The Intricate Relationship Between Pulmonary Fibrosis and Thrombotic Pathology: A Narrative Review
Abstract
:1. Introduction
2. Epidemiological Evidence Linking IPF and Thrombosis
3. Pathogenetic Mechanisms Linking Fibrosis and Thrombosis
3.1. Direct Profibrotic Effects of the Coagulation Factors
3.2. Activation of Thrombotic Pathways in the Fibrotic Lung
4. Extracellular Vesicles: Linking Fibrosis and Coagulation in Interstitial Lung Diseases
4.1. Characterization and Biology of EVs in ILDs
4.2. EV in Fibrosis
- Pro-fibrotic cargo delivery: EVs from various cell types, including alveolar epithelial cells and activated fibroblasts, have been shown to carry pro-fibrotic mediators such as TGF-β, WNT ligands, and matrix metalloproteinases. These factors can promote fibroblast activation, myofibroblast differentiation, and excessive extracellular matrix deposition [38,39]. TGF-β is a multifunctional cytokine that plays a central role in fibrosis by promoting fibroblast activation, collagen production, and epithelial–mesenchymal transition. WNT ligands are signaling molecules involved in various cellular processes, including fibrosis. Matrix metalloproteinases are enzymes involved in the breakdown of extracellular matrix, but paradoxically, they can also promote fibrosis by activating latent TGF-β and facilitating tissue remodeling.
- miRNA transfer: EV-associated miRNAs, such as miR-21 and miR-29, have been implicated in the regulation of fibrotic pathways. For example, Makiguchi et al. found that serum EV miR-21-5p levels correlate with disease progression in IPF patients [40]. miR-21 is known to promote fibrosis by targeting inhibitors of the TGF-β pathway, while miR-29 is generally considered anti-fibrotic, with its downregulation associated with increased fibrosis [41,42,43].
- Epithelial–mesenchymal transition (EMT) induction: EVs derived from senescent epithelial cells have been shown to induce EMT in neighboring cells, contributing to the expansion of the fibroblast population [38]. EMT is a process by which epithelial cells lose their characteristic properties and acquire mesenchymal features, including increased motility and extracellular matrix production. This process is thought to contribute to the accumulation of fibroblasts and myofibroblasts in fibrotic diseases [44].
- Activation of blood coagulation: The role of EVs in blood coagulation has been extensively investigated. EVs express on the outer membrane phosphatidylserine, a negatively charged phospholipid required for the assembly of the multimolecular complexes that participate in the coagulation cascade. Furthermore, a specific subset of EVs express TF. TF is an integral membrane protein constitutively expressed by tissues outside the blood vessels (and therefore extrinsic to blood). Upon vascular damage, TF becomes exposed to the blood and binds circulating FVII(a), thereby activating FX to FXa and initiating the so-called extrinsic pathway of blood coagulation. Besides this classic pathway, it has been shown that circulating TF, expressed on the surface of EVs, can activate FX [45]. As previously mentioned, FX mRNA is overexpressed in the lungs of human IPF patients compared to normal controls. Furthermore, alveolar cells (A549) exposed to the prooxidant, H2O2, synthetize FX [46]. We hypothesized that FX activation within the lung is, at least in part, achieved by EV-associated TF. In vitro experiments show that exposure of the same alveolar cells, A549, to H2O2 increases the release of TF-bearing EVs while not affecting TF synthesis. An observational study in patients with different diseases showed that the bronchoalveolar lavage fluid of interstitial lung disease patients contained significantly higher levels of EV-associated TF activity compared to patients with a different indication of lavage. Furthermore, the activity was significantly correlated to the severity of the interstitial disease, both in terms of lung volumes and diffusion capacity of the lungs [47]. Consistent with a potential role of EV-associated TF, we demonstrated that pirfenidone, a drug that slows down the fibrotic process in idiopathic pulmonary fibrosis, inhibits the expression of TF-bearing EV in A549 cells exposed to H2O2 via inhibition of p-38 [48].
5. Therapeutic Implications
5.1. Anticoagulation in IPF: Promise and Pitfalls
5.2. Targeting Specific Coagulation Pathways
5.3. Profibrinolytic Therapies
5.4. Predictive Biomarkers and Personalized Medicine
5.5. Combination Therapies and Future Directions
- Optimization of EV Engineering: Development of reproducible methods for EV modification and cargo loading while maintaining their natural biological properties and therapeutic efficacy. This includes establishing standardized protocols for both native and engineered EVs to ensure consistent therapeutic outcomes [65].
- Therapeutic Applications: Further exploration of EVs as both direct therapeutic agents and drug delivery vehicles, particularly in inflammatory and regenerative medicine. This includes investigating their potential to treat various conditions through their inherent immunomodulatory and tissue-regenerative properties [66].
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Althobiani, M.A.; Russell, A.-M.; Jacob, J.; Ranjan, Y.; Folarin, A.A.; Hurst, J.R.; Porter, J.C. Interstitial lung disease: A review of classification, etiology, epidemiology, clinical diagnosis, pharmacological and non-pharmacological treatment. Front. Med. 2024, 11, 1296890. [Google Scholar] [CrossRef] [PubMed]
- Raghu, G.; Remy-Jardin, M.; Myers, J.L.; Richeldi, L.; Ryerson, C.J.; Lederer, D.J.; Behr, J.; Cottin, V.; Danoff, S.K.; Morell, F.; et al. Diagnosis of Idiopathic Pulmonary Fibrosis. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2018, 198, e44–e68. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, R.B.; Smith, C.; Le Jeune, I.; Gribbin, J.; Fogarty, A.W. The association between idiopathic pulmonary fibrosis and vascular disease: A population-based study. Am. J. Respir. Crit. Care Med. 2008, 178, 1257–1261. [Google Scholar] [CrossRef] [PubMed]
- Boonpheng, B.; Ungprasert, P. Risk of venous thromboembolism in patients with idiopathic pulmonary fibrosis: A systematic review and meta-analysis. Sarcoidosis Vasc. Diffuse Lung Dis. 2018, 35, 109–114. [Google Scholar] [CrossRef]
- Sprunger, D.B.; Fernandez-Perez, E.R.; Swigris, J.J.; Olson, A.L. Idiopathic pulmonary fibrosis co-morbidity: Thromboembolic disease and coronary artery disease. Curr. Respir. Care Rep. 2013, 2, 241–247. [Google Scholar] [CrossRef]
- Sprunger, D.B.; Olson, A.L.; Huie, T.J.; Fernandez-Perez, E.R.; Fischer, A.; Solomon, J.J.; Brown, K.K.; Swigris, J.J. Pulmonary fibrosis is associated with an elevated risk of thromboembolic disease. Eur. Respir. J. 2012, 39, 125–132. [Google Scholar] [CrossRef]
- Navaratnam, V.; Fogarty, A.W.; McKeever, T.; Thompson, N.; Jenkins, G.; Johnson, S.R.; Dolan, G.; Kumaran, M.; Pointon, K.; Hubbard, R.B. Presence of a prothrombotic state in people with idiopathic pulmonary fibrosis: A population-based case-control study. Thorax 2014, 69, 207–215. [Google Scholar] [CrossRef]
- Ishikawa, G.; Acquah, S.O.; Salvatore, M.; Padilla, M.L. Elevated serum D-dimer level is associated with an increased risk of acute exacerbation in interstitial lung disease. Respir. Med. 2017, 128, 78–84. [Google Scholar] [CrossRef]
- Oda, K.; Ishimoto, H.; Yamada, S.; Kushima, H.; Ishii, H.; Imanaga, T.; Harada, T.; Ishimatsu, Y.; Matsumoto, N.; Naito, K.; et al. Autopsy analyses in acute exacerbation of idiopathic pulmonary fibrosis. Respir. Res. 2014, 15, 109. [Google Scholar] [CrossRef]
- Isermann, B. Homeostatic effects of coagulation protease-dependent signaling and protease activated receptors. J. Thromb. Haemost. 2017, 15, 1273–1284. [Google Scholar] [CrossRef]
- Schmidlin, F.; Bunnett, N.W. Protease-activated receptors: How proteases signal to cells. Curr. Opin. Pharmacol. 2001, 1, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Xiao, W.; Pan, X.; Zhu, M.; Yang, Z.; Zhang, F.; Zheng, C. Thrombin promotes proliferation of human lung fibroblasts via protease activated receptor-1-dependent and NF-κB-independent pathways. Cell Biol. Int. 2014, 38, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Chambers, R.C.; Dabbagh, K.; McAnulty, R.J.; Gray, A.J.; Blanc-Brude, O.P.; Laurent, G.J. Thrombin stimulates fibroblast procollagen production via proteolytic activation of protease-activated receptor 1. Biochem. J. 1998, 333, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Bogatkevich, G.S.; Tourkina, E.; Silver, R.M.; Ludwicka-Bradley, A. Thrombin differentiates normal lung fibroblasts to a myofibroblast phenotype via the proteolytically activated receptor-1 and a protein kinase C-dependent pathway. J. Biol. Chem. 2001, 276, 45184–45192. [Google Scholar] [CrossRef]
- Borensztajn, K.; Peppelenbosch, M.P.; Spek, C.A. Factor Xa: At the crossroads between coagulation and signaling in physiology and disease. Trends Mol. Med. 2008, 14, 429–440. [Google Scholar] [CrossRef]
- Blanc-Brude, O.P.; Archer, F.; Leoni, P.; Derian, C.; Bolsover, S.; Laurent, G.J.; Chambers, R.C. Factor Xa stimulates fibroblast procollagen production, proliferation, and calcium signaling via PAR1 activation. Exp. Cell Res. 2005, 304, 16–27. [Google Scholar] [CrossRef]
- Lin, C.; Duitman, J.; Daalhuisen, J.; ten Brink, M.; von der Thüsen, J.; van der Poll, T.; Borensztajn, K.; Spek, C.A. Targeting protease activated receptor-1 with P1pal-12 limits bleomycin-induced pulmonary fibrosis. Thorax 2014, 69, 152–160. [Google Scholar] [CrossRef]
- Crooks, M.G.; Hart, S.P. Coagulation and anticoagulation in idiopathic pulmonary fibrosis. Eur. Respir. Rev. 2015, 24, 392–399. [Google Scholar] [CrossRef]
- Fujii, M.; Hayakawa, H.; Urano, T.; Sato, A.; Chida, K.; Nakamura, H.; Takada, A. Relevance of tissue factor and tissue factor pathway inhibitor for hypercoagulable state in the lungs of patients with idiopathic pulmonary fibrosis. Thromb. Res. 2000, 99, 111–117. [Google Scholar] [CrossRef]
- Günther, A.; Mosavi, P.; Ruppert, C.; Heinemann, S.; Temmesfeld, B.; Velcovsky, H.G.; Morr, H.; Grimminger, F.; Walmrath, D.; Seeger, W. Enhanced tissue factor pathway activity and fibrin turnover in the alveolar compartment of patients with interstitial lung disease. Thromb. Haemost. 2000, 83, 853–860. [Google Scholar] [CrossRef]
- Liu, R.M. Oxidative stress, plasminogen activator inhibitor 1, and lung fibrosis. Antioxid. Redox Signal. 2008, 10, 303–319. [Google Scholar] [CrossRef] [PubMed]
- Samarakoon, R.; Higgins, S.P.; Higgins, C.E.; Higgins, P.J. TGF-beta1-induced plasminogen activator inhibitor-1 expression in vascular smooth muscle cells requires pp60(c-src)/EGFR(Y845) and Rho/ROCK signaling. J. Mol. Cell. Cardiol. 2008, 44, 527–538. [Google Scholar] [CrossRef] [PubMed]
- Bargagli, E.; Madioni, C.; Bianchi, N.; Refini, R.M.; Cappelli, R.; Rottoli, P. Serum Analysis of Coagulation Factors in IPF and NSIP. Inflammation 2014, 37, 10–16. [Google Scholar] [CrossRef]
- Esmon, C.T. The interactions between inflammation and coagulation. Br. J. Haematol. 2005, 131, 417–430. [Google Scholar] [CrossRef]
- Isshiki, T.; Sakamoto, S.; Homma, S. Therapeutic Role of Recombinant Human Soluble Thrombomodulin for Acute Exacerbation of Idiopathic Pulmonary Fibrosis. Medicina 2019, 55, 172. [Google Scholar] [CrossRef]
- Kletukhina, S.; Mutallapova, G.; Titova, A.; Gomzikova, M. Role of Mesenchymal Stem Cells and Extracellular Vesicles in Idiopathic Pulmonary Fibrosis. Int. J. Mol. Sci. 2022, 23, 11212. [Google Scholar] [CrossRef]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef]
- Neri, T.; Celi, A.; Tinè, M.; Bernardinello, N.; Cosio, M.G.; Saetta, M.; Nieri, D.; Bazzan, E. The Emerging Role of Extracellular Vesicles Detected in Different Biological Fluids in COPD. Int. J. Mol. Sci. 2022, 23, 5136. [Google Scholar] [CrossRef]
- Fujita, Y. Extracellular vesicles in idiopathic pulmonary fibrosis: Pathogenesis and therapeutics. Inflamm. Regen. 2022, 42, 23. [Google Scholar] [CrossRef]
- Casara, A.; Conti, M.; Bernardinello, N.; Tinè, M.; Baraldo, S.; Turato, G.; Semenzato, U.; Celi, A.; Spagnolo, P.; Saetta, M.; et al. Unveiling the Cutting-Edge Impact of Polarized Macrophage-Derived Extracellular Vesicles and MiRNA Signatures on TGF-β Regulation within Lung Fibroblasts. Int. J. Mol. Sci. 2024, 25, 7490. [Google Scholar] [CrossRef]
- Doyle, L.M.; Wang, M.Z. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells 2019, 8, 727. [Google Scholar] [CrossRef] [PubMed]
- Shaba, E.; Landi, C.; Carleo, A.; Vantaggiato, L.; Paccagnini, E.; Gentile, M.; Bianchi, L.; Lupetti, P.; Bargagli, E.; Prasse, A.; et al. Proteome Characterization of BALF Extracellular Vesicles in Idiopathic Pulmonary Fibrosis: Unveiling Undercover Molecular Pathways. Int. J. Mol. Sci. 2021, 22, 5696. [Google Scholar] [CrossRef] [PubMed]
- Adduri, R.S.R.; Cai, K.; Velasco-Alzate, K.; Vasireddy, R.; Miller, J.W.; de Frías, S.P.; de Frías, F.P.; Horimasu, Y.; Iwamoto, H.; Hattori, N.; et al. Plasma extracellular vesicle proteins as promising noninvasive biomarkers for diagnosis of idiopathic pulmonary fibrosis. J. Extracell. Biol. 2023, 2, e98. [Google Scholar] [CrossRef] [PubMed]
- d’Alessandro, M.; Soccio, P.; Bergantini, L.; Cameli, P.; Scioscia, G.; Foschino Barbaro, M.P.; Lacedonia, D.; Bargagli, E. Extracellular Vesicle Surface Signatures in IPF Patients: A Multiplex Bead-Based Flow Cytometry Approach. Cells 2021, 10, 1045. [Google Scholar] [CrossRef]
- Njock, M.S.; Guiot, J.; Henket, M.A.; Nivelles, O.; Thiry, M.; Dequiedt, F.; Corhay, J.L.; Louis, R.E.; Struman, I. Sputum exosomes: Promising biomarkers for idiopathic pulmonary fibrosis. Thorax 2019, 74, 309–312. [Google Scholar] [CrossRef]
- Jansen, F.; Nickenig, G.; Werner, N. Extracellular Vesicles in Cardiovascular Disease: Potential Applications in Diagnosis, Prognosis, and Epidemiology. Circ. Res. 2017, 120, 1649–1657. [Google Scholar] [CrossRef]
- McVey, M.J.; Maishan, M.; Blokland, K.E.C.; Bartlett, N.; Kuebler, W.M. Extracellular vesicles in lung health, disease, and therapy. Am. J. Physiol. Lung Cell. Mol. Physiol. 2019, 316, L977–L989. [Google Scholar] [CrossRef]
- Ramírez-Hernández, A.A.; Velázquez-Enríquez, J.M.; Santos-Álvarez, J.C.; López-Martínez, A.; Reyes-Jiménez, E.; Carrasco-Torres, G.; González-García, K.; Vásquez-Garzón, V.R.; Baltierrez-Hoyos, R. The Role of Extracellular Vesicles in Idiopathic Pulmonary Fibrosis Progression: An Approach on Their Therapeutics Potential. Cells 2022, 11, 630. [Google Scholar] [CrossRef]
- Martin-Medina, A.; Lehmann, M.; Burgy, O.; Hermann, S.; Baarsma, H.A.; Wagner, D.E.; De Santis, M.M.; Ciolek, F.; Hofer, T.P.; Frankenberger, M.; et al. Increased Extracellular Vesicles Mediate WNT5A Signaling in Idiopathic Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med. 2018, 198, 1527–1538. [Google Scholar] [CrossRef]
- Makiguchi, T.; Yamada, M.; Yoshioka, Y.; Sugiura, H.; Koarai, A.; Chiba, S.; Fujino, N.; Tojo, Y.; Ota, C.; Kubo, H.; et al. Serum extracellular vesicular miR-21-5p is a predictor of the prognosis in idiopathic pulmonary fibrosis. Respir. Res. 2016, 17, 110. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, L.; Shi, C.; Sun, H.; Wang, J.; Li, R.; Zou, Z.; Ran, X.; Su, Y. TGF-β-induced miR-21 negatively regulates the antiproliferative activity but has no effect on EMT of TGF-β in HaCaT cells. Int. J. Biochem. Cell Biol. 2012, 44, 366–376. [Google Scholar] [CrossRef] [PubMed]
- Cushing, L.; Kuang, P.P.; Qian, J.; Shao, F.; Wu, J.; Little, F.; Thannickal, V.J.; Cardoso, W.V.; Lü, J. miR-29 is a major regulator of genes associated with pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 2011, 45, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Meng, X.-M.; Huang, X.R.; Chung, A.C.; Feng, Y.-L.; Hui, D.S.; Yu, C.-M.; Sung, J.J.; Lan, H.Y. miR-29 inhibits bleomycin-induced pulmonary fibrosis in mice. Mol. Ther. 2012, 20, 1251–1260. [Google Scholar] [CrossRef] [PubMed]
- Willis, B.C.; Borok, Z. TGF-beta-induced EMT: Mechanisms and implications for fibrotic lung disease. Am. J. Physiol. Lung Cell. Mol. Physiol. 2007, 293, L525–L534. [Google Scholar] [CrossRef] [PubMed]
- Celi, A.; Lorenzet, R.; Furie, B.C.; Furie, B. Microparticles and a P-selectin-mediated pathway of blood coagulation. Dis. Markers 2004, 20, 347–352. [Google Scholar] [CrossRef]
- Scotton, C.J.; Krupiczojc, M.A.; Königshoff, M.; Mercer, P.F.; Lee, Y.C.; Kaminski, N.; Morser, J.; Post, J.M.; Maher, T.M.; Nicholson, A.G.; et al. Increased local expression of coagulation factor X contributes to the fibrotic response in human and murine lung injury. J. Clin. Investig. 2009, 119, 2550–2563. [Google Scholar] [CrossRef]
- Novelli, F.; Neri, T.; Tavanti, L.; Armani, C.; Noce, C.; Falaschi, F.; Bartoli, M.L.; Martino, F.; Palla, A.; Celi, A.; et al. Procoagulant, Tissue Factor-Bearing Microparticles in Bronchoalveolar Lavage of Interstitial Lung Disease Patients: An Observational Study. PLoS ONE 2014, 9, e95013. [Google Scholar] [CrossRef]
- Neri, T.; Lombardi, S.; Faìta, F.; Petrini, S.; Balìa, C.; Scalise, V.; Pedrinelli, R.; Paggiaro, P.; Celi, A. Pirfenidone inhibits p38-mediated generation of procoagulant microparticles by human alveolar epithelial cells. Pulm. Pharmacol. Ther. 2016, 39, 1–6. [Google Scholar] [CrossRef]
- Sode, B.F.; Dahl, M.; Nielsen, S.F.; Nordestgaard, B.G. Venous Thromboembolism and Risk of Idiopathic Interstitial Pneumonia. Am. J. Respir. Crit. Care Med. 2010, 181, 1085–1092. [Google Scholar] [CrossRef]
- Kubo, H.; Nakayama, K.; Yanai, M.; Suzuki, T.; Yamaya, M.; Watanabe, M.; Sasaki, H. Anticoagulant therapy for idiopathic pulmonary fibrosis. Chest 2005, 128, 1475–1482. [Google Scholar] [CrossRef]
- Tomassetti, S.; Ruy, J.H.; Gurioli, C.; Ravaglia, C.; Buccioli, M.; Tantalocco, P.; Decker, P.A.; Cavazza, A.; Dubini, A.; Agnoletti, V. The effect of anticoagulant therapy for idiopathic pulmonary fibrosis in real life practice. Sarcoidosis Vasc. Diffuse Lung Dis. 2013, 30, 121–127. [Google Scholar] [PubMed]
- Noth, I.; Anstrom, K.J.; Calvert, S.B.; de Andrade, J.; Flaherty, K.R.; Glazer, C.; Kaner, R.J.; Olman, M.A. A Placebo-Controlled Randomized Trial of Warfarin in Idiopathic Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med. 2012, 186, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Johannesdottir, S.A.; Horváth-Puhó, E.; Dekkers, O.M.; Cannegieter, S.C.; Jørgensen, J.O.; Ehrenstein, V.; Vandenbroucke, J.P.; Pedersen, L.; Sørensen, H.T. Use of glucocorticoids and risk of venous thromboembolism: A nationwide population-based case-control study. JAMA Intern. Med. 2013, 173, 743–752. [Google Scholar] [CrossRef] [PubMed]
- Gonsalves, W.I.; Pruthi, R.K.; Patnaik, M.M. The new oral anticoagulants in clinical practice. Mayo Clin. Proc. 2013, 88, 495–511. [Google Scholar] [CrossRef]
- Wygrecka, M.; Kwapiszewska, G.; Jablonska, E.; Gerlach, S.V.; Henneke, I.; Zakrzewicz, D.; Guenther, A.; Preissner, K.T.; Markart, P. Role of Protease-activated Receptor-2 in Idiopathic Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med. 2011, 183, 1703–1714. [Google Scholar] [CrossRef]
- Howell, D.C.; Goldsack, N.R.; Marshall, R.P.; McAnulty, R.J.; Starke, R.; Purdy, G.; Laurent, G.J.; Chambers, R.C. Direct thrombin inhibition reduces lung collagen, accumulation, and connective tissue growth factor mRNA levels in bleomycin-induced pulmonary fibrosis. Am. J. Pathol. 2001, 159, 1383–1395. [Google Scholar] [CrossRef]
- Oh, H.; Park, H.E.; Song, M.S.; Kim, H.; Baek, J.H. The Therapeutic Potential of Anticoagulation in Organ Fibrosis. Front. Med. 2022, 9, 866746. [Google Scholar] [CrossRef]
- Schuliga, M.; Grainge, C.; Westall, G.; Knight, D. The fibrogenic actions of the coagulant and plasminogen activation systems in pulmonary fibrosis. Int. J. Biochem. Cell Biol. 2018, 97, 108–117. [Google Scholar] [CrossRef]
- Dong, J.; Fujii, S.; Goto, D.; Furumoto, T.; Kaneko, T.; Zaman, T.A.; Nakai, Y.; Mishima, T.; Imagawa, S.; Kitabatake, A. Increased expression of plasminogen activator inhibitor-1 by mediators of the acute phase response: A potential progenitor of vasculopathy in hypertensives. Hypertens. Res. 2003, 26, 723–729. [Google Scholar] [CrossRef]
- Zheng, M.; Zhu, W.; Gao, F.; Zhuo, Y.; Zheng, M.; Wu, G.; Feng, C. Novel inhalation therapy in pulmonary fibrosis: Principles, applications and prospects. J. Nanobiotechnol. 2024, 22, 136. [Google Scholar] [CrossRef]
- Stainer, A.; Faverio, P.; Busnelli, S.; Catalano, M.; Della Zoppa, M.; Marruchella, A.; Pesci, A.; Luppi, F. Molecular Biomarkers in Idiopathic Pulmonary Fibrosis: State of the Art and Future Directions. Int. J. Mol. Sci. 2021, 22, 6255. [Google Scholar] [CrossRef] [PubMed]
- Tomos, I.; Roussis, I.; Matthaiou, A.M.; Dimakou, K. Molecular and Genetic Biomarkers in Idiopathic Pulmonary Fibrosis: Where Are We Now. Biomedicines 2023, 11, 2796. [Google Scholar] [CrossRef] [PubMed]
- Noth, I.; Zhang, Y.; Ma, S.F.; Flores, C.; Barber, M.; Huang, Y.; Broderick, S.M.; Wade, M.S.; Hysi, P.; Scuirba, J.; et al. Genetic variants associated with idiopathic pulmonary fibrosis susceptibility and mortality: A genome-wide association study. Lancet Respir. Med. 2013, 1, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; An, Q.; Zhu, X.; Yang, B.; Gao, X.; Niu, Y.; Zhang, L.; Xu, K.; Ma, D. Research status and future prospects of extracellular vesicles in primary Sjögren’s syndrome. Stem Cell Res. Ther. 2022, 13, 230. [Google Scholar] [CrossRef]
- Li, M.; Fang, F.; Sun, M.; Zhang, Y.; Hu, M.; Zhang, J. Extracellular vesicles as bioactive nanotherapeutics: An emerging paradigm for regenerative medicine. Theranostics 2022, 12, 4879–4903. [Google Scholar] [CrossRef]
- Tang, T.-T.; Wang, B.; Lv, L.-L.; Liu, B.-C. Extracellular vesicle-based Nanotherapeutics: Emerging frontiers in anti-inflammatory therapy. Theranostics 2020, 10, 8111–8129. [Google Scholar] [CrossRef]
- Afzal, A.; Khawar, M.B.; Habiba, U.; Afzal, H.; Hamid, S.E.; Rafiq, M.; Abbasi, M.H.; Sheikh, N.; Abaidullah, R.; Asif, Z.; et al. Diagnostic and therapeutic value of EVs in lungs diseases and inflammation. Mol. Biol. Rep. 2023, 51, 26. [Google Scholar] [CrossRef]
- van Cleemput, J.; Sonaglioni, A.; Wuyts, W.A.; Bengus, M.; Stauffer, J.L.; Harari, S. Idiopathic Pulmonary Fibrosis for Cardiologists: Differential Diagnosis, Cardiovascular Comorbidities, and Patient Management. Adv. Ther. 2019, 36, 298–317. [Google Scholar] [CrossRef]
- Dalleywater, W.; Powell, H.A.; Hubbard, R.B.; Navaratnam, V. Risk factors for cardiovascular disease in people with idiopathic pulmonary fibrosis: A population-based study. Chest 2015, 147, 150–156. [Google Scholar] [CrossRef]
- Reed, R.M.; Eberlein, M.; Girgis, R.E.; Hashmi, S.; Iacono, A.; Jones, S.; Netzer, G.; Scharf, S. Coronary artery disease is under-diagnosed and under-treated in advanced lung disease. Am. J. Med. 2012, 125, 1228.e13–1228.e22. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, H.H.; Park, H.J.; Kim, S.; Kim, Y.-J.; Lee, J.S.; Kim, H.C. Venous thromboembolism in patients with idiopathic pulmonary fibrosis, based on nationwide claim data. Ther. Adv. Respir. Dis. 2023, 17, 17534666231155772. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cenerini, G.; Chimera, D.; Pagnini, M.; Bazzan, E.; Conti, M.; Turato, G.; Celi, A.; Neri, T. The Intricate Relationship Between Pulmonary Fibrosis and Thrombotic Pathology: A Narrative Review. Cells 2024, 13, 2099. https://doi.org/10.3390/cells13242099
Cenerini G, Chimera D, Pagnini M, Bazzan E, Conti M, Turato G, Celi A, Neri T. The Intricate Relationship Between Pulmonary Fibrosis and Thrombotic Pathology: A Narrative Review. Cells. 2024; 13(24):2099. https://doi.org/10.3390/cells13242099
Chicago/Turabian StyleCenerini, Giovanni, Davide Chimera, Marta Pagnini, Erica Bazzan, Maria Conti, Graziella Turato, Alessandro Celi, and Tommaso Neri. 2024. "The Intricate Relationship Between Pulmonary Fibrosis and Thrombotic Pathology: A Narrative Review" Cells 13, no. 24: 2099. https://doi.org/10.3390/cells13242099
APA StyleCenerini, G., Chimera, D., Pagnini, M., Bazzan, E., Conti, M., Turato, G., Celi, A., & Neri, T. (2024). The Intricate Relationship Between Pulmonary Fibrosis and Thrombotic Pathology: A Narrative Review. Cells, 13(24), 2099. https://doi.org/10.3390/cells13242099