Fetal Red Blood Cells: A Comprehensive Review of Biological Properties and Implications for Neonatal Transfusion
Abstract
:1. Introduction
2. Fetal RBC Shape, Hemoglobin Content, and Morphology
3. Membrane Properties
4. Rheology
5. Hemoglobin
6. Cellular Metabolism
7. Oxidative Injury to Neonatal RBCs During the Perinatal Period
8. Exposome
9. How Neonatal RBCs Age and Die
10. Allogenic CB-RBC Transfusions in Extreme Preterm Neonates
11. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Christensen, R.D.; Henry, E.; Jopling, J.; Wiedmeier, S.E. The CBC: Reference ranges for neonates. Semin. Perinatol. 2009, 33, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Henry, E.; Christensen, R.D. Reference Intervals in Neonatal Hematology. Clin. Perinatol. 2015, 42, 483–497. [Google Scholar] [CrossRef] [PubMed]
- Christensen, R.D.; Jopling, J.; Henry, E.; Wiedmeier, S.E. The erythrocyte indices of neonates, defined using data from over 12,000 patients in a multihospital health care system. J. Perinatol. 2008, 28, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Delayed Umbilical Cord Clamping after Birth: ACOG Committee Opinion, Number 814. Obstet. Gynecol. 2020, 136, E100–E106. [CrossRef]
- Rabe, H.; Gyte, G.M.L.; Díaz-Rossello, J.L.; Duley, L. Effect of timing of umbilical cord clamping and other strategies to influence placental transfusion at preterm birth on maternal and infant outcomes. Cochrane Database Syst. Rev. 2019, 2019, CD003248. [Google Scholar] [CrossRef]
- Mercer, J.S.; Erickson-Owens, D.A.; Collins, J.; Barcelos, M.O.; Parker, A.B.; Padbury, J.F. Effects of delayed cord clamping on residual placental blood volume, hemoglobin and bilirubin levels in term infants: A randomized controlled trial. J. Perinatol. 2017, 37, 260–264. [Google Scholar] [CrossRef]
- García, C.; Prieto, M.T.; Escudero, F.; Bosh-Giménez, V.; Quesada, L.; Lewanczyk, M.; Pertegal, M.; Delgado, J.L.; Blanco-Carnero, J.E.; De Paco Matallana, C. The impact of early versus delayed cord clamping on hematological and cardiovascular changes in preterm newborns between 24 and 34 weeks’ gestation: A randomized clinical trial. Arch. Gynecol. Obstet. 2024, 309, 2483–2490. [Google Scholar] [CrossRef]
- Christensen, R.D.; Yaish, H.M.; Henry, E.; Bennett, S.T. Red blood cell distribution width: Reference intervals for neonates. J. Matern. Neonatal Med. 2015, 28, 883–888. [Google Scholar] [CrossRef]
- Christensen, R.D.; Henry, E.; Bennett, S.T.; Yaish, H.M. Reference intervals for reticulocyte parameters of infants during their first 90 days after birth. J. Perinatol. 2016, 36, 61–66. [Google Scholar] [CrossRef]
- Zipursky, A.; Brown, E.; Palko, J.; Brown, E.J. The erythrocyte differential count in newborn infants. Am. J. Pediatr. Hematol. Oncol. 1983, 5, 45–51. [Google Scholar]
- Linderkamp, O.; Wu, P.Y.K.; Meiselman, H.J. Geometry of Neonatal and Adult Red Blood Cells. Pediatr. Res. 1983, 17, 250–253. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.M.; Ulinder, T.; Rakow, A.; Vanpee, M.; Wackernagel, D.; Sävman, K.; Hansen-Pupp, I.; Hellström, A.; Ley, D.; Andersson, O. Hyper high haemoglobin content in red blood cells and erythropoietic transitions postnatally in infants of 22 to 26 weeks’ gestation: A prospective cohort study. Arch. Dis. Child—Fetal Neonatal Ed. 2023, 108, 612–616. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Ahn, T.; Kim, K.; Lee, S.; Kook, S.; Lee, D.; Suh, I.B.; Na, S.; Park, Y. Three-dimensional refractive index tomograms and deformability of individual human red blood cells from cord blood of newborn infants and maternal blood. J. Biomed. Opt. 2015, 20, 111208. [Google Scholar] [CrossRef] [PubMed]
- Recktenwald, S.M.; Graessel, K.; Maurer, F.M.; John, T.; Gekle, S.; Wagner, C. Red blood cell shape transitions and dynamics in time-dependent capillary flows. Biophys. J. 2022, 121, 23–36. [Google Scholar] [CrossRef]
- Li, J.; Lykotrafitis, G.; Dao, M.; Suresh, S. Cytoskeletal dynamics of human erythrocyte. Proc. Natl. Acad. Sci. USA 2007, 104, 4937–4942. [Google Scholar] [CrossRef]
- Linderkamp, O.; Nash, G.; Wu, P.; Meiselman, H. Deformability and Intrinsic Material Properties of Neonatal Red Blood Cells. Blood 1986, 67, 1244–1250. [Google Scholar] [CrossRef]
- Neerhout, R.G. Erythrocyte lipids in the neonate. Pediatr. Res. 1968, 2, 172–178. [Google Scholar] [CrossRef]
- Piazze Garnica, J.J.; Pierucci, F.; Vozzi, G.; Cosmi, E.V.; Anceschi, M.M. The cholesterol to phospholipids ratio (C/PL) of the erythrocyte membrane in normotensive, hypertensive pregnant and in cord blood as assessed by a simple enzymatic method. Scand. J. Clin. Lab. Investig. 1994, 54, 631–635. [Google Scholar] [CrossRef]
- Kitamura, Y.; Kogomori, C.; Hamano, H.; Maekawa, I.; Shimizu, T.; Shiga, S. Fatty Acid Composition of the Erythrocyte Membranes Varies between Early-Term, Full-Term, and Late-Term Infants in Japan. Ann. Nutr. Metab. 2018, 73, 335–343. [Google Scholar] [CrossRef]
- Ogihara, T.; Mino, M. Vitamin E and preterm infants. Free Radic. Biol. Med. 2022, 180, 13–32. [Google Scholar] [CrossRef]
- Lemery, D.J.; Beal, V.; Vanlieferinghen, P.; Motta, C. Fetal blood cell membrane fluidity in small for gestational age fetuses. Neonatology 1993, 64, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Crespo, L.M.; Bifano, E.M.; Freedman, J.C. Membrane lipid fluidity and filterability of red blood cells from adults and newborns. Pediatr. Res. 1988, 24, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Colin, F.C.; Gallois, Y.; Rapin, D.; Meskar, A.; Chabaud, J.J.; Vicariot, M.; Ménez, J.F. Impaired Fetal Erythrocytes’ Filterability: Relationship with Cell Size, Membrane Fluidity, and Membrane Lipid Composition. Blood 1992, 79, 2148–2153. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, D.L.; Pasqualini, P. Erythrocyte Membrane Proteins of Premature and Full-Term Newborn Infants. Pediatr. Res. 1978, 12, 176–178. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.C.; Trakarnsanga, K.; Heesom, K.J.; Cogan, N.; Green, C.; Toye, A.M.; Parsons, S.F.; Anstee, D.J.; Frayne, J. Comparison of the Proteome of Adult and Cord Erythroid Cells, and Changes in the Proteome Following Reticulocyte Maturation. Mol. Cell Proteom. 2016, 15, 1938–1946. [Google Scholar] [CrossRef]
- Bautista, M.L.G.; Altaf, W.; Lall, R.; Wapnir, R.A. Cord blood red cell osmotic fragility: A comparison between preterm and full-term newborn infants. Early Hum. Dev. 2003, 72, 37–46. [Google Scholar] [CrossRef]
- Donahue, S.M.A.; Rifas-Shiman, S.L.; Olsen, S.F.; Gold, D.R.; Gillman, M.W.; Oken, E. Associations of maternal prenatal dietary intake of n-3 and n-6 fatty acids with maternal and umbilical cord blood levels. Prostaglandins Leukot. Essent. Fat. Acids 2009, 80, 289–296. [Google Scholar] [CrossRef]
- Yamada, K.; Kawabata, T.; Kagawa, Y.; Kimura, F.; Miyazawa, T.; Tatsuta, N.; Saito, S.; Arima, T.; Yaegashi, N.; Nakai, K. Relationships between docosahexaenoic acid compositions of maternal and umbilical cord erythrocytes in pregnant Japanese women. Prostaglandins Leukot. Essent. Fat. Acids 2019, 147, 1–5. [Google Scholar] [CrossRef]
- Gillespie, T.C.; Kim, E.S.; Grogan, T.; Tsui, I.; Chu, A.; Calkins, K.L. Decreased Levels of Erythrocyte Membrane Arachidonic and Docosahexaenoic Acids Are Associated with Retinopathy of Prematurity. Investig. Ophthalmol. Vis. Sci. 2022, 63, 23. [Google Scholar] [CrossRef]
- Hellström, A.; Nilsson, A.K.; Wackernagel, D.; Pivodic, A.; Vanpee, M.; Sjöbom, U.; Hellgren, G.; Hallberg, B.; Domellöf, M.; Klevebro, S.; et al. Effect of Enteral Lipid Supplement on Severe Retinopathy of Prematurity: A Randomized Clinical Trial. JAMA Pediatr. 2021, 175, 359–367. [Google Scholar] [CrossRef]
- Boucher, O.; Burden, M.J.; Muckle, G.; Saint-Amour, D.; Ayotte, P.; Dewailly, E.; Nelson, C.A.; Jacobson, S.W.; Jacobson, J.L. Neurophysiologic and neurobehavioral evidence of beneficial effects of prenatal omega-3 fatty acid intake on memory function at school age. Am. J. Clin. Nutr. 2011, 93, 1025–1037. [Google Scholar] [CrossRef] [PubMed]
- Thomas, T.; Cendali, F.; Fu, X.; Gamboni, F.; Morrison, E.J.; Beirne, J.; Nemkov, T.; Antonelou, M.H.; Kriebardis, A.; Welsby, I.; et al. Fatty acid desaturase activity in mature red blood cells and implications for blood storage quality. Transfusion 2021, 61, 1867–1883. [Google Scholar] [CrossRef] [PubMed]
- Kasim, H.H.; Olga, L.; Snowden, S.; Cropp, E.; Koulman, A.; Beardsall, K. A comparative analyses of lipid ratios representing desaturase enzyme activity between preterm and term infants within the first ten weeks of life. Lipids Health Dis. 2023, 22, 133. [Google Scholar] [CrossRef] [PubMed]
- Nita, R.; Kawabata, T.; Kagawa, Y.; Nakayama, K.; Yanagisawa, Y.; Iwamoto, S.; Kimura, F.; Miyazawa, T.; Tatsuta, N.; Arima, T.; et al. Associations of erythrocyte fatty acid compositions with FADS1 gene polymorphism in Japanese mothers and infants. Prostaglandins Leukot. Essent. Fat. Acids 2020, 152, 102031. [Google Scholar] [CrossRef] [PubMed]
- Wimalasena, S.T.; Ramírez Silva, C.I.; Gonzalez Casanova, I.; Rivera, J.A.; Sun, Y.V.; Stein, A.D.; Ferranti, E.P.; Alvarez, J.A.; Demmelmair, H.; Koletzko, B.; et al. Maternal and Offspring Fatty Acid Desaturase Variants, Prenatal DHA Supplementation, and Dietary n–6, n–3 Fatty Acid Ratio in Relation to Cardiometabolic Health in Mexican Children. J. Nutr. 2024, 154, 1540–1548. [Google Scholar] [CrossRef]
- Chow, E.I.H.; Chen, D. Kinetic characteristics of bicarbonate-chloride exchange across the neonatal human red cell membrane. Biochim. Biophys. Acta—Biomembr. 1982, 685, 196–202. [Google Scholar] [CrossRef]
- Cohn, C.; Delaney, M.; Johnson, S.; Katz, L.; Schwartz, J. Technical Manual 21st Edition Methods and Appendices; AABB: Bethesda, MD, USA, 2023. [Google Scholar]
- Zhurova, M.; McGann, L.E.; Acker, J.P. Osmotic parameters of red blood cells from umbilical cord blood. Cryobiology 2014, 68, 379–388. [Google Scholar] [CrossRef]
- Benga, G.; Frenţescu, L.; Matei, H.; Ţigan, Ş. Comparative nuclear magnetic resonance studies of water permeability of red blood cells from maternal venous blood and newborn umbilical cord blood. Clin. Chem. Lab. Med. 2001, 39, 606–611. [Google Scholar] [CrossRef]
- Gibson, J.S.; Speake, P.F.; Muzyamba, M.C.; Husain, F.; Luckas, M.C.M.; Ellory, J.C. K+ transport in red blood cells from human umbilical cord. Biochim. Biophys. Acta—Biomembr. 2001, 1512, 231–238. [Google Scholar] [CrossRef]
- Vásárhelyi, B.; Vér, Á.; Nobilis, A.; Szabó, T.; Tulassay, T. Functional and structural properties of Na+/K+-ATPase enzyme in neonatal erythrocytes. Eur. J. Clin. Investig. 1998, 28, 543–545. [Google Scholar] [CrossRef]
- Zhurova, M.; Lusianti, R.E.; Higgins, A.Z.; Acker, J.P. Osmotic tolerance limits of red blood cells from umbilical cord blood. Cryobiology 2014, 69, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Linderkamp, O. 8 Blood rheology in the newborn infant. Baillieres Clin. Haematol. 1987, 1, 801–825. [Google Scholar] [CrossRef] [PubMed]
- Linderkamp, O.; Guntner, M.; Hiltl, W.; Vargas, V.M. Erythrocyte Deformability in the Fetus, Preterm, and Term Neonate. Pediatr. Res. 1986, 20, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Kampen, P.J.T.; Støttrup-Als, G.R.; Bruun-Andersen, N.; Secher, J.; Høier, F.; Hansen, A.T.; Dziegiel, M.H.; Christensen, A.N.; Berg-Sørensen, K. Classification of fetal and adult red blood cells based on hydrodynamic deformation and deep video recognition. Biomed. Microdevices 2024, 26, 5. [Google Scholar] [CrossRef]
- Linderkamp, O.; Hammer, B.J.; Miller, R. Filterability of Erythrocytes and Whole Blood in Preterm and Full-Term Neonates and Adults. Pediatr. Res. 1986, 20, 1269–1273. [Google Scholar] [CrossRef]
- Ruef, P.; Stadler, A.A.; Poeschl, J. Flow behavior of fetal, neonatal and adult RBCs in narrow (3-6 μm) capillaries--Calculation and experimental application. Clin. Hemorheol. Microcirc. 2014, 58, 317–331. [Google Scholar] [CrossRef]
- Linderkamp, O.; Friederichs, E.; Meiselman, H.J. Mechanical and Geometrical Properties of Density-Separated Neonatal and Adult Erythrocytes. Pediatr. Res. 1993, 34, 688–693. [Google Scholar] [CrossRef]
- Böhler, T.; Leo, A.; Stadler, A.; Linderkamp, O. Mechanical Fragility of Erythrocyte Membrane in Neonates and Adults. Pediatr. Res. 1992, 32, 92–96. [Google Scholar] [CrossRef]
- Ruef, P.; Gehm, J.; Gehm, L.; Pöschl, J. Shear stress and force required for tether formation of neonatal and adult erythrocytes. Clin. Hemorheol. Microcirc. 2011, 48, 119–128. [Google Scholar] [CrossRef]
- Baskurt, O.K.; Meiselman, H.J. Erythrocyte aggregation: Basic aspects and clinical importance. Clin. Hemorheol. Microcirc. 2013, 53, 23–37. [Google Scholar] [CrossRef]
- Linderkamp, O.; Ozanne, P.; Wu, P.Y.K.; Meiselman, H.J. Red Blood Cell Aggregation in Preterm and Term Neonates and Adults. Pediatr. Res. 1984, 18, 1356–1360. [Google Scholar] [CrossRef] [PubMed]
- Rampling, M.W.; Whittingstall, P.; Martin, G.; Bignall, S.; Rivers, R.P.; Lissauer, T.J.; Bailey, P.C. A comparison of the rheologic properties of neonatal and adult blood. Pediatr. Res. 1989, 25, 457–460. [Google Scholar] [CrossRef] [PubMed]
- El Bouhmadi, A.; Boulot, P.; Laffargue, F.; Brun, J.F. Rheological properties of fetal red cells with special reference to aggregability and disaggregability analyzed by light transmission and laser backscattering techniques. Clin. Hemorheol. Microcirc. 2000, 22, 79–90. [Google Scholar] [PubMed]
- Arbell, D.; Orkin, B.; Bar-Oz, B.; Barshtein, G.; Yedgar, S. Premature Red Blood Cells Have Decreased Aggregation and Enhanced Aggregability. J. Physiol. Sci. 2008, 58, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Christensen, R.D.; Baer, V.L.; Gerday, E.; Sheffield, M.J.; Richards, D.S.; Shepherd, J.G.; Snow, G.L.; Bennett, S.T.; Frank, E.L.; Oh, W. Whole-blood viscosity in the neonate: Effects of gestational age, hematocrit, mean corpuscular volume and umbilical cord milking. J. Perinatol. 2013, 34, 16–21. [Google Scholar] [CrossRef]
- Barshtein, G.; Arbell, D.; Yedgar, S. Hemodynamic functionality of transfused red blood cells in the microcirculation of blood recipients. Front. Physiol. 2018, 9, 325413. [Google Scholar] [CrossRef]
- Arbell, D.; Bin-Nun, A.; Zugayar, D.; Eventov-Friedman, S.; Chepel, N.; Srebnik, N.; Hamerman, C.; Wexler, T.L.R.; Barshtein, G.; Yedgar, S. Deformability of cord blood vs. newborns’ red blood cells: Implication for blood transfusion. J. Matern. Fetal Neonatal Med. 2022, 35, 3270–3275. [Google Scholar] [CrossRef]
- Wood, W.G.; Weatherall, D.J. Haemoglobin synthesis during human foetal development. Nature 1973, 244, 162–165. [Google Scholar] [CrossRef]
- Bard, H. The postnatal decline of hemoglobin F synthesis in normal full-term infants. J. Clin. Investig. 1975, 55, 395–398. [Google Scholar] [CrossRef]
- Pharmacological Induction of Fetal Hemoglobin in β-Thalassemia and Sickle Cell Disease: An Updated Perspective. Pharmaceuticals 2022, 15, 753. [CrossRef]
- Sankaran, V.G.; Menne, T.F.; Xu, J.; Akie, T.E.; Lettre, G.; Van Handel, B.; Mikkola, H.K.; Hirschhorn, J.N.; Cantor, A.B.; Orkin, S.H. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science 2008, 322, 1839–1842. [Google Scholar] [CrossRef] [PubMed]
- Bard, H. Postnatal fetal and adult hemoglobin synthesis in early preterm newborn infants. J. Clin. Investig. 1973, 52, 1789–1795. [Google Scholar] [CrossRef] [PubMed]
- Feng, R.; Mayuranathan, T.; Huang, P.; Doerfler, P.A.; Li, Y.; Yao, Y.; Palmer, L.E.; Mayberry, K.; Christakopoulos, G.E.; Xu, P. Activation of γ-globin expression by hypoxia-inducible factor 1α. Nature 2022, 610, 783–790. [Google Scholar] [CrossRef]
- Adachi, K.; Konitzer, P.; Pang, J.; Reddy, K.S.; Surrey, S. Amino Acids Responsible for Decreased 2, 3-Biphosphosphoglycerate Binding to Fetal Hemoglobin. Blood 1997, 90, 2916–2920. [Google Scholar] [CrossRef]
- Bunn, H.F.; Briehl, R.W.; Larrabee, P.; Hobart, V. The interaction of 2,3-diphosphoglycerate with various human hemoglobins. J. Clin. Investig. 1970, 49, 1088–1095. [Google Scholar] [CrossRef]
- Arnal, J.F.; Dinh-Xuan, A.T.; Pueyo, M.; Darblade, B.; Rami, J. Endothelium-derived nitric oxide and vascular physiology and pathology. Cell. Mol. Life Sci. 1999, 55, 1078–1087. [Google Scholar] [CrossRef]
- Cortese-Krott, M.M.; Kelm, M. Endothelial nitric oxide synthase in red blood cells: Key to a new erythrocrine function? Redox Biol. 2014, 2, 251–258. [Google Scholar] [CrossRef]
- Cortese-Krott, M.M.; Rodriguez-Mateos, A.; Sansone, R.; Kuhnle, G.G.C.; Thasian-Sivarajah, S.; Krenz, T.; Horn, P.; Krisp, C.; Wolters, D.; Heiß, C.; et al. Human red blood cells at work: Identification and visualization of erythrocytic eNOS activity in health and disease. Blood 2012, 120, 4229–4237. [Google Scholar] [CrossRef]
- Premont, R.T.; Reynolds, J.D.; Zhang, R.; Stamler, J.S. Role of Nitric Oxide Carried by Hemoglobin in Cardiovascular Physiology: Developments on a Three-Gas Respiratory Cycle. Circ. Res. 2020, 126, 129–158. [Google Scholar] [CrossRef]
- Blood, A.B.; Tiso, M.; Verma, S.T.; Lo, J.; Joshi, M.S.; Azarov, I.; Longo, L.D.; Gladwin, M.T.; Kim-Shapiro, D.B.; Power, G.G. Increased nitrite reductase activity of fetal versus adult ovine hemoglobin. Am. J. Physiol. Heart Circ. Physiol. 2009, 296, H237–H246. [Google Scholar] [CrossRef]
- Salhany, J.M. The oxidative denitrosylation mechanism and nitric oxide release from human fetal and adult hemoglobin, an experimentally based model simulation study. Blood Cells Mol. Dis. 2013, 50, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Riccio, D.A.; Malowitz, J.R.; Cotten, C.M.; Murtha, A.P.; McMahon, T.J. S-Nitrosylated fetal hemoglobin in neonatal human blood. Biochem. Biophys. Res. Commun. 2016, 473, 1084–1089. [Google Scholar] [CrossRef] [PubMed]
- Antosova, M.; Mokra, D.; Pepucha, L.; Plevkova, J.; Buday, T.; Sterusky, M.; Bencova, A. Physiology of Nitric Oxide in the Respiratory System. Physiol. Res. 2017, 66, 159–172. [Google Scholar] [CrossRef]
- Hellström, W.; Martinsson, T.; Hellstrom, A.; Morsing, E.; Ley, D. Fetal haemoglobin and bronchopulmonary dysplasia in neonates: An observational study. Arch. Dis. Child. Fetal Neonatal Ed. 2021, 106, F88–F92. [Google Scholar] [CrossRef]
- Feng, Z.; Wu, X.; Xu, X.; Cui, Q.; Wu, F. Efficacy of inhaled nitric oxide in preterm infants ≤ 34 weeks: A systematic review and meta—Analysis of randomized controlled trials. Front. Pharmacol. 2023, 14, 1268795. [Google Scholar] [CrossRef]
- Chakraborty, P.; Khamit, A.; Hermesz, E. Fetal oxygen supply can be improved by an effective cross-talk between fetal erythrocytes and vascular endothelium. Biochim. Biophys. Acta—Mol. Basis Dis. 2021, 1867, 166243. [Google Scholar] [CrossRef]
- Simons, M.; Gretton, S.; Silkstone, G.G.A.; Rajagopal, B.S.; Allen-Baume, V.; Syrett, N.; Shaik, T.; Leiva-Eriksson, N.; Ronda, L.; Mozzarelli, A.; et al. Comparison of the oxidative reactivity of recombinant fetal and adult human hemoglobin: Implications for the design of hemoglobin-based oxygen carriers. Biosci. Rep. 2018, 38, BSR20180370. [Google Scholar] [CrossRef]
- Chakane, S.; Matos, T.; Kettisen, K.; Bulow, L. Fetal hemoglobin is much less prone to DNA cleavage compared to the adult protein. Redox Biol. 2017, 12, 114–120. [Google Scholar] [CrossRef]
- Ratanasopa, K.; Strader, M.B.; Alayash, A.I.; Bulow, L. Dissection of the radical reactions linked to fetal hemoglobin reveals enhanced pseudoperoxidase activity. Front. Physiol. 2015, 6, 39. [Google Scholar] [CrossRef]
- Parashar, A.; Jacob, V.D.; Gideon, D.A.; Manoj, K.M. Hemoglobin catalyzes ATP-synthesis in human erythrocytes: A murburn model. J. Biomol. Struct. Dyn. 2022, 40, 8783–8795. [Google Scholar] [CrossRef]
- D’Alessandro, A.; Anastasiadi, A.T.; Tzounakas, V.L.; Nemkov, T.; Reisz, J.A.; Kriebardis, A.G.; Zimring, J.C.; Spitalnik, S.L.; Busch, M.P. Red Blood Cell Metabolism In Vivo and In Vitro. Metabolites 2023, 13, 793. [Google Scholar] [CrossRef] [PubMed]
- Mohrenweiser, H.W.; Fielek, S.; Wurzinger, K.H. Characteristics of enzymes of erythrocytes from newborn infants and adults: Activity, thermostability, and electrophoretic profile as a function of cell age. Am. J. Hematol. 1981, 11, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Miyazono, Y.; Hirono, A.; Miyamoto, Y.; Miwa, S. Erythrocyte enzyme activities in cord blood of extremely low-birth-weight infants. Am. J. Hematol. 1999, 62, 88–92. [Google Scholar] [CrossRef]
- Soothill, P.W.; Lestas, A.N.; Nicolaides, K.H.; Rodeck, C.H.; Bellingham, A.J. 2,3-Diphosphoglycerate in normal, anaemic and transfused human fetuses. Clin. Sci. 1988, 74, 527–530. [Google Scholar] [CrossRef]
- Barretto, O.C.D.; Nonoyama, K.; Deutsch, A.D.A.; Ramos, J.L.A. Physiological red cell, 2, 3-diphosphoglycerate increase by the sixth hour after birth. J. Perinat. Med. 1995, 23, 365–370. [Google Scholar] [CrossRef]
- Oski, F.A. Red cell metabolism in the newborn infant. V. Glycolytic intermediates and glycolytic enzymes. Pediatrics 1969, 44, 84–91. [Google Scholar] [CrossRef]
- Konrad, P.N.; Valentine, W.N.; Paglia, D.E. Enzymatic Activities and Glutathione Content of Erythrocytes in the Newborn: Comparison with Red Cells of Older Normal Subjects and those with Comparable Reticulocytosis. Acta Haematol. 1972, 48, 193–201. [Google Scholar] [CrossRef]
- Travis, S.F.; Kumar, S.P.; Paez, P.C.; Delivoria-Papadopoulos, M. Red Cell Metabolic Alterations in Postnatal Life in Term Infants. Glycolytic Enzymes and Glucose-6-Phosphate Dehydrogenase. Pediatr. Res. 1980, 14, 1349–1352. [Google Scholar] [CrossRef]
- Lestas, A.N.; Rodeck, C.H.; White, J.M. Normal activities of glycolytic enzymes in the fetal erythrocytes. Br. J. Haematol. 1982, 50, 439–444. [Google Scholar] [CrossRef]
- Lestas, A.N.; Bellingham, A.J.; Nicolaides, K.H. Red cell glycolytic intermediates in normal, anaemic and transfused human fetuses. Br. J. Haematol. 1989, 73, 387–391. [Google Scholar] [CrossRef]
- Algur, N.; Avraham, I.; Hammerman, C.; Kaplan, M. Quantitative neonatal glucose-6-phosphate dehydrogenase screening: Distribution, reference values, and classification by phenotype. J. Pediatr. 2012, 161, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Doherty, A.N.; Kring, E.A.; Posey, Y.F.; Maisels, M.J. Glucose-6-phosphate dehydrogenase activity levels in white newborn infants. J. Pediatr. 2014, 164, 1416–1420. [Google Scholar] [CrossRef] [PubMed]
- Ko, C.H.; Wong, R.P.O.; Ng, P.C.; Li, K.; Chui, K.M.; Yuen, P.M.P.; Fok, T.F. Oxidative Challenge and Glucose-6-Phosphate Dehydrogenase Activity of Preterm and Term Neonatal Red Blood Cells. Neonatology 2009, 96, 96–101. [Google Scholar] [CrossRef]
- Mesner, O.; Hammerman, C.; Goldschmidt, D.; Rudensky, B.; Bader, D.; Kaplan, M. Glucose-6-phosphate dehydrogenase activity in male premature and term neonates. Arch. Dis. Child. Fetal Neonatal Ed. 2004, 89, F555–F557. [Google Scholar] [CrossRef]
- Paulpandian, R.; Dutta, S.; Das, R.; Katoch, D.; Kumar, P. Retinopathy of Prematurity and Glucose-6-Phosphate Dehydrogenase Activity: A Case-Control Study. Indian. J. Pediatr. 2023, 90, 1089–1095. [Google Scholar] [CrossRef]
- Hunaiti, A.A.; Al-Shareef, M. Interplay between Glutathione-S-Transferase and Glucose-6-Phosphate Dehydrogenase in Neonatal Cord Blood. Neonatology 1997, 72, 273–278. [Google Scholar] [CrossRef]
- Issaian, A.; Hay, A.; Dzieciatkowska, M.; Roberti, D.; Perrotta, S.; Darula, Z.; Redzic, J.; Busch, M.P.; Page, G.P.; Rogers, S.C.; et al. The interactome of the N-terminus of band 3 regulates red blood cell metabolism and storage quality. Haematologica 2021, 106, 2971–2985. [Google Scholar] [CrossRef]
- Weber, R.E. Lacking deoxygenation-linked interaction between cytoplasmic domain of band 3 and HbF from fetal red blood cells. Acta Physiol. 2007, 191, 247–252. [Google Scholar] [CrossRef]
- Ebenebe, C.U.; Von Lucadou, M.; Moritz, E.; Schwedhelm, E.; Daum, G.; Singer, D.; Deindl, P.; Winkler, M.S. Reference ranges for sphingosine-1-phosphate in neonates. J. Perinat. Med. 2021, 49, 932–935. [Google Scholar] [CrossRef]
- Perrone, S.; Tataranno, M.L.; Stazzoni, G.; Del Vecchio, A.; Buonocore, G. Oxidative injury in neonatal erythrocytes. J. Matern. Neonatal Med. 2012, 25 (Suppl. 5), 104–108. [Google Scholar] [CrossRef]
- Rifkind, J.M.; Mohanty, J.G.; Nagababu, E. The pathophysiology of extracellular hemoglobin associated with enhanced oxidative reactions. Front. Physiol. 2015, 5, 500. [Google Scholar] [CrossRef] [PubMed]
- Lembo, C.; Buonocore, G.; Perrone, S. Oxidative Stress in Preterm Newborns. Antioxidants 2021, 10, 1672. [Google Scholar] [CrossRef] [PubMed]
- Bracci, R.; Martini, G.; Buonocore, G.; Talluri, B.; Berni, S.; Ottaviani, M.F.; Picchi, M.P.; Casini, A. Changes in Erythrocyte Properties During the First Hours of Life: Electron Spin Resonance of Reacting Sulfydryl Groups. Pediatr. Res. 1988, 24, 391–395. [Google Scholar] [CrossRef] [PubMed]
- Rotilio, G.; Rigo, A.; Bracci, R.; Bagnoli, F.; Sargentini, I.; Brunori, M. Determination of red blood cell superoxide dismutase and glutathione peroxidase in newborns in relation to neonatal hemolysis. Clin. Chim. Acta 1977, 81, 131–134. [Google Scholar] [CrossRef]
- Ripalda, M.J.; Rudolph, N.; Wong, S.L. Developmental Patterns of Antioxidant Defense Mechanisms in Human Erythrocytes. 1989, 26, 366–369. Pediatr. Res. 1989, 26, 366–369. [Google Scholar] [CrossRef]
- Georgeson, G.D.; Szony, B.J.; Streitman, K.; Varga, I.S.; Kovács, A.; Kovács, L.; László, A. Antioxidant enzyme activities are decreased in preterm infants and in neonates born via caesarean section. Eur. J. Obstet. Gynecol. Reprod. Biol. 2002, 103, 136–139. [Google Scholar] [CrossRef]
- Frosali, S.; Di Simplicio, P.; Perrone, S.; Di Giuseppe, D.; Longini, M.; Tanganelli, D.; Buonocore, G. Glutathione Recycling and Antioxidant Enzyme Activities in Erythrocytes of Term and Preterm Newborns at Birth. Neonatology 2004, 85, 188–194. [Google Scholar] [CrossRef]
- Jean-Baptiste, D.; Rudolph, N.; Wong, S. Sequential Postnatal Changes in Erythrocyte Glutathione and Sulfhydryl Content: A Possible Adaptational Response to the Extrauterine Environment. Neonatology 2003, 84, 142–146. [Google Scholar] [CrossRef]
- Neefjes, V.M.E.; Evelo, C.T.A.; Baars, L.G.M.; Blanco, C.E. Erythrocyte glutathione S transferase as a marker of oxidative stress at birth. Arch. Dis. Child—Fetal Neonatal Ed. 1999, 81, F130–F133. [Google Scholar] [CrossRef]
- Clahsen, P.C.; Moison, R.M.W.; Holtzer, C.A.J.; Berger, H.M. Recycling of Glutathione During Oxidative Stress in Erythrocytes of the Newborn. Pediatr. Res. 1992, 32, 399–402. [Google Scholar] [CrossRef]
- Porto, B.; Oliveira, R.J.D.; Sousa, C.; Gaspar, J.; Rueff, J.; Carvalho, F.; Malheiro, I. The role of foetal red blood cells in protecting cultured lymphocytes against diepoxybutane-induced chromosome breaks. Mutat. Res. 2006, 603, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Buonocore, G.; Perrone, S.; Longini, M.; Vezzosi, P.; Marzocchi, B.; Paffetti, P.; Bracci, R. Oxidative stress in preterm neonates at birth and on the seventh day of life. Pediatr. Res. 2002, 52, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Küster, A.; Tea, I.; Ferchaud-Roucher, V.; Borgne, S.; Plouzennec, C.; Winer, N.; Rozé, J.C.; Robins, R.J.; Darmaun, D. Cord Blood Glutathione Depletion in Preterm Infants: Correlation with Maternal Cysteine Depletion. PLoS ONE 2011, 6, e27626. [Google Scholar] [CrossRef] [PubMed]
- Calkins, K.L.; Sanchez, L.A.; Tseng, C.H.; Faull, K.F.; Yoon, A.J.; Ryan, C.M.; Le, T.; Shew, S.B. Effect of High-Dose Cysteine Supplementation on Erythrocyte Glutathione. J. Parenter. Enter. Nutr. 2016, 40, 226–234. [Google Scholar] [CrossRef]
- Te Braake, F.W.J.; Schierbeek, H.; De Groof, K.; Vermes, A.; Longini, M.; Buonocore, G.; Van Goudoever, J.B. Glutathione synthesis rates after amino acid administration directly after birth in preterm infants. Am. J. Clin. Nutr. 2008, 88, 333–339. [Google Scholar] [CrossRef]
- Kondo, M.; Itoh, S.; Kusaka, T.; Imai, T.; Isobe, K.; Onishi, S. The ability of neonatal and maternal erythrocytes to produce reactive oxygen species in response to oxidative stress. Early Hum. Dev. 2002, 66, 81–88. [Google Scholar] [CrossRef]
- Buonocore, G.; Zani, S.; Sargentini, I.; Gioia, D.; Signorini, C.; Bracci, R. Hypoxia-induced free iron release in the red cells of newborn infants. Acta Pædiatrica 1998, 87, 77–81. [Google Scholar] [CrossRef]
- Ciccoli, L.; Rossi, V.; Leoncini, S.; Signorini, C.; Paffetti, P.; Bracci, R.; Buonocore, G.; Comporti, M. Iron Release in Erythrocytes and Plasma Non Protein-bound Iron in Hypoxic and Non Hypoxic Newborns. Free Radic. Res. 2003, 37, 51–58. [Google Scholar] [CrossRef]
- Marzocchi, B.; Ciccoli, L.; Tani, C.; Leoncini, S.; Rossi, V.; Bini, L.; Perrone, S.; Buonocore, G. Hypoxia-Induced Post-Translational Changes in Red Blood Cell Protein Map of Newborns. Pediatr. Res. 2005, 58, 660–665. [Google Scholar] [CrossRef]
- Jain, S.K. Membrane lipid peroxidation in erythrocytes of the newborn. Clin. Chim. Acta 1986, 161, 301–306. [Google Scholar] [CrossRef]
- Miyake, M.; Miki, M.; Yasuda, H.; Ogihara, T.; Mino, M. Vitamin E and the Peroxidizability of Erythrocyte Membranes in Neonates. Free Radic. Res. Commun. 1991, 15, 41–50. [Google Scholar] [CrossRef]
- Huertas, J.R.; Palomino, N.; Ochoa, J.J.; Quiles, J.L.; Ramírez-Tortosa, M.C.; Battino, M.; Robles, R.; Mataix, J. Lipid peroxidation and antioxidants in erythrocyte membranes of full term and preterm newborns. BioFactors 1998, 8, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Miyazawa, T.; Burdeos, G.C.; Itaya, M.; Nakagawa, K.; Miyazawa, T. Vitamin E: Regulatory Redox Interactions. IUBMB Life 2019, 71, 430–441. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Premachandra, B.R. Membrane-bound hemoglobin as a marker of oxidative injury in adult and neonatal red blood cells. Biochem. Med. Metab. Biol. 1991, 46, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Advani, R.; Mentzer, W.; Andrews, D.; Schrier, S. Oxidation of Hemoglobin F Is Associated with the Aging Process of Neonatal Red Blood Cells. Pediatr. Res. 1992, 32, 165–168. [Google Scholar] [CrossRef]
- González, A.; Lara-Cantón, I.; Albiach-Delgado, A.; Cernada, M.; Escrig, R.; Kuligowski, J.; Aguar Carrascosa, M.; Vento Torres, M. Do Lower Levels of Fetal Hemoglobin in Preterm Infants Relate to Oxidative Stress? Antioxid. Redox Signal. 2024, 40, 453–459. [Google Scholar] [CrossRef]
- Shimo, H.; Nanda Vel Arjunan, S.; Machiyama, H.; Nishino, T.; Suematsu, M.; Fujita, H.; Tomita, M.; Takahashi, K. Particle Simulation of Oxidation Induced Band 3 Clustering in Human Erythrocytes. PLoS Comput. Biol. 2015, 11, e1004210. [Google Scholar] [CrossRef]
- Ciccoli, L.; Rossi, V.; Leoncini, S.; Signorini, C.; Blanco-Garcia, J.; Aldinucci, C.; Buonocore, G.; Comporti, M. Iron release, superoxide production and binding of autologous IgG to band 3 dimers in newborn and adult erythrocytes exposed to hypoxia and hypoxia-reoxygenation. Biochim. Biophys. Acta—Gen. Subj. 2004, 1672, 203–213. [Google Scholar] [CrossRef]
- Balogh, G.; Chakraborty, P.; Dugmonits, K.N.; Péter, M.; Végh, A.G.; Vígh, L.; Hermesz, E. Sustained maternal smoking-associated changes in the physico-chemical properties of fetal RBC membranes might serve as early markers for vascular comorbidities. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2020, 1865, 158615. [Google Scholar] [CrossRef]
- Dugmonits, K.N.; Chakraborty, P.; Hollandi, R.; Zahorán, S.; Pankotai-Bodó, G.; Horváth, P.; Orvos, H.; Hermesz, E. Maternal Smoking Highly Affects the Function, Membrane Integrity, and Rheological Properties in Fetal Red Blood Cells. Oxidative Med. Cell. Longev. 2019, 2019, 1509798. [Google Scholar] [CrossRef]
- Zahorán, S.; Márton, Á.; Dugmonits, K.; Chakraborty, P.; Khamit, A.; Hegyi, P.; Orvos, H.; Hermesz, E. Molecular Background of Toxic-Substances-Induced Morphological Alterations in the Umbilical Cord Vessels and Fetal Red Blood Cells. Int. J. Mol. Sci. 2022, 23, 14673. [Google Scholar] [CrossRef] [PubMed]
- Sandor, B.; Csiszar, B.; Galos, G.; Funke, S.; Kevey, D.K.; Meggyes, M.M.; Szereday, L.; Toth, K. The Influence of Early Onset Preeclampsia on Perinatal Red Blood Cell Characteristics of Neonates. Int. J. Mol. Sci. 2023, 24, 8496. [Google Scholar] [CrossRef] [PubMed]
- Chourdakis, E.; Fouzas, S.; Papadopoulou, C.; Oikonomou, N.; Hahalis, G.; Dimitriou, G.; Karatza, A.A. Effect of Early-Onset Preeclampsia on Offspring’s Blood Pressure During the First Month of Life. J. Pediatr. 2020, 220, 21–26. [Google Scholar] [CrossRef]
- Castilla-Peon, M.F.; Medina Bravo, P.G.; Sánchez-Urbina, R.; Gallardo-Montoya, J.M.; Soriano-López, L.C.; Coronel Cruz, F.M. Diabetes and obesity during pregnancy are associated with oxidative stress genotoxicity in newborns. J. Perinat. Med. 2019, 47, 347–353. [Google Scholar] [CrossRef]
- Yu, H.-T.; Guo, Z.-H.; Chen, Y.-R.; Li, Y.-Y.; Zhang, H.-Y.; Liu, Y.-J.; Xie, L. Gestational diabetes mellitus decreased umbilical cord blood polyunsaturated fatty acids: A meta-analysis of observational studies. Prostaglandins Leukot. Essent. Fat. Acids 2021, 171, 102318. [Google Scholar] [CrossRef]
- Bravo, N.; Torres, J.; González-Ortiz, M.; Staforelli-Vivanco, J.P. Flickering of fetal erythrocytes membrane under gestational diabetes observed with dual time resolved membrane fluctuation spectroscopy. Biochem. Biophys. Rep. 2023, 36, 101556. [Google Scholar] [CrossRef]
- Sakamoto, M.; Murata, K.; Kubota, M.; Nakai, K.; Satoh, H. Mercury and heavy metal profiles of maternal and umbilical cord RBCs in Japanese population. Ecotoxicol. Environ. Saf. 2010, 73, 1–6. [Google Scholar] [CrossRef]
- Falck, A.J.; Sundararajan, S.; Al-Mudares, F.; Contag, S.A.; Bearer, C.F. Fetal exposure to mercury and lead from intrauterine blood transfusions. Pediatr. Res. 2019, 86, 510–514. [Google Scholar] [CrossRef]
- Falck, A.J.; Medina, A.E.; Cummins-Oman, J.; El-Metwally, D.; Bearer, C.F. Mercury, lead, and cadmium exposure via red blood cell transfusions in preterm infants. Pediatr. Res. 2020, 87, 677–682. [Google Scholar] [CrossRef]
- Baranowska-Bosiacka, I.; Hlynczak, A.J. The effect of lead ions on the energy metabolism of human erythrocytes in vitro. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2003, 134, 403–416. [Google Scholar] [CrossRef]
- Quintana, M.M.; Vera, B.; Magnarelli, G.; Guiñazú, N.; Rovedatti, M.G. Neonatal, placental, and umbilical cord blood parameters in pregnant women residing in areas with intensive pesticide application. Environ. Sci. Pollut. Res. Int. 2017, 24, 20736–20746. [Google Scholar] [CrossRef] [PubMed]
- Thiagarajan, P.; Parker, C.J.; Prchal, J.T. How Do Red Blood Cells Die? Front. Physiol. 2021, 12, 655393. [Google Scholar] [CrossRef] [PubMed]
- Kuruvilla, D.J.; Widness, J.A.; Nalbant, D.; Schmidt, R.L.; Mock, D.M.; An, G.; Veng-Pedersen, P. Estimation of adult and neonatal RBC lifespans in anemic neonates using RBCs labeled at several discrete biotin densities. Pediatr. Res. 2017, 81, 905–910. [Google Scholar] [CrossRef]
- Paulson, R.F.; Hariharan, S.; Little, J.A. Stress erythropoiesis: Definitions and models for its study. Exp. Hematol. 2020, 89, 43–54.e2. [Google Scholar] [CrossRef]
- Kaestner, L.; Bernhardt, I.; Risso, A.; Mairbäurl, H. Neocytolysis: How to Get Rid of the Extra Erythrocytes Formed by Stress Erythropoiesis upon Descent from High Altitude. Front. Physiol. 2018, 1, 345. [Google Scholar] [CrossRef]
- Divoky, V.; Song, J.; Horvathova, M.; Kralova, B.; Votavova, H.; Prchal, J.T.; Yoon, D. Delayed Hemoglobin Switching and Perinatal Neocytolysis in Mice with Gain-of-Function Erythropoietin Receptor HHS Public Access. J. Mol. Med. 2016, 94, 597–608. [Google Scholar] [CrossRef]
- Strauss, R.G. Anaemia of prematurity: Pathophysiology and treatment. Blood Rev. 2010, 24, 221–225. [Google Scholar] [CrossRef]
- Pearson, H.A. Life-span of the fetal red blood cell. J. Pediatr. 1967, 70, 166–171. [Google Scholar] [CrossRef]
- Kuruvilla, D.J.; Widness, J.A.; Nalbant, D.; Schmidt, R.L.; Mock, D.M.; Veng-Pedersen, P. A Method to Evaluate Fetal Erythropoiesis from Postnatal Survival of Fetal RBCs. AAPS J. 2015, 17, 1246–1254. [Google Scholar] [CrossRef]
- An, G.; Widness, J.A.; Mock, D.M.; Veng-Pedersen, P. A Novel Physiology-Based Mathematical Model to Estimate Red Blood Cell Lifespan in Different Human Age Groups. AAPS J. 2016, 18, 1182–1191. [Google Scholar] [CrossRef]
- Dziegiel, M.H.; Koldkjær, O.; Berkowicz, A. Massive antenatal fetomaternal hemorrhage: Evidence for long-term survival of fetal red blood cells. Transfusion 2005, 45, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Bard, H.; Widness, J.A. The Life Span of Erythrocytes Transfused to Preterm Infants. Pediatr. Res. 1997, 42, 9–11. [Google Scholar] [CrossRef] [PubMed]
- Strauss, R.G.; Mock, D.M.; Widness, J.A.; Johnson, K.; Cress, G.; Schmidt, R.L. Posttransfusion 24-h recovery and subsequent survival of allogeneic red blood cells in the bloodstream of newborn infants. Transfusion 2004, 44, 871–876. [Google Scholar] [CrossRef] [PubMed]
- Nalbant, D.; Bhandary, P.; Matthews, N.I.; Schmidt, R.L.; Bogusiewicz, A.; Cress, G.A.; Zimmerman, M.B.; Strauss, R.G.; Mock, D.M.; Widness, J.A. Comparison of multiple red cell volume methods performed concurrently in premature infants following allogeneic transfusion. Pediatr. Res. 2013, 74, 592–600. [Google Scholar] [CrossRef]
- Nalbant, D.; Cancelas, J.A.; Mock, D.M.; Kyosseva, S.V.; Schmidt, R.L.; Cress, G.A.; Zimmerman, M.B.; Strauss, R.G.; Widness, J.A. In premature infants there is no decrease in 24-h posttransfusion allogeneic red blood cell recovery after 42 days of storage. Transfusion 2018, 58, 352–358. [Google Scholar] [CrossRef]
- Komazawa, M.; Oski, F.A. Biochemical characteristics of “young” and “old” erythrocytes of the newborn infant. J. Pediatr. 1975, 87, 102–106. [Google Scholar] [CrossRef]
- Matovcik, L.M.; Chiu, D.; Lubin, B.; Mentzer, W.C.; Lane, P.A.; Mohandas, N.; Schrier, S.L. The Aging Process of Human Neonatal Erythrocytes. Pediatr. Res. 1986, 20, 1091–1096. [Google Scholar] [CrossRef]
- Jain, S.K. Presence of phosphatidylserine in the outer membrane bilayer of newborn human erythrocytes. Biochem. Biophys. Res. Commun. 1986, 136, 914–920. [Google Scholar] [CrossRef]
- Calatroni, A.; Cordaro, V.; Salpietro, C.; Barberi, I. Erythrocyte Membrane Sialic Acid in New-Born Infants. Acta Haematol. 1984, 71, 198–203. [Google Scholar] [CrossRef]
- Lane, P.A.; Galili, U.; Iarocci, T.A.; Shew, R.L.; Mentzer, W.C. Cellular dehydration and immunoglobulin binding in senescent neonatal erythrocytes. Pediatr. Res. 1988, 23, 288–292. [Google Scholar] [CrossRef]
- Holroyde, C.P.; Oski, F.A.; Gardner, F.H. The “pocked” erythrocyte. Red-cell surface alterations in reticuloendothelial immaturity of the neonate. N. Engl. J. Med. 1969, 281, 516–520. [Google Scholar] [CrossRef] [PubMed]
- Föller, M.; Huber, S.M.; Lang, F. Erythrocyte programmed cell death. IUBMB Life 2008, 60, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Alghareeb, S.A.; Alfhili, M.A.; Fatima, S. Molecular Mechanisms and Pathophysiological Significance of Eryptosis. Int. J. Mol. Sci. 2023, 24, 5079. [Google Scholar] [CrossRef] [PubMed]
- Hermle, T.; Shumilina, E.; Attanasio, P.; Akel, A.; Kempe, D.S.; Lang, P.A.; Podolski, M.; Gatz, S.; Bachmann, R.; Bachmann, C.; et al. Decreased cation channel activity and blunted channel-dependent eryptosis in neonatal erythrocytes. Am. J. Physiol. Cell Physiol. 2006, 291, C710–C717. [Google Scholar] [CrossRef]
- Buonocore, G.; Perrone, S.; Bracci, R. Mechanisms Involved in the Increased Hemolysis in the Fetus and Newborn. Curr. Pediatr. Rev. 2017, 13, 188–192. [Google Scholar] [CrossRef]
- Suski, M.; Bokiniec, R.; Szwarc-Duma, M.; Madej, J.; Bujak-Giżycka, B.; Kwinta, P.; Borszewska-Kornacka, M.K.; Revhaug, C.; Baumbusch, L.O.; Saugstad, O.; et al. Prospective plasma proteome changes in preterm infants with different gestational ages. Pediatr. Res. 2018, 84, 104–111. [Google Scholar] [CrossRef]
- Youssef, L.; Erlandsson, L.; Åkerström, B.; Miranda, J.; Paules, C.; Crovetto, F.; Crispi, F.; Gratacos, E.; Hansson, S.R. Hemopexin and α1-microglobulin heme scavengers with differential involvement in preeclampsia and fetal growth restriction. PLoS ONE 2020, 15, e0239030. [Google Scholar] [CrossRef]
- Orlando, N.; Pellegrino, C.; Valentini, C.G.; Bianchi, M.; Barbagallo, O.; Sparnacci, S.; Forni, F.; Fontana, T.M.; Teofili, L. Umbilical cord blood: Current uses for transfusion and regenerative medicine. Transfus. Apher. Sci. 2020, 59, 102952. [Google Scholar] [CrossRef]
- Ghirardello, S.; Dusi, E.; Cortinovis, I.; Villa, S.; Fumagalli, M.; Agosti, M.; Milani, S.; Mosca, F. Effects of Red Blood Cell Transfusions on the Risk of Developing Complications or Death: An Observational Study of a Cohort of Very Low Birth Weight Infants. Am. J. Perinatol. 2017, 34, 88–95. [Google Scholar] [CrossRef]
- De Halleux, V.; Truttmann, A.; Gagnon, C.; Bard, H. The effect of blood transfusion on the hemoglobin oxygen dissociation curve of very early preterm infants during the first week of life. Semin. Perinatol. 2002, 26, 411–415. [Google Scholar] [CrossRef]
- Jiramongkolchai, K.; Repka, M.X.; Tian, J.; Aucott, S.W.; Shepard, J.; Collins, M.; Kraus, C.; Clemens, J.; Feller, M.; Burd, I.; et al. Lower foetal haemoglobin levels at 31- and 34-weeks post menstrual age is associated with the development of retinopathy of prematurity: PacIFiHER Report No. 1 PacIFiHER Study Group (Preterm Infants and Fetal Haemoglobin in ROP). Eye 2021, 35, 659–664. [Google Scholar] [CrossRef] [PubMed]
- Jiramongkolchai, K.; Repka, M.X.; Tian, J.; Aucott, S.W.; Shepard, J.; Collins, M.; Clemens, J.; Feller, M.; Burd, I.; Roizenblatt, M.; et al. Effects of fetal haemoglobin on systemic oxygenation in preterm infants and the development of retinopathy of prematurity PacIFiHER Report No. 2. Br. J. Ophthalmol. 2023, 107, 380–383. [Google Scholar] [CrossRef] [PubMed]
- Stutchfield, C.J.; Jain, A.; Odd, D.; Williams, C.; Markham, R. Foetal haemoglobin, blood transfusion, and retinopathy of prematurity in very preterm infants: A pilot prospective cohort study. Eye 2017, 31, 1451–1455. [Google Scholar] [CrossRef] [PubMed]
- Perez, M.; Robbins, M.E.; Revhaug, C.; Saugstad, O.D. Oxygen radical disease in the newborn, revisited: Oxidative stress and disease in the newborn period. Free Radic. Biol. Med. 2019, 142, 61–72. [Google Scholar] [CrossRef]
- Teofili, L.; Papacci, P.; Orlando, N.; Bianchi, M.; Molisso, A.; Purcaro, V.; Valentini, C.G.; Giannantonio, C.; Serrao, F.; Chiusolo, P.; et al. Allogeneic cord blood transfusions prevent fetal haemoglobin depletion in preterm neonates. Results of the CB-TrIP study. Br. J. Haematol. 2020, 191, 263–268. [Google Scholar] [CrossRef]
- Pellegrino, C.; Papacci, P.; Beccia, F.; Serrao, F.; Cantone, G.V.; Cannetti, G.; Giannantonio, C.; Vento, G.; Teofili, L. Differences in Cerebral Tissue Oxygenation in Preterm Neonates Receiving Adult or Cord Blood Red Blood Cell Transfusions. JAMA Netw. Open 2023, 6, e2341643. [Google Scholar] [CrossRef]
- Teofili, L.; Papacci, P.; Orlando, N.; Bianchi, M.; Pasciuto, T.; Mozzetta, I.; Palluzzi, F.; Giacò, L.; Giannantonio, C.; Remaschi, G.; et al. BORN study: A multicenter randomized trial investigating cord blood red blood cell transfusions to reduce the severity of retinopathy of prematurity in extremely low gestational age neonates. Trials 2022, 23, 1010. [Google Scholar] [CrossRef]
- Zhurova, M.; Akabutu, J.; Acker, J. Quality of Red Blood Cells Isolated from Umbilical Cord Blood Stored at Room Temperature. J. Blood Transfus. 2012, 2012, 102809. [Google Scholar] [CrossRef]
- Eichler, H.; Schaible, T.; Richter, E.; Zieger, W.; Voller, K.; Leveringhaus, A.; Goldmann, S.F. Cord blood as a source of autologous RBCs for transfusion to preterm infants. Transfusion 2000, 40, 1111–1117. [Google Scholar] [CrossRef]
- Brune, T.; Garritsen, H.; Hentschel, R.; Louwen, F.; Harms, E.; Jorch, G. Efficacy, recovery, and safety of RBCs from autologous placental blood: Clinical experience in 52 newborns. Transfusion 2003, 43, 1210–1216. [Google Scholar] [CrossRef]
- Garritsen, H.S.P.; Brune, T.; Louwen, F.; Wüllenweber, J.; Ahlke, C.; Cassens, U.; Witteler, R.; Sibrowski, W. Autologous red cells derived from cord blood: Collection, preparation, storage and quality controls with optimal additive storage medium (Sag-mannitol). Transfus. Med. 2003, 13, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Widing, L.; Bechensteen, A.G.; Mirlashari, M.R.; Vetlesen, A.; Kjeldsen-Kragh, J. Evaluation of nonleukoreduced red blood cell transfusion units collected at delivery from the placenta. Transfusion 2007, 47, 1481–1487. [Google Scholar] [CrossRef] [PubMed]
- Khodabux, C.M.; Von Lindern, J.S.; Van Hilten, J.A.; Scherjon, S.; Walther, F.J.; Brand, A. A clinical study on the feasibility of autologous cord blood transfusion for anemia of prematurity. Transfusion 2008, 48, 1634–1643. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, M.; Orlando, N.; Barbagallo, O.; Sparnacci, S.; Valentini, C.G.; Carducci, B.; Teofili, L. Allogeneic cord blood red blood cells: Assessing cord blood unit fractionation and validation. Blood Transfus. 2021, 19, 435. [Google Scholar] [CrossRef]
- Samarkanova, D.; Codinach, M.; Montemurro, T.; Mykhailova, L.; Tancredi, G.; Gallerano, P.; Mallis, P.; Michalopoulos, E.; Wynn, L.; Calvo, J.; et al. Multi-component cord blood banking: A proof-of-concept international exercise. Blood Transfus. 2023, 21, 526–537. [Google Scholar] [CrossRef]
- Risso, M.A.; Deffune, E.; Luzo, Â.C.M. Using umbilical cord blood as a source of paediatric packed red blood cells: Processing and quality control. Vox Sang. 2023, 118, 637–646. [Google Scholar] [CrossRef]
- Yoshida, T.; Prudent, M.; D’Alessandro, A. Red blood cell storage lesion: Causes and potential clinical consequences. Blood Transfus. 2019, 17, 27–52. [Google Scholar] [CrossRef]
- Katz, D.; Mazor, D.; Dvilansky, A.; Meyerstein, N. Effect of radiation on red cell membrane and intracellular oxidative defense systems. Free Radic. Res. 1996, 24, 199–204. [Google Scholar] [CrossRef]
- Larsson, L.; Ohlsson, S.; Andersson, T.N.; Watz, E.; Larsson, S.; Sandgren, P.; Uhlin, M. Pathogen reduced red blood cells as an alternative to irradiated and washed components with potential for up to 42 days storage. Blood Transfus. 2024, 22, 130–139. [Google Scholar] [CrossRef]
- Teofili, L.; Papacci, P.; Dani, C.; Cresi, F.; Remaschi, G.; Pellegrino, C.; Bianchi, M.; Ansaldi, G.; Campagnoli, M.F.; Vania, B.; et al. Cord blood transfusions in extremely low gestational age neonates to reduce severe retinopathy of prematurity: Results of a prespecified interim analysis of the randomized BORN trial. Ital. J. Pediatr. 2024, 50, 142. [Google Scholar] [CrossRef]
- D’Alessandro, A.; Yoshida, T.; Nestheide, S.; Nemkov, T.; Stocker, S.; Stefanoni, D.; Mohmoud, F.; Rugg, N.; Dunham, A.; Cancelas, J.A. Hypoxic storage of red blood cells improves metabolism and post-transfusion recovery. Transfusion 2020, 60, 786–798. [Google Scholar] [CrossRef]
- Lee, S.J.; Jung, C.; Oh, J.E.; Kim, S.; Lee, S.; Lee, J.Y.; Yoon, Y.S. Generation of Red Blood Cells from Human Pluripotent Stem Cells-An Update. Cells 2023, 12, 1554. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Parameter | Findings | Reference |
---|---|---|
Mean corpuscular volume (MCV) | Increased | [1,2,3,11,13] |
Mean corpuscular hemoglobin (MCH) | Increased | [1,2,3,13] |
Mean corpuscular hemoglobin content (MCHC) | Comparable | [1,2,3] |
Red blood cell distribution width (RDW) | Increased | [8] |
Reticulocyte count | Increased | [9] |
Surface-area-to-volume ratio | Decreased | [11,13] |
Sphericity | Increased | [13] |
Membrane fluctuations | Comparable | [13] |
RBCs with altered morphology (%) | Increased | [10] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pellegrino, C.; Stone, E.F.; Valentini, C.G.; Teofili, L. Fetal Red Blood Cells: A Comprehensive Review of Biological Properties and Implications for Neonatal Transfusion. Cells 2024, 13, 1843. https://doi.org/10.3390/cells13221843
Pellegrino C, Stone EF, Valentini CG, Teofili L. Fetal Red Blood Cells: A Comprehensive Review of Biological Properties and Implications for Neonatal Transfusion. Cells. 2024; 13(22):1843. https://doi.org/10.3390/cells13221843
Chicago/Turabian StylePellegrino, Claudio, Elizabeth F. Stone, Caterina Giovanna Valentini, and Luciana Teofili. 2024. "Fetal Red Blood Cells: A Comprehensive Review of Biological Properties and Implications for Neonatal Transfusion" Cells 13, no. 22: 1843. https://doi.org/10.3390/cells13221843
APA StylePellegrino, C., Stone, E. F., Valentini, C. G., & Teofili, L. (2024). Fetal Red Blood Cells: A Comprehensive Review of Biological Properties and Implications for Neonatal Transfusion. Cells, 13(22), 1843. https://doi.org/10.3390/cells13221843