Neoadjuvant Radiochemotherapy Alters the Immune and Metabolic Microenvironment in Oral Cancer—Analyses of CD68, CD163, TGF-β1, GLUT-1 and HIF-1α Expressions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Collective
2.2. Therapy
2.3. Sampling
2.4. Statistical Analysis
3. Results
3.1. Patients’ Cohort
3.2. CD68
3.3. CD163
3.4. CD68/CD163 Ratio
3.5. GLUT-1
3.6. HIF1α
3.7. TGF-β
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sato, H.; Demaria, S.; Ohno, T. The role of radiotherapy in the age of immunotherapy. Jpn. J. Clin. Oncol. 2021, 51, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Sharon, S.; Daher-Ghanem, N.; Zaid, D.; Gough, M.J.; Kravchenko-Balasha, N. The immunogenic radiation and new players in immunotherapy and targeted therapy for head and neck cancer. Front. Oral. Health 2023, 4, 1180869. [Google Scholar] [CrossRef] [PubMed]
- Ruckert, M.; Deloch, L.; Fietkau, R.; Frey, B.; Hecht, M.; Gaipl, U.S. Immune modulatory effects of radiotherapy as basis for well-reasoned radioimmunotherapies. Strahlenther. Onkol. 2018, 194, 509–519. [Google Scholar] [CrossRef]
- Vanpouille-Box, C.; Pilones, K.A.; Wennerberg, E.; Formenti, S.C.; Demaria, S. In situ vaccination by radiotherapy to improve responses to anti-CTLA-4 treatment. Vaccine 2015, 33, 7415–7422. [Google Scholar] [CrossRef] [PubMed]
- Leidner, R.; Crittenden, M.; Young, K.; Xiao, H.; Wu, Y.; Couey, M.A.; Patel, A.A.; Cheng, A.C.; Watters, A.L.; Bifulco, C.; et al. Neoadjuvant immunoradiotherapy results in high rate of complete pathological response and clinical to pathological downstaging in locally advanced head and neck squamous cell carcinoma. J. Immunother. Cancer 2021, 9, e002485. [Google Scholar] [CrossRef] [PubMed]
- Wolff, K.-D.; Al-Sharif, U.; Beck, J.; Bikowski, K.; Bissinger, O. S3-Leitlinie Diagnostik und Therapie des Mundhöhlenkarzinoms, Langversion 3.0, AWMF Registernummer: 007/100OL; Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF): Frankfurt am Main, Germany, 2021. [Google Scholar]
- Weber, M.; Buttner-Herold, M.; Distel, L.; Ries, J.; Moebius, P.; Preidl, R.; Geppert, C.I.; Neukam, F.W.; Wehrhan, F. Galectin 3 expression in primary oral squamous cell carcinomas. BMC Cancer 2017, 17, 906. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.; Buttner-Herold, M.; Hyckel, P.; Moebius, P.; Distel, L.; Ries, J.; Amann, K.; Neukam, F.W.; Wehrhan, F. Small oral squamous cell carcinomas with nodal lymphogenic metastasis show increased infiltration of M2 polarized macrophages--an immunohistochemical analysis. J. Cranio-Maxillo-Facial Surg. 2014, 42, 1087–1094. [Google Scholar] [CrossRef]
- Weber, M.; Iliopoulos, C.; Moebius, P.; Buttner-Herold, M.; Amann, K.; Ries, J.; Preidl, R.; Neukam, F.W.; Wehrhan, F. Prognostic significance of macrophage polarization in early stage oral squamous cell carcinomas. Oral. Oncol. 2016, 52, 75–84. [Google Scholar] [CrossRef]
- Weber, M.; Moebius, P.; Buttner-Herold, M.; Amann, K.; Preidl, R.; Neukam, F.W.; Wehrhan, F. Macrophage polarisation changes within the time between diagnostic biopsy and tumour resection in oral squamous cell carcinomas--an immunohistochemical study. Br. J. Cancer 2015, 113, 510–519. [Google Scholar] [CrossRef]
- Wehrhan, F.; Buttner-Herold, M.; Hyckel, P.; Moebius, P.; Preidl, R.; Distel, L.; Ries, J.; Amann, K.; Schmitt, C.; Neukam, F.W.; et al. Increased malignancy of oral squamous cell carcinomas (oscc) is associated with macrophage polarization in regional lymph nodes—An immunohistochemical study. BMC Cancer 2014, 14, 522. [Google Scholar] [CrossRef]
- Kessler, P.; Grabenbauer, G.; Leher, A.; Bloch-Birkholz, A.; Vairaktaris, E.; Neukam, F.W.; Sauer, R. Five year survival of patients with primary oral squamous cell carcinoma. Comparison of two treatment protocols in a prospective study. Strahlenther. Onkol. 2007, 183, 184–189. [Google Scholar] [CrossRef]
- Mucke, T.; Konen, M.; Wagenpfeil, S.; Kesting, M.R.; Wolff, K.D.; Holzle, F. Low-dose preoperative chemoradiation therapy compared with surgery alone with or without postoperative radiotherapy in patients with head and neck carcinoma. Ann. Surg. Oncol. 2011, 18, 2739–2747. [Google Scholar] [CrossRef]
- Mohr, C.; Bohndorf, W.; Gremmel, H.; Harle, F.; Hausamen, J.E.; Hirche, H.; Molls, M.; Renner, K.H.; Reuther, J.; Sack, H.; et al. Preoperative radiochemotherapy and radical surgery of advanced head and neck cancers--results of a prospective, multicenter DOSAK study. Recent. Results Cancer Res. 1994, 134, 155–163. [Google Scholar]
- Tabachnyk, M.; Distel, L.V.; Buttner, M.; Grabenbauer, G.G.; Nkenke, E.; Fietkau, R.; Lubgan, D. Radiochemotherapy induces a favourable tumour infiltrating inflammatory cell profile in head and neck cancer. Oral. Oncol. 2012, 48, 594–601. [Google Scholar] [CrossRef]
- Frey, B.; Ruckert, M.; Deloch, L.; Ruhle, P.F.; Derer, A.; Fietkau, R.; Gaipl, U.S. Immunomodulation by ionizing radiation-impact for design of radio-immunotherapies and for treatment of inflammatory diseases. Immunol. Rev. 2017, 280, 231–248. [Google Scholar] [CrossRef]
- Vanpouille-Box, C.; Diamond, J.M.; Pilones, K.A.; Zavadil, J.; Babb, J.S.; Formenti, S.C.; Barcellos-Hoff, M.H.; Demaria, S. TGFbeta Is a Master Regulator of Radiation Therapy-Induced Antitumor Immunity. Cancer Res. 2015, 75, 2232–2242. [Google Scholar] [CrossRef]
- Guo, Y.; Xu, T.; Chai, Y.; Chen, F. TGF-beta Signaling in Progression of Oral Cancer. Int. J. Mol. Sci. 2023, 24, 10263. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.; Wehrhan, F.; Baran, C.; Agaimy, A.; Buttner-Herold, M.; Ozturk, H.; Neubauer, K.; Wickenhauser, C.; Kesting, M.; Ries, J. Malignant transformation of oral leukoplakia is associated with macrophage polarization. J. Transl. Med. 2020, 18, 11. [Google Scholar] [CrossRef] [PubMed]
- Dannenmann, S.R.; Thielicke, J.; Stockli, M.; Matter, C.; von Boehmer, L.; Cecconi, V.; Hermanns, T.; Hefermehl, L.; Schraml, P.; Moch, H.; et al. Tumor-associated macrophages subvert T-cell function and correlate with reduced survival in clear cell renal cell carcinoma. Oncoimmunology 2013, 2, e23562. [Google Scholar] [CrossRef] [PubMed]
- He, K.F.; Zhang, L.; Huang, C.F.; Ma, S.R.; Wang, Y.F.; Wang, W.M.; Zhao, Z.L.; Liu, B.; Zhao, Y.F.; Zhang, W.F.; et al. CD163+ tumor-associated macrophages correlated with poor prognosis and cancer stem cells in oral squamous cell carcinoma. Biomed. Res. Int. 2014, 2014, 838632. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.Y.; Zhong, J.T.; Shen, L.F.; Dai, L.B.; Zhou, S.H.; Fan, J.; Yao, H.T.; Lu, Z.J. Effect of Glut-1 and HIF-1alpha double knockout by CRISPR/CAS9 on radiosensitivity in laryngeal carcinoma via the PI3K/Akt/mTOR pathway. J. Cell Mol. Med. 2022, 26, 2881–2894. [Google Scholar] [CrossRef]
- McGettrick, A.F.; O’Neill, L.A.J. The Role of HIF in Immunity and Inflammation. Cell Metab. 2020, 32, 524–536. [Google Scholar] [CrossRef]
- Eckert, A.W.; Kappler, M.; Grosse, I.; Wickenhauser, C.; Seliger, B. Current Understanding of the HIF-1-Dependent Metabolism in Oral Squamous Cell Carcinoma. Int. J. Mol. Sci. 2020, 21, 6083. [Google Scholar] [CrossRef]
- Botha, H.; Farah, C.S.; Koo, K.; Cirillo, N.; McCullough, M.; Paolini, R.; Celentano, A. The Role of Glucose Transporters in Oral Squamous Cell Carcinoma. Biomolecules 2021, 11, 1070. [Google Scholar] [CrossRef]
- Seo, I.; Lee, H.W.; Byun, S.J.; Park, J.Y.; Min, H.; Lee, S.H.; Lee, J.S.; Kim, S.; Bae, S.U. Neoadjuvant chemoradiation alters biomarkers of anticancer immunotherapy responses in locally advanced rectal cancer. J. Immunother. Cancer 2021, 9, e001610. [Google Scholar] [CrossRef]
- Bankhead, P.; Loughrey, M.B.; Fernandez, J.A.; Dombrowski, Y.; McArt, D.G.; Dunne, P.D.; McQuaid, S.; Gray, R.T.; Murray, L.J.; Coleman, H.G.; et al. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 2017, 7, 16878. [Google Scholar] [CrossRef] [PubMed]
- JiaWei, Z.; ChunXia, D.; CunDong, L.; Yang, L.; JianKun, Y.; HaiFeng, D.; Cheng, Y.; ZhiPeng, H.; HongYi, W.; DeYing, L.; et al. M2 subtype tumor associated macrophages (M2-TAMs) infiltration predicts poor response rate of immune checkpoint inhibitors treatment for prostate cancer. Ann. Med. 2021, 53, 730–740. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Guo, L.; Cai, Q.; Xi, W.; Yuan, F.; Zhang, H.; Yan, C.; Huang, L.; Zhu, Z.; Zhang, J. Circulating neutrophils activated by cancer cells and M2 macrophages promote gastric cancer progression during PD-1 antibody-based immunotherapy. Front. Mol. Biosci. 2023, 10, 1081762. [Google Scholar] [CrossRef] [PubMed]
- Shen, P.; Qiao, B.; Jin, N.; Wang, S. Neoadjuvant immunoradiotherapy in patients with locally advanced oral cavity squamous cell carcinoma: A retrospective study. Investig. New Drugs 2022, 40, 1282–1289. [Google Scholar] [CrossRef] [PubMed]
- Ferris, R.L.; Spanos, W.C.; Leidner, R.; Goncalves, A.; Martens, U.M.; Kyi, C.; Sharfman, W.; Chung, C.H.; Devriese, L.A.; Gauthier, H.; et al. Neoadjuvant nivolumab for patients with resectable HPV-positive and HPV-negative squamous cell carcinomas of the head and neck in the CheckMate 358 trial. J. Immunother. Cancer 2021, 9, e002568. [Google Scholar] [CrossRef] [PubMed]
- Darragh, L.B.; Knitz, M.M.; Hu, J.; Clambey, E.T.; Backus, J.; Dumit, A.; Samedi, V.; Bubak, A.; Greene, C.; Waxweiler, T.; et al. A phase I/Ib trial and biological correlate analysis of neoadjuvant SBRT with single-dose durvalumab in HPV-unrelated locally advanced HNSCC. Nat. Cancer 2022, 3, 1300–1317. [Google Scholar] [CrossRef]
- Falcke, S.E.; Ruhle, P.F.; Deloch, L.; Fietkau, R.; Frey, B.; Gaipl, U.S. Clinically Relevant Radiation Exposure Differentially Impacts Forms of Cell Death in Human Cells of the Innate and Adaptive Immune System. Int. J. Mol. Sci. 2018, 19, 3574. [Google Scholar] [CrossRef] [PubMed]
- Demaria, S.; Guha, C.; Schoenfeld, J.; Morris, Z.; Monjazeb, A.; Sikora, A.; Crittenden, M.; Shiao, S.; Khleif, S.; Gupta, S.; et al. Radiation dose and fraction in immunotherapy: One-size regimen does not fit all settings, so how does one choose? J. Immunother. Cancer 2021, 9, e002038. [Google Scholar] [CrossRef]
- Shi, Y.; Ma, X.; He, D.; Dong, B.; Qiao, T. Neoadjuvant SBRT combined with immunotherapy in NSCLC: From mechanisms to therapy. Front. Immunol. 2023, 14, 1213222. [Google Scholar] [CrossRef] [PubMed]
- Klempner, S.J.; Fabrizio, D.; Bane, S.; Reinhart, M.; Peoples, T.; Ali, S.M.; Sokol, E.S.; Frampton, G.; Schrock, A.B.; Anhorn, R.; et al. Tumor Mutational Burden as a Predictive Biomarker for Response to Immune Checkpoint Inhibitors: A Review of Current Evidence. Oncologist 2020, 25, e147–e159. [Google Scholar] [CrossRef] [PubMed]
- Marciscano, A.E.; Ghasemzadeh, A.; Nirschl, T.R.; Theodros, D.; Kochel, C.M.; Francica, B.J.; Muroyama, Y.; Anders, R.A.; Sharabi, A.B.; Velarde, E.; et al. Elective Nodal Irradiation Attenuates the Combinatorial Efficacy of Stereotactic Radiation Therapy and Immunotherapy. Clin. Cancer Res. 2018, 24, 5058–5071. [Google Scholar] [CrossRef] [PubMed]
- Darragh, L.B.; Gadwa, J.; Pham, T.T.; Van Court, B.; Neupert, B.; Olimpo, N.A.; Nguyen, K.; Nguyen, D.; Knitz, M.W.; Hoen, M.; et al. Elective nodal irradiation mitigates local and systemic immunity generated by combination radiation and immunotherapy in head and neck tumors. Nat. Commun. 2022, 13, 7015. [Google Scholar] [CrossRef] [PubMed]
- Saddawi-Konefka, R.; O’Farrell, A.; Faraji, F.; Clubb, L.; Allevato, M.M.; Jensen, S.M.; Yung, B.S.; Wang, Z.; Wu, V.H.; Anang, N.A.; et al. Lymphatic-preserving treatment sequencing with immune checkpoint inhibition unleashes cDC1-dependent antitumor immunity in HNSCC. Nat. Commun. 2022, 13, 4298. [Google Scholar] [CrossRef]
- Eckert, A.W.; Lautner, M.H.; Schutze, A.; Taubert, H.; Schubert, J.; Bilkenroth, U. Coexpression of hypoxia-inducible factor-1alpha and glucose transporter-1 is associated with poor prognosis in oral squamous cell carcinoma patients. Histopathology 2011, 58, 1136–1147. [Google Scholar] [CrossRef]
- Kunkel, M.; Moergel, M.; Stockinger, M.; Jeong, J.H.; Fritz, G.; Lehr, H.A.; Whiteside, T.L. Overexpression of GLUT-1 is associated with resistance to radiotherapy and adverse prognosis in squamous cell carcinoma of the oral cavity. Oral. Oncol. 2007, 43, 796–803. [Google Scholar] [CrossRef]
- Miyawaki, A.; Ikeda, R.; Hijioka, H.; Ishida, T.; Ushiyama, M.; Nozoe, E.; Nakamura, N. SUVmax of FDG-PET correlates with the effects of neoadjuvant chemoradiotherapy for oral squamous cell carcinoma. Oncol. Rep. 2010, 23, 1205–1212. [Google Scholar] [CrossRef]
- Maldonado, L.A.G.; Nascimento, C.R.; Rodrigues Fernandes, N.A.; Silva, A.L.P.; D’Silva, N.J.; Rossa, C., Jr. Influence of tumor cell-derived TGF-beta on macrophage phenotype and macrophage-mediated tumor cell invasion. Int. J. Biochem. Cell Biol. 2022, 153, 106330. [Google Scholar] [CrossRef]
- Preidl, R.H.; Mobius, P.; Weber, M.; Amann, K.; Neukam, F.W.; Schlegel, A.; Wehrhan, F. Expression of transforming growth factor beta 1-related signaling proteins in irradiated vessels. Strahlenther. Onkol. 2015, 191, 518–524. [Google Scholar] [CrossRef] [PubMed]
- Reisdorf, P.; Lawrence, D.A.; Sivan, V.; Klising, E.; Martin, M.T. Alteration of transforming growth factor-beta1 response involves down-regulation of Smad3 signaling in myofibroblasts from skin fibrosis. Am. J. Pathol. 2001, 159, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Gulley, J.L.; Schlom, J.; Barcellos-Hoff, M.H.; Wang, X.J.; Seoane, J.; Audhuy, F.; Lan, Y.; Dussault, I.; Moustakas, A. Dual inhibition of TGF-beta and PD-L1: A novel approach to cancer treatment. Mol. Oncol. 2022, 16, 2117–2134. [Google Scholar] [CrossRef] [PubMed]
Total Number of Cases: 45 | |||||
---|---|---|---|---|---|
Cases | n | % of Cases | |||
Sex | Female | 7 | 16 | ||
Male | 38 | 84 | |||
Mean age | 54.22 (SD 8.13) | ||||
Age range | 38–71 years | ||||
Pre RCT (Biopsy) | Post RCT (Resection) | ||||
n | % | n | % | ||
T-status | T0 | 0 | 0 | 28 | 62 |
T1 | 2 | 4 | 10 | 22 | |
T2 | 14 | 31 | 0 | 0 | |
T3 | 6 | 13 | 1 | 2 | |
T4 | 19 | 42 | 5 | 11 | |
unknown | 4 | 9 | 1 | 2 | |
N-Status | N0 | 11 | 24 | 35 | 78 |
N+ | 30 | 67 | 9 | 20 | |
unknown | 4 | 9 | 1 | 2 | |
Grading | G1 | 5 | 11 | 1 | 2 |
G2 | 31 | 69 | 10 | 22 | |
G3 | 7 | 16 | 6 | 13 | |
G4 | 1 | 2 | 1 | 2 | |
unknown | 1 | 2 | 27 | 60 | |
Staging | 1 | 1 | 2 | 8 | 18 |
2 | 5 | 11 | 0 | 0 | |
3 | 4 | 9 | 3 | 7 | |
4 | 34 | 76 | 4 | 9 | |
unknown | 1 | 2.2 | 30 | 67 |
Marker | Tissue | Compartment | n | Mean | Median | SD | p-Value |
---|---|---|---|---|---|---|---|
CD68 | biopsy | overall | 27 | 13.3 | 08.2 | 13.1 | 0.632 |
resection | 34 | 09.4 | 06.7 | 07.8 | |||
biopsy | stroma | 27 | 18.1 | 17.0 | 15.5 | 0.017 | |
resection | 34 | 09.9 | 06.7 | 08.1 | |||
CD163 | biopsy | overall | 27 | 05.2 | 04.0 | 05.2 | <0.001 |
resection | 33 | 08.8 | 07.6 | 06.8 | |||
biopsy | stroma | 27 | 08.1 | 07.7 | 05.9 | 0.237 | |
resection | 33 | 09.5 | 08.1 | 06.8 | |||
CD68/CD163 | biopsy | overall | 27 | 40.1 | 02.2 | 192.6 | <0.001 |
resection | 33 | 01.3 | 00.9 | 00.9 | |||
biopsy | stroma | 26 | 02.3 | 01.8 | 01.9 | <0.001 | |
resection | 33 | 01.2 | 00.9 | 00.8 | |||
GLUT-1 | biopsy | overall | 26 | 44.4 | 42.4 | 25.2 | <0.001 |
resection | 32 | 12.4 | 05.1 | 17.4 | |||
biopsy | stroma | 26 | 11.4 | 10.8 | 08.1 | 0.011 | |
resection | 32 | 07.4 | 04.9 | 08.0 | |||
HIF-1α | biopsy | overall | 25 | 06.5 | 04.2 | 07.6 | 0.008 |
resection | 34 | 02.5 | 01.3 | 03.8 | |||
biopsy | stroma | 25 | 05.6 | 01.7 | 11.0 | 0.634 | |
resection | 34 | 02.6 | 01.2 | 04.0 | |||
TGF-β | biopsy | overall | 24 | 03.0 | 00.3 | 06.3 | 0.146 |
resection | 34 | 01.6 | 01.1 | 01.4 | |||
biopsy | stroma | 24 | 04.8 | 00.4 | 08.8 | 0.256 | |
resection | 34 | 01.7 | 01.2 | 01.4 |
Biopsy | CD163 | CD68 | GLUT-1 | HIF-1α | TGF-β | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | Mean | SD | p-Value | n | Mean | SD | p-Value | n | Mean | SD | p-Value | n | Mean | SD | p-Value | n | Mean | SD | p-Value | ||
T-status | Epithelium | 26 | 0.833 | 26 | 0.287 | 25 | 0.121 | 24 | 0.928 | 23 | 0.548 | ||||||||||
T1-T2 | 9 | 1.3 | 1.8 | 9 | 7.8 | 11.0 | 9 | 75.7 | 17.4 | 8 | 6.2 | 5.1 | 8 | 2.6 | 5.0 | ||||||
T3-T4 | 17 | 3.0 | 6.2 | 17 | 12.6 | 13.5 | 16 | 58.4 | 27.3 | 16 | 6.3 | 5.9 | 15 | 4.1 | 7.5 | ||||||
Stroma | 26 | 0.958 | 26 | 0.751 | 25 | 0.095 | 24 | 0.881 | 23 | 1.00 | |||||||||||
T1-T2 | 9 | 7.3 | 3.8 | 9 | 17.6 | 16.5 | 9 | 60.4 | 20.1 | 8 | 4.1 | 5.8 | 8 | 3.9 | 7.3 | ||||||
T3-T4 | 17 | 8.8 | 6.9 | 17 | 18.3 | 15.9 | 16 | 36.3 | 24.6 | 16 | 6.6 | 13.2 | 15 | 5.7 | 9.8 | ||||||
Overall | 26 | 0.287 | 26 | 0.458 | 25 | 0.020 | 24 | 0.787 | 23 | 0.548 | |||||||||||
T1-T2 | 9 | 3.6 | 3.0 | 9 | 10.8 | 11.9 | 9 | 60.4 | 20.1 | 8 | 6.1 | 6.2 | 8 | 1.7 | 3.2 | ||||||
T3-T4 | 17 | 6.2 | 6.0 | 17 | 14.6 | 14.2 | 16 | 36.3 | 24.6 | 16 | 6.3 | 8.5 | 15 | 3.8 | 7.5 | ||||||
N-status | Epithelium | 25 | 0.642 | 25 | 0.475 | 24 | 0.415 | 23 | 0.812 | 22 | 0.218 | ||||||||||
N0 | 9 | 2.8 | 5.9 | 19 | 11.2 | 13.0 | N0 | 18 | 65.5 | 22.8 | 17 | 6.6 | 5.6 | 17 | 3.9 | 7.1 | |||||
N+ | 16 | 1.3 | 1.9 | 6 | 6.8 | 9.2 | 6 | 68.7 | 33.0 | 6 | 7.5 | 6.8 | 5 | 3.0 | 6.3 | ||||||
Stroma | 25 | 0.514 | 25 | 1.000 | 24 | 0.310 | 23 | 0.919 | 22 | 0.140 | |||||||||||
N0 | 9 | 8.9 | 6.4 | 19 | 18.7 | 17.0 | 18 | 11.4 | 8.4 | 17 | 4.4 | 7.0 | 17 | 5.6 | 9.3 | ||||||
N+ | 16 | 6.4 | 4.7 | 6 | 17.8 | 14.6 | 6 | 13.5 | 8.1 | 6 | 10.4 | 19.5 | 5 | 4.2 | 9.1 | ||||||
Overall | 25 | 0.366 | 25 | 0.828 | 24 | 0.251 | 23 | 0.812 | 22 | 0.189 | |||||||||||
N0 | 9 | 5.8 | 5.8 | 19 | 13.7 | 13.9 | 18 | 43.2 | 22.9 | 17 | 6.1 | 6.2 | 17 | 3.6 | 7.1 | ||||||
N+ | 16 | 3.3 | 3.2 | 6 | 11.8 | 12.5 | 6 | 55.8 | 30.2 | 6 | 9.1 | 11.9 | 5 | 2.0 | 4.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weber, M.; Ries, J.; Braun, K.; Wehrhan, F.; Distel, L.; Geppert, C.; Lutz, R.; Kesting, M.; Trumet, L. Neoadjuvant Radiochemotherapy Alters the Immune and Metabolic Microenvironment in Oral Cancer—Analyses of CD68, CD163, TGF-β1, GLUT-1 and HIF-1α Expressions. Cells 2024, 13, 397. https://doi.org/10.3390/cells13050397
Weber M, Ries J, Braun K, Wehrhan F, Distel L, Geppert C, Lutz R, Kesting M, Trumet L. Neoadjuvant Radiochemotherapy Alters the Immune and Metabolic Microenvironment in Oral Cancer—Analyses of CD68, CD163, TGF-β1, GLUT-1 and HIF-1α Expressions. Cells. 2024; 13(5):397. https://doi.org/10.3390/cells13050397
Chicago/Turabian StyleWeber, Manuel, Jutta Ries, Kristina Braun, Falk Wehrhan, Luitpold Distel, Carol Geppert, Rainer Lutz, Marco Kesting, and Leah Trumet. 2024. "Neoadjuvant Radiochemotherapy Alters the Immune and Metabolic Microenvironment in Oral Cancer—Analyses of CD68, CD163, TGF-β1, GLUT-1 and HIF-1α Expressions" Cells 13, no. 5: 397. https://doi.org/10.3390/cells13050397
APA StyleWeber, M., Ries, J., Braun, K., Wehrhan, F., Distel, L., Geppert, C., Lutz, R., Kesting, M., & Trumet, L. (2024). Neoadjuvant Radiochemotherapy Alters the Immune and Metabolic Microenvironment in Oral Cancer—Analyses of CD68, CD163, TGF-β1, GLUT-1 and HIF-1α Expressions. Cells, 13(5), 397. https://doi.org/10.3390/cells13050397