. Dent. 2020, 41, 76–82; quiz 83. [Google Scholar]
- Mazzucchi, G.; Lollobrigida, M.; Lamazza, L.; Serafini, G.; Di Nardo, D.; Testarelli, L.; De Biase, A. Autologous Dentin Graft After Impacted Mandibular Third Molar Extraction to Prevent Periodontal Pocket Formation—A Split-Mouth Pilot Study. Materials 2022, 15, 1431. [Google Scholar] [CrossRef]
- Hussain, A.A.; Al-Quisi, A.F.; Abdulkareem, A.A. Efficacy of Autogenous Dentin Biomaterial on Alveolar Ridge Preservation: A Randomized Controlled Clinical Trial. Biomed. Res. Int. 2023, 2023, 7932432. [Google Scholar] [CrossRef]
- Xu, X.; Peng, D.; Zhou, B.; Lin, K.; Wang, S.; Zhao, W.; Zheng, M.; Yang, J.; Guo, J. Demineralized dentin matrix promotes gingival healing in alveolar ridge preservation of premolars extracted for orthodontic reason: A split-mouth study. Front. Endocrinol. 2023, 14, 1281649. [Google Scholar] [CrossRef] [PubMed]
- López Sacristán, H.; Del Canto Pingarrón, M.; Alobera Gracia, M.A.; de Elío Oliveros, J.; Díaz Pedrero, R.; Seco-Calvo, J. Use of autologous tooth-derived material as a graft in the post-extraction socket. Split-mouth study with radiological and histological analysis. BMC Oral Health 2024, 24, 832. [Google Scholar] [CrossRef] [PubMed]
- Gowda, T.M.; Jayashri, M.; Venkatesh, U.G.; Shah, R.; Kumar, A.B.T.; Deepthi, M.; Priya, S. Autologous tooth bone graft block compared with advanced platelet-rich fibrin in alveolar ridge preservation: A clinico-radiographic study. J. Indian Soc. Periodontol. 2023, 27, 619–625. [Google Scholar] [CrossRef]
- Korsch, M.; Peichl, M. Retrospective Study: Lateral Ridge Augmentation Using Autogenous Dentin: Tooth-Shell Technique vs. Bone-Shell Technique. Int. J. Environ. Res. Public Health 2021, 18, 3174. [Google Scholar] [CrossRef]
- Elraee, L.; Abdel Gaber, H.K.; Elsayed, H.H.; Adel-Khattab, D. Autogenous dentin block versus bone block for horizontal alveolar ridge augmentation and staged implant placement: A randomized controlled clinical trial including histologic assessment. Clin. Oral Implant. Res. 2022, 33, 723–734. [Google Scholar] [CrossRef]
- Pohl, S.; Binderman, I.; Božić, D.; Shapira, L.; Venkataraman, N.T. Effectiveness of Autologous Tissue Grafts on Soft Tissue Ingrowth in Patients Following Partial Root Extraction with Socket Shield: A Retrospective Analysis of a Case Series. Int. J. Oral Maxillofac. Implants 2021, 36, 362–370. [Google Scholar] [CrossRef]
- Beldhi, M.; Penmetsa, G.S.; Gottumukkala, S.N.V.S.; Ramesh, K.S.V.; Kumar, P.M.; Manchala, B. Evaluation and comparison of autologous particulate dentin with demineralized freeze dried bone allograft in ridge preservation procedures—A prospective clinical study. Clin. Oral Investig. 2024, 28, 492. [Google Scholar] [CrossRef]
- Oguić, M.; Čandrlić, M.; Tomas, M.; Vidaković, B.; Blašković, M.; Jerbić Radetić, A.T.; Zoričić Cvek, S.; Kuiš, D.; Cvijanović Peloza, O. Osteogenic Potential of Autologous Dentin Graft Compared with Bovine Xenograft Mixed with Autologous Bone in the Esthetic Zone: Radiographic, Histologic and Immunohistochemical Evaluation. Int. J. Mol. Sci. 2023, 24, 6440. [Google Scholar] [CrossRef]
- Santos, A.; Botelho, J.; Machado, V.; Borrecho, G.; Proença, L.; Mendes, J.J.; Mascarenhas, P.; Alcoforado, G. Autogenous Mineralized Dentin versus Xenograft granules in Ridge Preservation for Delayed Implantation in Post-extraction Sites: A Randomized controlled clinical trial with an 18 months follow-up. Clin. Oral Implants Res. 2021, 32, 905–915. [Google Scholar] [CrossRef]
- Khalifah, M.A.; Elgendy, A.M.A.; Elgendy, E. Untreated Mineralized Dentin Grafts (UMDGs) vs Xenografts Around Immediately Placed Dental Implants in the Mandibular Anterior Region: A Randomized Controlled Clinical Trial. Int. J. Oral Maxillofac. Implants 2024, 39, 381–388. [Google Scholar] [CrossRef]
- Ouyang, L.; Li, J.; Dong, Y.; Li, J.; Jin, F.; Luo, Y.; Wang, R.; Wang, S. Comparison of clinical efficacy between autologous partially demineralized dentin matrix and deproteinized bovine bone mineral for bone augmentation in orthodontic patients with alveolar bone deficiency: A randomized controlled clinical trial. BMC Oral Health 2024, 24, 984. [Google Scholar] [CrossRef] [PubMed]
- Minetti, E.; Palermo, A.; Savadori, P.; Barlattani, A., Jr.; Franco, R.; Michele, M.; Gianfreda, F.; Bollero, P. Autologous tooth graft: A histological comparison between dentin mixed with xenograft and dentin alone grafts in socket preservation. J. Biol. Regul. Homeost. Agents 2019, 33 (Suppl. 2), 189–197. [Google Scholar] [PubMed]
- Wu, B.Z.; Zhang, J.Y.; Xu, J.Y.; Wang, F.; Yan, Z.Y.; Cui, N.H. Effect of mineralized dentin matrix on the prognosis of bone defect and retained root after coronectomy. Clin. Oral Investig. 2024, 28, 375. [Google Scholar] [CrossRef]
- Artzi, Z.; Netanely, E.; Renert, U. Autogenous Particulate Dentin in Socket Site Preservation Procedures: Histologic and Histomorphometric Observations. Int. J. Oral Maxillofac. Implants 2022, 37, 373–380. [Google Scholar] [CrossRef]
- Andrade, C.; Camino, J.; Nally, M.; Quirynen, M.; Martínez, B.; Pinto, N. Combining autologous particulate dentin, L-PRF, and fibrinogen to create a matrix for predictable ridge preservation: A pilot clinical study. Clin. Oral Investig. 2020, 24, 1151–1160. [Google Scholar] [CrossRef]
- Yüceer-Çetiner, E.; Özkan, N.; Önger, M.E. Effect of Autogenous Dentin Graft on New Bone Formation. J. Craniofac. Surg. 2021, 32, 1354–1360. [Google Scholar] [CrossRef]
- Pohl, S.; Prasad, H.; Kotsakis, G.A. Human Histologic Analysis of Implant Osseointegration in a Healed Site Grafted with Nondemineralized Autologous Tooth-Derived Graft Material. Int. J. Periodontics Restor. Dent. 2022, 42, e199–e207. [Google Scholar] [CrossRef]
- Vares, Y.; Binderman, I.; Galyant, K. Traumatic Mandibular Cyst Defect Grafted with Autologous Dentin and Platelet-Rich Fibrin Composite: A Case Report. Int. J. Periodontics Restor. Dent. 2022, 42, 253–259. [Google Scholar] [CrossRef]
- van Orten, A.; Goetz, W.; Bilhan, H. Tooth-Derived Granules in Combination with Platelet-Rich Fibrin (“Sticky Tooth”) in Socket Preservation: A Histological Evaluation. Dent. J. 2022, 10, 29. [Google Scholar] [CrossRef]
- Khanijou, M.; Zhang, R.; Boonsiriseth, K.; Srisatjaluk, R.L.; Suphangul, S.; Pairuchvej, V.; Wongsirichat, N.; Seriwatanachai, D. Physicochemical and osteogenic properties of chairside processed tooth derived bone substitute and bone graft materials. Dent. Mater. J. 2021, 40, 173–183. [Google Scholar] [CrossRef]
- Prieto, E.M.; Talley, A.D.; Gould, N.R.; Zienkiewicz, K.J.; Drapeau, S.J.; Kalpakci, K.N.; Guelcher, S.A. Effects of particle size and porosity on in vivo remodeling of settable allograft bone/polymer composites. J. Biomed. Mater. Res. B Appl. Biomater. 2015, 103, 1641–1651. [Google Scholar] [CrossRef] [PubMed]
- Koga, T.; Minamizato, T.; Kawai, Y.; Miura, K.-i.; Nakatani, Y.; Sumita, Y.; Asahina, I. Bone Regeneration Using Dentin Matrix Depends on the Degree of Demineralization and Particle Size. PLoS ONE 2016, 11, e0147235. [Google Scholar] [CrossRef] [PubMed]
- Comuzzi, L.; Tumedei, M.; Piattelli, A.; Tartaglia, G.; Del Fabbro, M. Radiographic Analysis of Graft Dimensional Changes in Transcrestal Maxillary Sinus Augmentation: A Retrospective Study. Materials 2022, 15, 2964. [Google Scholar] [CrossRef] [PubMed]
- Farzad, P.; Lundgren, T.; Al-Asfour, A.; Andersson, L.; Dahlin, C. Integration of Dental Implants in Conjunction with EDTA-Conditioned Dentin Grafts: An Experimental Study. Dent. J. 2021, 9, 63. [Google Scholar] [CrossRef]
- Minetti, E.; Celko, M.; Contessi, M.; Carini, F.; Gambardella, U.; Giacometti, E.; Santillana, J.; Beca Campoy, T.; Schmitz, J.H.; Libertucci, M.; et al. Implants Survival Rate in Regenerated Sites with Innovative Graft Biomaterials: 1 Year Follow-Up. Materials 2021, 14, 5292. [Google Scholar] [CrossRef]
- Minetti, E.; Dipalma, G.; Palermo, A.; Patano, A.; Inchingolo, A.D.; Inchingolo, A.M.; Inchingolo, F. Biomolecular Mechanisms and Case Series Study of Socket Preservation with Tooth Grafts. J. Clin. Med. 2023, 12, 5611. [Google Scholar] [CrossRef]
- Minetti, E.; Palermo, A.; Berardini, M. Comparison of Different Techniques in Post-Extractive Socket Regeneration Using Autologous Tooth Graft: Histological and Clinical Outcomes. Eur. J. Dent. 2024, 18, 477–484. [Google Scholar] [CrossRef]
- Grawish, M.E.; Grawish, L.M.; Grawish, H.M.; Grawish, M.M.; Holiel, A.A.; Sultan, N.; El-Negoly, S.A. Demineralized Dentin Matrix for Dental and Alveolar Bone Tissues Regeneration: An Innovative Scope Review. Tissue Eng. Regen. Med. 2022, 19, 687–701. [Google Scholar] [CrossRef]
- Wu, X.; Peng, W.; Liu, G.; Wang, S.; Duan, B.; Yu, J.; Yang, H.; Huang, C. Extrafibrillarly Demineralized Dentin Matrix for Bone Regeneration. Adv. Healthc. Mater. 2023, 12, e2202611. [Google Scholar] [CrossRef]
- Minetti, E.; Palermo, A.; Savadori, P.; Patano, A.; Inchingolo, A.D.; Rapone, B.; Malcangi, G.; Inchingolo, F.; Dipalma, G.; Tartaglia, F.C.; et al. Socket Preservation Using Dentin Mixed with Xenograft Materials: A Pilot Study. Materials 2023, 16, 4945. [Google Scholar] [CrossRef]
- Umebayashi, M.; Ohba, S.; Kurogi, T.; Noda, S.; Asahina, I. Full Regeneration of Maxillary Alveolar Bone Using Autogenous Partially Demineralized Dentin Matrix and Particulate Cancellous Bone and Marrow for Implant-Supported Full Arch Rehabilitation. J. Oral Implantol. 2020, 46, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Dłucik, R.; Orzechowska-Wylęgała, B.; Dłucik, D.; Bogus, K. Histological examination of tooth-derived biomaterials obtained from different devices. Expert Rev. Med. Devices 2023, 20, 979–988. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Ruangsawasdi, N.; Pumpaluk, P.; Yuan, Q.; Peng, Y.; Seriwatanachai, D. Bone regeneration property of tooth-derived bone substitute prepared chairside for periodontal bone defects: An experimental study. BMC Oral Health 2023, 14, 863. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Chu, Z.; Ma, J.; Ouyang, L. Immunomodulation Effect of Biomaterials on Bone Formation. J. Funct. Biomater. 2022, 13, 103. [Google Scholar] [CrossRef]
- Kovtun, A.; Messerer, D.A.C.; Scharffetter-Kochanek, K.; Huber-Lang, M.; Ignatius, A. Neutrophils in Tissue Trauma of the Skin, Bone, and Lung: Two Sides of the Same Coin. J. Immunol. Res. 2018, 2018, 8173983. [Google Scholar] [CrossRef]
- Ehnert, S.; Relja, B.; Schmidt-Bleek, K.; Fischer, V.; Ignatius, A.; Linnemann, C.; Rinderknecht, H.; Huber-Lang, M.; Kalbitz, M.; Histing, T.; et al. Effects of immune cells on mesenchymal stem cells during fracture healing. World J. Stem Cells 2021, 13, 1667–1695. [Google Scholar] [CrossRef]
- Silva, T.A.; Lara, V.S.; Silva, J.S.; Garlet, G.P.; Butler, W.T.; Cunha, F.Q. Dentin sialoprotein and phosphoprotein induce neutrophil recruitment: A mechanism dependent on IL-1beta, TNF-beta, and CXC chemokines. Calcif. Tissue Int. 2004, 74, 532–541. [Google Scholar] [CrossRef]
- Cai, B.; Lin, D.; Li, Y.; Wang, L.; Xie, J.; Dai, T.; Liu, F.; Tang, M.; Tian, L.; Yuan, Y.; et al. N2-Polarized Neutrophils Guide Bone Mesenchymal Stem Cell Recruitment and Initiate Bone Regeneration: A Missing Piece of the Bone Regeneration Puzzle. Adv. Sci. 2021, 8, e2100584. [Google Scholar] [CrossRef]
- Lu, F.; Verleg, S.M.N.E.; Groven, R.V.M.; Poeze, M.; van Griensven, M.; Blokhuis, T.J. Is there a role for N1-N2 neutrophil phenotypes in bone regeneration? A systematic review. Bone 2024, 181, 117021. [Google Scholar] [CrossRef]
- Nasirzade, J.; Kargarpour, Z.; Panahipour, L.; Gruber, R. Acid Dentin Lysate Modulates Macrophage Polarization and Osteoclastogenesis In Vitro. Materials 2021, 14, 6920. [Google Scholar] [CrossRef]
- Li, H.; Sun, J.; Yang, H.; Han, X.; Luo, X.; Liao, L.; Yang, B.; Zhu, T.; Huo, F.; Guo, W.; et al. Recruited CD68+CD206+ macrophages orchestrate graft immune tolerance to prompt xenogeneic-dentin matrix-based tooth root regeneration. Bioact. Mater. 2021, 6, 1051–1072. [Google Scholar] [CrossRef] [PubMed]
- Nasirzade, J.; Alccayhuaman, K.A.A.; Kargarpour, Z.; Kuchler, U.; Strauss, F.J.; Panahipour, L.; Kampleitner, C.; Heimel, P.; Schwarz, F.; Gruber, R. Acid Dentin Lysate Failed to Modulate Bone Formation in Rat Calvaria Defects. Biology 2021, 10, 196. [Google Scholar] [CrossRef] [PubMed]
- Tanoue, R.; Ohta, K.; Miyazono, Y.; Iwanaga, J.; Koba, A.; Natori, T.; Iwamoto, O.; Nakamura, K.I.; Kusukawa, J. Three-dimensional ultrastructural analysis of the interface between an implanted demineralised dentin matrix and the surrounding newly formed bone. Sci. Rep. 2018, 8, 2858. [Google Scholar] [CrossRef]
- Rumpler, M.; Würger, T.; Roschger, P.; Zwettler, E.; Peterlik, H.; Fratzl, P.; Klaushofer, K. Microcracks and osteoclast resorption activity in vitro. Calcif. Tissue Int. 2012, 90, 230–238. [Google Scholar] [CrossRef]
- Sapoznikov, L.; Haim, D.; Zavan, B.; Scortecci, G.; Humphrey, M.F. A novel porcine dentin-derived bone graft material provides effective site stability for implant placement after tooth extraction: A randomized controlled clinical trial. Clin. Oral Investig. 2023, 27, 2899–2911. [Google Scholar] [CrossRef]
- Khurshid, Z.; Alfarhan, M.F.A.; Bayan, Y.; Mazher, J.; Adanir, N.; Dias, G.J.; Cooper, P.R.; Ratnayake, J. Development, physicochemical characterization and in-vitro biocompatibility study of dromedary camel dentine derived hydroxyapatite for bone repair. PeerJ 2023, 11, e15711. [Google Scholar] [CrossRef]
- Capella-Monsonís, H.; Zeugolis, D.I. Decellularized xenografts in regenerative medicine: From processing to clinical application. Xenotransplantation 2021, 28, e12683. [Google Scholar] [CrossRef]
- Jiang, S.; Zhuang, Y.; Cai, M.; Wang, X.; Lin, K. Decellularized extracellular matrix: A promising strategy for skin repair and regeneration. Eng. Regen. 2023, 4, 357–374. [Google Scholar] [CrossRef]
- Mlakar, N.; Pavlica, Z.; Petelin, M.; Štrancar, J.; Zrimšek, P.; Pavlic, A. Animal and human dentin microstructure and elemental composition. Cent. Eur. J. Med. 2014, 9, 468–476. [Google Scholar] [CrossRef]
- Ortiz-Ruiz, A.J.; Teruel-Fernández, J.D.; Alcolea-Rubio, L.A.; Hernández-Fernández, A.; Martínez-Beneyto, Y.; Gispert-Guirado, F. Structural differences in enamel and dentin in human, bovine, porcine, and ovine teeth. Ann. Anat. 2018, 218, 7–17. [Google Scholar] [CrossRef]
- Li, H.; Ma, B.; Yang, H.; Qiao, J.; Tian, W.; Yu, R. Xenogeneic dentin matrix as a scaffold for biomineralization and induced odontogenesis. Biomed. Mater. 2021, 16, 045020. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhou, S.; Zhan, Y.; Mei, Z.; Qian, A.; Yuan, Y.; Zhang, X.; Fu, T.; Ma, S.; Li, J. Molecular insights into the proteomic composition of porcine treated dentin matrix. Mater. Today Bio 2024, 25, 100990. [Google Scholar] [CrossRef] [PubMed]
- EN ISO 13485:2016; Medical Devices—Quality Management Systems—Requirements for Regulatory Purposes. International Organization for Standardization: Geneva, Switzerland, 2016.
- EN ISO 9001:2015; Quality Management Systems—Requirements. International Organization for Standardization: Geneva, Switzerland, 2015.
- EN ISO 22442-1:2020; Medical Devices Utilizing Animal Tissues and Their Derivatives. Part 1: Application of Risk Management. International Organization for Standardization: Geneva, Switzerland, 2020.
- Li, S.; Wang, J.Z.; Yin, B.; Hu, Z.S.; Zhang, X.J.; Wu, W.; Liu, G.B.; Liu, Y.K.; Fu, L.; Zhang, Y.Z. Atlas of Human Skeleton Hardness Obtained Using the Micro-indentation Technique. Orthop. Surg. 2021, 13, 1417–1422. [Google Scholar] [CrossRef]
- Fuentes, V.; Toledano, M.; Osorio, R.; Carvalho, R.M. Microhardness of superficial and deep sound human dentin. J. Biomed. Mater. Res. A 2003, 66, 850–853. [Google Scholar] [CrossRef]
- Szostakowski, B.; DeMaio, M. Ideal xenograft or a perfect bone substitute?—A retrospective review and analysis of the historical concept of ivory implants in orthopaedics. Int. Orthop. 2020, 44, 1003–1009. [Google Scholar] [CrossRef]
- Szostakowski, B.; Jagiello, J.; Skinner, J.A. ArtiFacts: Ivory Hemiarthroplasty: The Forgotten Concept Lives On. Clin. Orthop. Relat. Res. 2017, 475, 2850–2854. [Google Scholar] [CrossRef]
Graft Material | Advantages | Disadvantages | Examples * |
---|---|---|---|
Autogenous bone |
|
| Mandibular bone Iliac crest |
Allogenic bone |
|
| FDBA, DBA |
Xenogeneic bone deproteinized |
|
| Bio-Oss Cerabone |
Xenogeneic bone retained ECM |
|
| Osteobiol Gen Os |
Alloplastic synthetics/ Bioceramics |
|
| TCP HA Bioactive glass Calcium phosphates Calcium sulfate |
Synthetic composites |
|
| BMP-2/collagen PDGF-BB/TCP |
Autogenous dentin |
|
| Smart Dentin Grinder Tooth Transformer Autobon VacuaSonic auto-FDT AutoBT |
Substance | Compressive Strength (MPa *) | Tensile Strength (MPa *) | Elasticity/Young’s Modulus (GPa *) |
---|---|---|---|
Dentin | 250–350 | 21–160 | 11–19.7 |
Bone (cortical/compact) | 88–200 | 124–174 | 3.9–18.9 |
Bone (trabecular/ spongeous **) | 0.1–16 | ND | 0.05–0.5 |
Dentin (demineralized) | ND | 30 | 0.02–0.21 |
Clinical Applications | Authors and Year | Material Form | Mineralization | Aims and Conclusions |
---|---|---|---|---|
Alveolar ridge deficiency reconstruction | Ramanauskaite et al., 2019 [104] | particulate | all types | Systematic review examining the clinical efficacy of autogenous tooth material for alveolar ridge defect repair. Studies with limited patient numbers and short-term follow-up, support the potential of dentin material for alveolar ridge reconstruction. |
Alveolar ridge augmentation, preservation, sinus augmentation, implant placement | Zhang et al., 2021 [105] | particulate | all types | Informal review comparing dentin graft material with other materials. Dentin has many advantages, including biocompatibility and osteoinductive properties. |
Oral bone defects requiring augmentation (maxillary sinus lift, alveolar bone augmentation) | Li et al., 2022 [106] | particulate | all types 1 | Meta-analysis using Cochrane and PRISMA methods of 7 RCTs comparing dentin with DBBM (Bio-Oss). Dentin significantly promoted bone regeneration and was not inferior to Bio-Oss. |
Dental implant placement | Mahardawi et al., 2023 [107] | particulate | all types | Systematic review and meta-analysis using PRISMA methods, comparing implant stability for dentin compared to other materials in augmented sites. Dentin led to successful implant placement which, within the limited evidence base, was similar to autogenous bone and DBBM in terms of implant survival, ISQ, MBL, and peri-implant complications. |
Sinus floor augmentation, alveolar ridge augmentation/preservation, cyst repair, implant placement | Murata et al., 2023 [14] | particulate/block | DDM | Informal review of animal models and clinical use of partial- and complete-DDM. Clinical data confirmed the efficacy of DDM for repair of a variety of dental bone defects. |
Alveolar ridge preservation | Sánchez-Labrador et al., 2023 [108] | particulate | all types | Systematic review, using Cochrane and PRISMA methods, of the clinical outcomes with particulate dentin for alveolar ridge preservation procedures. Dentin was effective for ridge preservation with good volume maintenance, a high proportion of new bone growth and low complications. A need for more comparative studies with longer follow-up was identified. |
Sinus floor augmentation, alveolar ridge augmentation/preservation, implant placement | Inchingolo et al., 2023 [101] | particulate | DDM | Systematic review using PRISMA methods to examine the preparation and clinical use of DDM. DDM was confirmed to be effective for bone repair for several dental procedures. Partial demineralization was considered better than complete demineralization to preserve growth factors in the material. |
Socket preservation after tooth extraction | Madi et al., 2023 [109] | particulate | DDM | Systematic review using PRISMA methods to examine the clinical effects of different graft materials for socket preservation. DDM showed favorable results for socket preservation in terms of new bone formation, residual graft and ridge width. |
Alveolar ridge augmentation | Mahardawi et al., 2023 [110] | block | MDM | Systematic review and meta-analysis using PRISMA methods to examine the efficacy of chairside MDM blocks compared to other materials for ridge augmentation. Chairside MDM blocks were successful for ridge augmentation. Evidence was weak due to the low number of comparative studies. |
Socket preservation after tooth extraction | Feng et al., 2023 [111] | particulate | all types | Systematic review and meta-analysis using PRISMA methods to examine the clinical efficacy of dentin material for extraction socket ridge preservation compared to other graft materials or blood clot. Dentin material was more effective in maintaining ridge dimensions than blood clot healing, DBBM, or β-TCP and produced good new bone growth. |
Alveolar ridge augmentation, sinus augmentation | Hashemi et al., 2024 [112] | particulate/block | all types | Systematic review using PRISMA methods to examine all systemic and meta-analysis reviews published up to August 2022. Autogenous tooth bone grafts appeared to be effective in oral defect reconstructions compared to Bio-Oss, autogenous bone blocks, or no-grafts. Additional long-term follow-up data are required, as are comparative studies, due to heterogenous methods and end points. |
Sinus floor augmentation, alveolar ridge augmentation/preservation, cyst repair, implant placement | Khurshid et al., 2024 [113] | particulate | DDM | Review of the literature describing the potential of DDM for bone regeneration, including animal studies, clinical studies and reviews, and case reports. DDM was rated as an attractive option for bone regeneration and extracted socket preservation. Further studies are required to optimize the varied processing methods and for future therapeutic applications. |
Alveolar ridge augmentation | Mahendra et al., 2024 [114] | particulate | all types | Systematic review using PRISMA methods to examine the effectiveness of dentin-derived alveolar bone graft for alveolar augmentation. Dentin-derived grafts resulted in better volume maintenance and higher new bone growth with low complications compared to controls. The influence of the degree of demineralization was unclear. |
Sinus floor augmentation, alveolar ridge preservation, implant placement, guided bone regeneration | Sun et al., 2024 [115] | particulate | all types | Informal review of dentin-derived graft material composition, mechanisms of osteoinductivity, preparation, and clinical applications. Dentin provided a good alternative to autogenous bone in a variety of indications, but there is a need for longer term clinical efficacy data and more standardization in preparation procedures. |
Sinus floor augmentation, alveolar ridge preservation, implant placement, bone defect repair | Olchowy et al., 2024 [116] | particulate | all types | Systematic review using PRISMA methods to examine the regenerative properties of dentin biomaterial, with a focus on standardized grinding protocols. Particularly in dental surgery, graft material derived from teeth is a promising alternative to bone autografts. Outcomes were positive across a wide range of processing methods. |
Sinus floor augmentation, alveolar ridge augmentation/preservation, cyst repair, implant placement | Wysłouch et al., 2024 [117] | particulate | all types | High level narrative review explaining that tooth dentin graft material is a good viable alternative to autogenous bone. |
Authors and Year | Study Design | Study Aims and Outcomes | Materials (Graft Site No.) | Results/Commentary |
---|---|---|---|---|
Sánchez-Labrador et al., 2020 [118] | Prospective, randomized split-mouth | Clinical parameters at 3 and 6 m after 3rd molar extraction with either MDM grafting or standard blood clot healing | MDM (15) vs. blood clot (15) | Compared to blood clot healing at 6 m, the MDM grafted sites had mean crestal bone height gain rather than loss, and greater bone density, both of which were statistically significant. Probing depths on the remaining 2nd molar were also significantly reduced compared to the control side. |
Kuperschlag et al., 2020 [119] | Prospective, randomized, double arm, parallel group | Clinical and radiographic status at 3 and 12 m after impacted 3rd molar extraction with either MDM grafting or standard blood clot healing | MDM (13) vs. blood clot (11) | Compared to blood clot healing at 3 and 12 m, the MDM provided good bone growth with slow resorption, resulting in lower probing depth measurements. |
Mazzucchi et al., 2022 [120] | Prospective, double arm, split-mouth | Clinical parameters at 6 m after third molar extraction with either MDM grafting or blood clot healing | MDM (10) vs. blood clot (10) | 2nd molar pocket probing depths were decreased for both groups at 3 m and 6 m, with greater reduction for the dentin group, but only statistically significant at 3 m. Radiographic bone gain was greater for dentin at 6 m, but not statistically different. There was a trend for dentin graft to be better, but considerable within-group variability suggested the study was underpowered. The lack of membrane use may have contributed to the variability. |
Hussain et al., 2023 [121] | Prospective, randomized, double arm, parallel group | Clinical, radiographic, and histological status at 4 m after grafting for ridge preservation after tooth extraction using either MDM or natural healing | MDM (14) vs. blood clot (15) | MDM maintained ridge height and width better than blood clot control, with greater new bone formation at 4 m after grafting. |
Xu et al., 2023 [122] | Prospective, randomized, double arm, split-mouth | Clinical parameters of soft tissue repair at the alveolar ridge after ridge preservation following tooth extraction using either DDM or natural healing | DDM (22) vs. blood clot (22) | DDM (without membrane) better maintained gingival margin height at 30 days after grafting and showed more rapid soft tissue healing. At 3 days, there were more neutrophils in the dentin group associated with a quicker resolution of the initial inflammation. |
López Sacristán et al., 2024 [123] | Prospective, randomized, double arm, split-mouth | Radiological and histological status at 2 and 4 m after grafting with MDM in comparison to natural healing (both with collagen membrane), for alveolar ridge preservation after tooth extraction | MDM (22) vs. blood clot (22) | MDM had less alveolar shrinkage than the controls. Not all parameters showed statistical significance, likely due to insufficient patient numbers. No inflammatory reaction to MDM was observed with intimate contact between the particles and newly grown bone. Dentin was confirmed to be an ideal slow resorption material for ridge preservation. |
Gowda et al., 2023 [124] | Prospective, randomized, double arm, parallel group | Clinical and radiographic status at 4 m after alveolar ridge preservation grafting with either advanced PRF or PRF mixed with pDDM after tooth extraction | pDDM + PRF (8) vs. PRF (8) | pDDM mixed with PRF showed no significant radiographic reduction in alveolar dimensions at 4 m, whereas PRF-only treatment led to significant reduction. pDDM with PRF also had less reduction in clinical ridge dimensions compared to PRF. |
Korsch and Peichl [125] | Retrospective, double-arm, case-series | Clinical parameters at 3 m after lateral ridge augmentation with tooth-shell method compared to bone-shell method | pDDM (38) vs. autogenous bone (41) | Block tooth with pDDM particles was as effective as autogenous bone block with autogenous bone particulate for alveolar ridge augmentation and implant placement. Radiographic evaluation, ISQ, and peri-implant probing depths were similar. A similar low complication rate was found for both materials. |
Elraee et al., 2022 [126] | Prospective, randomized, double arm | Histomorphometric and clinical parameters at 6 m after upper central incisor horizontal ridge augmentation with either MDM block or bone block | MDM (21) vs. autogenous bone (21) | Both groups had uneventful healing and adequate clinical and radiographic ridge width gain but the MDM had statistically superior mean width at 6 m. Histology showed similar bone formation in both groups but slower resorption of MDM. The dentin integrated fully with the bone and was undergoing external replacement resorption. MDM was similar or even superior to autogenous bone in this context. |
Pohl et al., 2021 [127] | Retrospective, case series, 5-arm | Clinical and radiographic assessment of soft tissue ingrowth behind socket shield tooth root between different graft materials | MDM (7) vs. PRF (7) vs. particulate autogenous bone (7) vs. autogenous cortical bone plate (7) vs. no graft (6) | MDM particles were more effective than autogenous bone particles for promoting bone growth to the exclusion of soft tissue. MDM was similarly effective to cortical bone plate. Slow resorption and high osteoinductivity were thought to be the critical parameters in this case. |
Beldhi et al., 2024 [128] | Prospective, randomized, single-blinded, double arm | Radiographic status at 6 m after grafting with either MDM + PRF or demineralized freeze-dried allograft bone for ridge preservation after posterior tooth extraction | MDM + PRF (15) vs. DFDBA + PRF (15) | PRF-enhanced MDM showed less decrease in alveolar ridge dimensions at 6 m than PRF-enhanced allograft bone. |
Oguić et al., 2023 [129] | Prospective, randomized, double arm | Radiographic and histomorphometric status at 4 m after post-extraction grafting in the aesthetic zone using either MDM or autogenous bone/DBBM mixture | MDM (20) vs. autogenous bone/DBBM—Cerabone (17) | There was no statistical difference at 4 m between the groups in either the radiographic ridge width or in the percentages of newly formed bone, residual graft material and soft tissue in the histology. MDM was therefore as good as the combination of osteogenic autogenous bone and non-resorbable xenogeneic material, in terms of maintaining volume and producing new bone growth in the very sensitive aesthetic zone. |
Santos et al., 2021 [130] | Prospective, randomized, double arm, parallel group | Histomorphometry at 6 m post grafting, implant stability 2 m after placement, and clinical outcomes at 6, 12, and 18 m after placement were compared for post-extraction ridge preservation and delayed implant placement using either MDM or DBBM | MDM (26) vs. DBBM—Bio-Oss (26) | At 6 m, MDM showed more new bone growth and less graft material than DBBM. Primary implant stability was similar as was stability after 2 m. Peri-implant bleeding on probing had a similarly low incidence. Marginal bone loss was similarly low, as was the loss of keratinized gingival width. MDM had similar volume maintenance and implant stability to DBBM at up to 18 m follow-up. |
Khalifah et al., 2023 [131] | Prospective, randomized, double arm | Clinical and radiographic status at 3, 6, and 12 m after immediate implant placement in anterior mandible using either MDM or DBBM. | MDM (28) vs. DBBM (28) | MDM and DBBM were statistically equivalent in terms of primary implant stability and implant stability at time of loading and 12 m. Plaque index, bleeding index, and probing depth were similarly equivalent. MDM, however, had lower implant stability at 3 and 6 m after loading, and greater bone loss prior to exposure. Although dentin can provide adequate stability in the aesthetic region with immediate implant placement, these preliminary results suggest that it is not as reliable as standard xenograft material due to a higher resorption rate. |
Ouyang et al., 2024 [132] | Prospective, randomized, double arm | Radiographic status at 6 m and 2 years after alveolar ridge augmentation in orthodontic patients using either pDDM or DBBM | pDDM (20) vs. DBBM—Bio-Oss (20) | Both treatments achieved ridge augmentation that allowed for orthodontic tooth migration. At 6 m, the ridge width at 3 mm below apex was greater for pDDM than DBBM but 2-year dimensions were similar. Dentin was effective for augmentation but in the longer term was resorbed more than DBBM, although resulting in similar outcomes. pDDM had a milder post-operative response, suggestive of a relative anti-inflammatory effect compared to DBBM. |
Minetti et al., 2019 [133] | Prospective, double arm case-series | Histomorphometry 4 m after tooth extraction socket repair using DDM compared to a 1:1 DDM/DBBM—(Bio-Oss) | DDM (3) vs. DDM/DBBM 1:1 (3) | Both DDM alone and combined with DBBM provided good ridge preservation at 4 m after grafting. Sites with dentin alone had more new bone growth and less retained graft material than those mixed with DBBM. |
Wu et al., 2024 [134] | Prospective, randomized, three arm, parallel group | Clinical and radiographic status at 6 m after grafting with either MDM, TCP, or collagen sponge to improve bone healing after third molar retained root coronectomy | MDM (20) vs. TCP (19) vs. collagen sponge (19) | Although TCP facilitated bone healing compared to collagen sponge, the MDM was superior to TCP in terms of preventing retained root migration and rotation, and in bone embedding. It was also better in supporting the 2nd molar root. Thus, in a complex situation of a bone defect with retained tooth root and potential exposure of adjacent tooth root, the MDM rapidly established a mechanically robust site with good integrated new bone growth. |
Parameter | Aspect | Property/Specification |
---|---|---|
Raw material | Source | Health- and feed-controlled isolated pig colony |
Tissue | Porcine teeth | |
Material properties | Physical form | Irregular shaped particles, retaining dentin microstructure |
Particle size | 300–900 μm | |
Composition | ca. 70% hydroxyapatite and ca. 30% organic ECM (89% type I collagen, 1% proteoglycans, 10% others—non-collagenous proteins), partially degraded | |
Vickers hardness | 73 HV ± 14 HV | |
Ca/P | 1.59–1.67 | |
Microstructure | Porosity: 80% 0.7–1.5 μm tubules; 20% coarse pores 2–15 μm | |
Implant properties | Clinical bone growth | Superior new bone formation, bone-graft integration, and higher radiodensity than a porcine bone graft material with retained ECM at 4 months after mandibular premolar or molar tooth extraction in patients |
Preclinical bone growth | Superior to both deproteinated bone and sham treatment, in terms of bone regeneration and tolerability, in a canine mandibular two-wall defect model at 4, 12, and 26 weeks follow-up Good bone repair in extraction sockets and sub-periosteum pouches in a clinically relevant porcine mandibular defect model at 2.5 months after grafting | |
Biocompatibility | In clinical use for socket preservation, local site reactions and adverse events following extraction socket grafting and implant placement were similar to that of a standard clinically established bone graft material In a rabbit femoral condyle defect model, no intrinsically local adverse reactions, no local draining lymph node reaction, and no signs of systemic toxicity In a canine mandibular two-wall defect model, tolerability and initial inflammatory reaction was similar to the control deproteinized bone material In a porcine extraction socket and sub-periosteum pouch model, only moderate inflammation consistent with normal healing was seen No in vitro cytotoxicity of extracts | |
Resorption | In a canine two wall defect model, resorption up to 6.5 months was more rapid than for a deproteinated bovine bone material. In a rabbit condyle bone defect model, resorption assessed at 3 months was much slower than for a porcine bone material with retained organic ECM. Therefore, resorption is prolonged but not as long as for deproteinized xenograft bone graft material |
Graft Type | Usability | Safety | Effectiveness | Overall Score |
---|---|---|---|---|
Dentin Autograft | ++ | +++ | +++ | 8 |
Dentin Xenograft | +++ | ++ | +++ | 8 |
Bone Autograft | + | +++ | +++ | 7 |
Bone Allograft | ++ | + | ++ | 5 |
Bone Xenograft | +++ | + | ++ | 6 |
Synthetic Graft | ++ | +++ | + | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sapoznikov, L.; Humphrey, M. Progress in Dentin-Derived Bone Graft Materials: A New Xenogeneic Dentin-Derived Material with Retained Organic Component Allows for Broader and Easier Application. Cells 2024, 13, 1806. https://doi.org/10.3390/cells13211806
Sapoznikov L, Humphrey M. Progress in Dentin-Derived Bone Graft Materials: A New Xenogeneic Dentin-Derived Material with Retained Organic Component Allows for Broader and Easier Application. Cells. 2024; 13(21):1806. https://doi.org/10.3390/cells13211806
Chicago/Turabian StyleSapoznikov, Lari, and Martin Humphrey. 2024. "Progress in Dentin-Derived Bone Graft Materials: A New Xenogeneic Dentin-Derived Material with Retained Organic Component Allows for Broader and Easier Application" Cells 13, no. 21: 1806. https://doi.org/10.3390/cells13211806
APA StyleSapoznikov, L., & Humphrey, M. (2024). Progress in Dentin-Derived Bone Graft Materials: A New Xenogeneic Dentin-Derived Material with Retained Organic Component Allows for Broader and Easier Application. Cells, 13(21), 1806. https://doi.org/10.3390/cells13211806