The Potential Reversible Transition between Stem Cells and Transient-Amplifying Cells: The Limbal Epithelial Stem Cell Perspective
Abstract
:1. Introduction
2. Maintenance of Corneal Epithelia during Homeostasis and Following Wounding: The Role of LESCs and TACs
3. Evidence of the Existence of Progenitor-like Cells in the Peripheral Cornea
4. TACs: The Potential Progenitor-like Cells within the Peripheral Cornea
5. Markers of Corneal TACs
Cell Type | Marker | Location/Species | Reference(s) |
---|---|---|---|
Early TACs (TAC I) | Ki-67 (Mki67)high/baculoviral IAP repeat-containing 5 (Birc5)high/CK15mod/activating transcription factor 3 (Atf3)high/metallothionein 1 (Mt1)high expression with uracil DNA glycosylase (UNG) as top differentially expressed gene (DEG) | Human (outer limbus) | [70] |
Highly proliferative TACs (TAC II) | Moderate K15 expression with kinetochore-localized astrin/SPAG5-binding protein (Knstrn) as a top DEG | Human (inner limbus) | |
Mature TACs (TAC III) | High expression levels of PDZ-binding kinase (PBK) | Human (cornea) | |
TACs | Centromere protein F (CENPF), nucleolar and spindle-associated protein 1 (NUSAP1), ubiquitin-conjugating enzyme E2C (UBE2C), and cell division cycle 20 (CDC20) | Human | [104] |
Early TACs | Thioredoxin-interacting protein (Txnip) | Mouse | [106] |
Mature TACs | PDZ binding kinase (PBK) | Mouse | |
Highly proliferative TACs | Cyclin-dependent kinase 2 (CKS2), stathmin-1 (STMN1), and UBE2C | Human | [107] |
Early TACs | CENPF, UBE2C, and NUSAP1 | Human (iPSC-derived corneal organoids) | [108] |
Limbal stem/progenitor cells (LSPCs) with high stemness | tumor protein 63 (TP63) and C–C motif chemokine ligand 20 (CCL20) | Human | [109] |
LSPCs with high differentiation | GPHA2 and keratin 6B (KRT6B) | Human | |
LESCs | Tetraspanin-7 (TSPAN7), SRY-box transcription factor 17 (SOX17), selectin E (SELE), endothelial cell surface-expressed chemotaxis and apoptosis regulator (ECSCR), receptor activity modifying protein 3 (RAMP3), ribonuclease A family member 1 (RNASE1), Niemann-Pick disease type C1 (NPCD1), nicotinamide N-methyltransferase (NNMT), solute carrier family 2 member 3 (SLC2A3), Krüppel-like factor 2 (KLF2), pyruvate dehydrogenase kinase 4 (PDK4) | Human | |
qLSCs | Gpha2, Cd63, interferon-induced transmembrane protein 3 (Ifitm3) | Mouse | |
aLSCs | Atf3, suppressor of cytokine signaling 3 (Socs3), Mt1, PR domain zinc finger protein 1 (Prdm1) | Mouse |
6. TACs in Other Organs: A Secondary Source of Information
6.1. Hair Follicles
Factor/Pathway | Species | Role | Reference |
---|---|---|---|
β-catenin | Human | Differentiates HF-SCs to HF-TACs by activating c-myc and regulating the expression of HF-TAC markers K15, K19, a6-integrin and β1-integrin | [124] |
BMP signaling and pSMAD1/5 targets, e.g., Gata3 | Mouse | Promotes HF-TAC lineage progression | [125] |
miR-214/EZH2/β-catenin | Human | Regulates HF-SC proliferation and differentiation | [126] |
Serum/glucocorticoid-regulated kinase family member 3 (Sgk3) | Mouse | Reduces the supply of HF-TACs, causing premature entry into the apoptotic regression phase of the hair cycle | [127] |
T-cell leukemia/lymphoma protein 1 (Tcl1) | Mouse | Affects the cycling and self-renewal of HF-SCs and HF-TACs | [128] |
Stable β-catenin-induced Wnt signaling pathway activation | Mouse | Causes transient activation of lymphoid enhancer-binding factor 1 (Lef1)/Tcf complexes that promote TAC conversion and proliferation | [129] |
Transient activation of c-Myc | Mouse | Shifts keratinocytes from the SC to TAC compartment and thus stimulates proliferation and differentiation | [130] |
β1 integrin signaling | Human | Maintains the survival, proliferation, apoptosis, and migration of human epithelial progenitors | [131] |
Prostaglandin E2 | Mouse | Attenuates the apoptosis of HF-TACs by promoting G1 arrest | [132] |
Sonic hedgehog pathway | Mouse | Reinstalls dermal papilla for HF neogenesis | [133] |
Notch/RBP-J Signaling | Mouse | Regulates the cell fate determination of hair follicular stem cells at the bulge region | [134] |
6.2. The Testis in Mammalian Models
6.3. Germline SCs, the Drosophila Model
6.4. Intestine
6.5. Tooth
6.6. Olfactory Epithelium
7. Conclusions
Funding
Conflicts of Interest
References
- Till, J.E.; McCulloch, E.A. A Direct Measurement of the Radiation Sensitivity of Normal Mouse Bone Marrow Cells. Radiat. Res. 1961, 175, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Schofield, R. The Relationship between the Spleen Colony-Forming Cell and the Haemopoietic Stem Cell. Blood Cells 1978, 4, 7–25. [Google Scholar] [PubMed]
- Crane, G.M.; Jeffery, E.; Morrison, S.J. Adult Haematopoietic Stem Cell Niches. Nat. Rev. Immunol. 2017, 17, 573–590. [Google Scholar] [CrossRef] [PubMed]
- Shizuru, J.A.; Negrin, R.S.; Weissman, I.L. Hematopoietic Stem and Progenitor Cells: Clinical and Preclinical Regeneration of the Hematolymphoid System. Annu. Rev. Med. 2005, 56, 509–538. [Google Scholar] [CrossRef]
- Orkin, S.H.; Zon, L.I. Hematopoiesis: An Evolving Paradigm for Stem Cell Biology. Cell 2008, 132, 631–644. [Google Scholar] [CrossRef]
- Seita, J.; Weissman, I.L. Hematopoietic stem cell: Self-renewal versus Differentiation. Wiley Interdiscip. Rev. Syst. Biol. Med. 2010, 2, 640–653. [Google Scholar] [CrossRef]
- Pinho, S.; Frenette, P.S. Haematopoietic Stem Cell Activity and Interactions with the Niche. Nat. Rev. Mol. Cell Biol. 2019, 20, 303–320. [Google Scholar] [CrossRef]
- Cancedda, R.; Mastrogiacomo, M. Transit Amplifying Cells (TACs): A Still Not Fully Understood Cell Population. Front. Bioeng. Biotechnol. 2023, 11, 1189225. [Google Scholar] [CrossRef] [PubMed]
- Tümpel, S.; Rudolph, K.L. Quiescence: Good and Bad of Stem Cell Aging. Trends Cell Biol. 2019, 29, 672–685. [Google Scholar] [CrossRef]
- Lengefeld, J.; Cheng, C.-W.; Maretich, P.; Blair, M.; Hagen, H.; McReynolds, M.R.; Sullivan, E.; Majors, K.; Roberts, C.; Kang, J.H.; et al. Cell Size is a Determinant of Stem Cell Potential during Aging. Sci. Adv. 2021, 7, eabk0271. [Google Scholar] [CrossRef]
- Loeffler, M.; Roeder, I. Tissue Stem Cells: Definition, Plasticity, Heterogeneity, Self-Organization and Models—A Conceptual Approach. Cells Tissues Organs 2002, 171, 8–26. [Google Scholar] [CrossRef]
- Huang, C.; Albon, J.; Ljubimov, A.V.; Grant, M.B. Chapter 60—Stem Cells in the Eye. In Principles of Tissue Engineering, 5th ed.; Lanza, R., Langer, R., Vacanti, J.P., Atala, A., Eds.; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Hsu, Y.-C.; Li, L.; Fuchs, E. Transit-Amplifying Cells Orchestrate Stem Cell Activity and Tissue Regeneration. Cell 2014, 157, 935–949. [Google Scholar] [CrossRef] [PubMed]
- Aponte, P.M.; Caicedo, A. Stemness in Cancer: Stem Cells, Cancer Stem Cells, and Their Microenvironment. Stem Cells Int. 2017, 2017, 5619472. [Google Scholar] [CrossRef] [PubMed]
- Richardson, A.; Wakefield, D.; Di Girolamo, N. Fate Mapping Mammalian Corneal Epithelia. Ocul. Surf. 2016, 14, 82–99. [Google Scholar] [CrossRef] [PubMed]
- Yazdanpanah, G.; Jabbehdari, S.; Djalilian, A.R. Limbal and Corneal Epithelial Homeostasis. Curr. Opin. Ophthalmol. 2017, 28, 348–354. [Google Scholar] [CrossRef]
- Elhusseiny, A.M.; Soleimani, M.; Eleiwa, T.K.; ElSheikh, R.H.; Frank, C.R.; Naderan, M.; Yazdanpanah, G.; Rosenblatt, M.I.; Djalilian, A.R. Current and Emerging Therapies for Limbal Stem Cell Deficiency. Stem Cells Transl. Med. 2022, 11, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Dua, H.S.; Miri, A.; Alomar, T.; Yeung, A.M.; Said, D.G. The Role of Limbal Stem Cells in Corneal Epithelial Maintenance: Testing the Dogma. Ophthalmology 2009, 116, 856–863. [Google Scholar] [CrossRef] [PubMed]
- Majo, F.; Rochat, A.; Nicolas, M.; Jaoudé, G.A.; Barrandon, Y. Oligopotent Stem Cells are Distributed throughout the Mammalian Ocular Surface. Nature 2008, 456, 250–254. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Green, C.R.; McGhee, C.N.J.; Sherwin, T. Acute Wound Healing in the Human Central Corneal Epithelium Appears to Be Independent of Limbal Stem Cell Influence. Investig. Ophthalmol. Vis. Sci. 2008, 49, 5279–5286. [Google Scholar] [CrossRef]
- Lehrer, M.S.; Sun, T.-T.; Lavker, R.M. Strategies of Epithelial Repair: Modulation of Stem Cell and Transit Amplifying Cell Proliferation. J. Cell Sci. 1998, 111 Pt 19, 2867–2875. [Google Scholar] [CrossRef]
- Hanna, C.; Bicknell, D.S.; O’Brien, J.E. Cell Turnover in the Adult Human Eye. Arch. Ophthalmol. 1961, 65, 695–698. [Google Scholar] [CrossRef]
- Mort, R.L.; Douvaras, P.; Morley, S.D.; Dorà, N.; Hill, R.E.; Collinson, J.M.; West, J.D. Stem Cells and Corneal Epithelial Maintenance: Insights from the Mouse and Other Animal Models. Results Probl. Cell Differ. 2012, 55, 357–394. [Google Scholar] [CrossRef]
- Hanna, C.; O’Brien, J.E. Cell Production and Migration in the Epithelial Layer of the Cornea. Arch. Ophthalmol. 1960, 64, 536–539. [Google Scholar] [CrossRef]
- Thoft, R.A.; Friend, J. The X, Y, Z Hypothesis of Corneal Epithelial Maintenance. Investig. Ophthalmol. Vis. Sci. 1983, 24, 1442–1443. [Google Scholar]
- Schermer, A.; Galvin, S.; Sun, T.T. Differentiation-Related Expression of a Major 64K Corneal Keratin in Vivo and in Culture Suggests Limbal Location of Corneal Epithelial Stem Cells. J. Cell Biol. 1986, 103, 49–62. [Google Scholar] [CrossRef]
- Yoon, J.J.; Ismail, S.; Sherwin, T. Limbal Stem Cells: Central Concepts of Corneal Epithelial Homeostasis. World J. Stem Cells 2014, 6, 391–403. [Google Scholar] [CrossRef]
- Barbaro, V.; Testa, A.; Di Iorio, E.; Mavilio, F.; Pellegrini, G.; De Luca, M. C/EBPδ Regulates Cell Cycle and Self-Renewal of Human Limbal Stem Cells. J. Cell Biol. 2007, 177, 1037–1049. [Google Scholar] [CrossRef]
- Pal-Ghosh, S.; Pajoohesh-Ganji, A.; Brown, M.; Stepp, M.A. A Mouse Model for the Study of Recurrent Corneal Epithelial Erosions: α9β1 Integrin Implicated in Progression of the Disease. Investig. Opthalmol. Vis. Sci. 2004, 45, 1775–1788. [Google Scholar] [CrossRef] [PubMed]
- Brawley, C.; Matunis, E. Regeneration of Male Germline Stem Cells by Spermatogonial Dedifferentiation in Vivo. Science 2004, 304, 1331–1334. [Google Scholar] [CrossRef]
- Kai, T.; Spradling, A. Differentiating Germ Cells Can Revert into Functional Stem Cells in Drosophila Melanogaster Ovaries. Nature 2004, 428, 564–569. [Google Scholar] [CrossRef]
- Umemoto, T.; Yamato, M.; Nishida, K.; Kohno, C.; Yang, J.; Tano, Y.; Okano, T. Rat Limbal Epithelial Side Population Cells Exhibit a Distinct Expression of Stem Cell Markers That Are Lacking in Side Population Cells from the Central Cornea. FEBS Lett. 2005, 579, 6569–6574. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xiao, Y.; Coursey, T.G.; Chen, X.; Deng, R.; Lu, F.; Pflugfelder, S.C.; Li, D.-Q. Identification for Differential Localization of Putative Corneal Epithelial Stem Cells in Mouse and Human. Sci. Rep. 2017, 7, 5169. [Google Scholar] [CrossRef] [PubMed]
- Nasser, W.; Amitai-Lange, A.; Soteriou, D.; Hanna, R.; Tiosano, B.; Fuchs, Y.; Shalom-Feuerstein, R. Corneal-Committed Cells Restore the Stem Cell Pool and Tissue Boundary Following Injury. Cell Rep. 2018, 22, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Altshuler, A.; Verbuk, M.; Bhattacharya, S.; Abramovich, I.; Haklai, R.; Hanna, J.H.; Kloog, Y.; Gottlieb, E.; Shalom-Feuerstein, R. RAS Regulates the Transition from Naive to Primed Pluripotent Stem Cells. Stem Cell Rep. 2018, 10, 1088–1101. [Google Scholar] [CrossRef]
- Park, M.; Zhang, R.; Pandzic, E.; Sun, M.; Coulson-Thomas, V.J.; Di Girolamo, N. Plasticity of Ocular Surface Epithelia: Using a Murine Model of Limbal Stem Cell Deficiency to Delineate Metaplasia and Transdifferentiation. Stem Cell Rep. 2022, 17, 2451–2466. [Google Scholar] [CrossRef]
- Park, M.; Richardson, A.; Pandzic, E.; Lobo, E.P.; Whan, R.; Watson, S.L.; Lyons, J.G.; Wakefield, D.; Di Girolamo, N. Visualizing the Contribution of Keratin-14+ Limbal Epithelial Precursors in Corneal Wound Healing. Stem Cell Rep. 2019, 12, 14–28. [Google Scholar] [CrossRef]
- Puri, S.; Sun, M.; Mutoji, K.N.; Gesteira, T.F.; Coulson-Thomas, V.J. Epithelial Cell Migration and Proliferation Patterns During Initial Wound Closure in Normal Mice and an Experimental Model of Limbal Stem Cell Deficiency. Investig. Opthalmol. Vis. Sci. 2020, 61, 27. [Google Scholar] [CrossRef]
- Goodell, M.A.; Brose, K.; Paradis, G.; Conner, A.S.; Mulligan, R.C. Isolation and Functional Properties of Murine Hematopoietic Stem Cells That Are Replicating in Vivo. J. Exp. Med. 1996, 183, 1797–1806. [Google Scholar] [CrossRef]
- Smalley, M.J.; Clarke, R.B. The Mammary Gland “Side Population”: A Putative Stem/Progenitor Cell Marker? J. Mammary Gland. Biol. Neoplasia 2005, 10, 37–47. [Google Scholar] [CrossRef]
- Alvi, A.J.; Clayton, H.; Joshi, C.; Enver, T.; Ashworth, A.; Vivanco, M.A.M.; Dale, T.C.; Smalley, M.J. Functional and Molecular Characterisation of Mammary Side Population Cells. Breast Cancer Res. 2003, 5, R1–R8. [Google Scholar] [CrossRef]
- Forbes, S.J.; Alison, M.R. Side Population (SP) Cells: Taking Center Stage in Regeneration and Liver Cancer? J. Hepatol. 2006, 44, 23–26. [Google Scholar] [CrossRef] [PubMed]
- Terrace, J.D.; Hay, D.C.; Samuel, K.; Payne, C.; Anderson, R.A.; Currie, I.S.; Parks, R.W.; Forbes, S.J.; Ross, J.A. Side Population Cells in Developing Human Liver Are Primarily Haematopoietic Progenitor Cells. Exp. Cell Res. 2009, 315, 2141–2153. [Google Scholar] [CrossRef] [PubMed]
- Summer, R.; Kotton, D.N.; Sun, X.; Fitzsimmons, K.; Fine, A. Translational Physiology: Origin and Phenotype of Lung Side Population Cells. Am. J. Physiol. Cell. Lung Mol. Physiol. 2004, 287, L477–L483. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.; Mo, L.; Li, L.; Mao, N.; Li, D.; Liu, D.; Zuo, C.; Huang, D.; Pan, Q.; Yang, L.; et al. Identification of Side Population Cells in Human Lung Adenocarcinoma A549 Cell Line and Elucidation of the Underlying Roles in Lung Cancer. Oncol. Lett. 2018, 15, 4900–4906. [Google Scholar] [CrossRef] [PubMed]
- Umemoto, T.; Yamato, M.; Nishida, K.; Yang, J.; Tano, Y.; Okano, T. Limbal Epithelial Side-Population Cells Have Stem Cell–like Properties, Including Quiescent State. Stem Cells 2006, 24, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Nishida, K.; Yamato, M.; Umemoto, T.; Sumide, T.; Yamamoto, K.; Maeda, N.; Watanabe, H.; Okano, T.; Tano, Y. Human Limbal Epithelium Contains Side Population Cells Expressing the ATP-Binding Cassette Transporter ABCG2. FEBS Lett. 2004, 565, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Leszczynska, A.; Kulkarni, M.; Ljubimov, A.V.; Saghizadeh, M. Exosomes from Normal and Diabetic Human Corneolimbal Keratocytes Differentially Regulate Migration, Proliferation and Marker Expression of Limbal Epithelial Cells. Sci. Rep. 2018, 8, 15173. [Google Scholar] [CrossRef]
- Kulkarni, M.; Leszczynska, A.; Wei, G.; Winkler, M.A.; Tang, J.; Funari, V.A.; Deng, N.; Liu, Z.; Punj, V.; Deng, S.X.; et al. Genome-Wide Analysis Suggests a Differential microRNA Signature Associated with Normal and Diabetic Human Corneal limbus. Sci. Rep. 2017, 7, 3448. [Google Scholar] [CrossRef] [PubMed]
- Gipson, I.K. The Epithelial Basement Membrane Zone of the Limbus. Eye 1989, 3, 132–140. [Google Scholar] [CrossRef]
- Tseng, S.C.; Chen, S.-Y.; Mead, O.G.; Tighe, S. Niche Regulation of Limbal Epithelial Stem Cells: HC-HA/PTX3 as Surrogate Matrix Niche. Exp. Eye Res. 2020, 199, 108181. [Google Scholar] [CrossRef]
- Gesteira, T.F.; Sun, M.; Coulson-Thomas, Y.M.; Yamaguchi, Y.; Yeh, L.-K.; Hascall, V.; Coulson-Thomas, V.J. Hyaluronan Rich Microenvironment in the Limbal Stem Cell Niche Regulates Limbal Stem Cell Differentiation. Investig. Opthalmol. Vis. Sci. 2017, 58, 4407. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Puri, S.; Mutoji, K.N.; Coulson-Thomas, Y.M.; Hascall, V.C.; Jackson, D.G.; Gesteira, T.F.; Coulson-Thomas, V.J. Hyaluronan Derived from the Limbus Is a Key Regulator of Corneal Lymphangiogenesis. Investig. Opthalmol. Vis. Sci. 2019, 60, 1050. [Google Scholar] [CrossRef] [PubMed]
- Puri, S.; Moreno, I.Y.; Sun, M.; Verma, S.; Lin, X.; Gesteira, T.F.; Coulson-Thomas, V.J. Hyaluronan Supports the Limbal Stem Cell Phenotype during Ex Vivo Culture. Stem Cell Res. Ther. 2022, 13, 384. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, M.; Cheraqpour, K.; Koganti, R.; Baharnoori, S.M.; Djalilian, A.R. Concise Review: Bioengineering of Limbal Stem Cell Niche. Bioengineering 2023, 10, 111. [Google Scholar] [CrossRef] [PubMed]
- Torricelli, A.A.M.; Singh, V.; Santhiago, M.R.; Wilson, S.E. The Corneal Epithelial Basement Membrane: Structure, Function, and Disease. Investig. Opthalmol. Vis. Sci. 2013, 54, 6390–6400. [Google Scholar] [CrossRef] [PubMed]
- Polisetti, N.; Zenkel, M.; Menzel-Severing, J.; Kruse, F.E.; Schlötzer-Schrehardt, U. Cell Adhesion Molecules and Stem Cell-Niche-Interactions in the Limbal Stem Cell Niche. Stem Cells 2016, 34, 203–219. [Google Scholar] [CrossRef] [PubMed]
- Schlötzer-Schrehardt, U.; Dietrich, T.; Saito, K.; Sorokin, L.; Sasaki, T.; Paulsson, M.; Kruse, F. Characterization of Extracellular Matrix Components in the Limbal Epithelial Stem Cell Compartment. Exp. Eye Res. 2007, 85, 845–860. [Google Scholar] [CrossRef] [PubMed]
- Ljubimov, A.V.; E Burgeson, R.; Butkowski, R.J.; Michael, A.F.; Sun, T.-T.; Kenney, M.C. Human Corneal Basement Membrane Heterogeneity: Topographical Differences in the Expression of type IV Collagen and Laminin Isoforms. Lab Investig. 1995, 72, 461–473. [Google Scholar]
- Yamada, K.; Young, R.D.; Lewis, P.N.; Shinomiya, K.; Meek, K.M.; Kinoshita, S.; Caterson, B.; Quantock, A.J. Mesenchymal–Epithelial Cell Interactions and Proteoglycan Matrix Composition in the Presumptive Stem Cell Niche of the Rabbit Corneal Limbus. Mol. Vis. 2015, 21, 1328–1339. [Google Scholar]
- Funderburgh, J.L.; Funderburgh, M.L.; Du, Y. Stem Cells in the Limbal Stroma. Ocul. Surf. 2016, 14, 113–120. [Google Scholar] [CrossRef]
- Bains, K.K.; Young, R.D.; Koudouna, E.; Lewis, P.N.; Quantock, A.J. Cell–Cell and Cell–Matrix Interactions at the Presumptive Stem Cell Niche of the Chick Corneal Limbus. Cells 2023, 12, 2334. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-Y.; Han, B.; Zhu, Y.-T.; Mahabole, M.; Huang, J.; Beebe, D.C.; Tseng, S.C.G. HC-HA/PTX3 Purified from Amniotic Membrane Promotes BMP Signaling in Limbal Niche Cells to Maintain Quiescence of Limbal Epithelial Progenitor/Stem Cells. Stem Cells 2015, 33, 3341–3355. [Google Scholar] [CrossRef] [PubMed]
- Grueterich, M.; Tseng, S.C. Human Limbal Progenitor Cells Expanded on Intact Amniotic Membrane Ex Vivo. Arch. Ophthalmol. 2002, 120, 783. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Mukherjee, A.; Pisano, S.; Dimri, S.; Knaane, E.; Altshuler, A.; Nasser, W.; Dey, S.; Shi, L.; Mizrahi, I.; et al. The Biophysical Property of the Limbal Niche Maintains Stemness through YAP. Cell Death Differ. 2023, 30, 1601–1614. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-Y.A.; McGhee, J.J.; Green, C.R.; Sherwin, T. Comparison of Stem Cell Properties in Cell Populations Isolated from Human Central and Limbal Corneal Epithelium. Cornea 2011, 30, 1155–1162. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Verma, S.; Coulson-Thomas, V.J. Hyaluronan Features a Distinct Population of Transient Amplifying Cells. Investig. Ophthalmol. Vis. Sci. 2023, 64, 3592. [Google Scholar]
- Altshuler, A.; Amitai-Lange, A.; Tarazi, N.; Dey, S.; Strinkovsky, L.; Hadad-Porat, S.; Bhattacharya, S.; Nasser, W.; Imeri, J.; Ben-David, G.; et al. Discrete Limbal Epithelial Stem Cell Populations Mediate Corneal Homeostasis and Wound Healing. Cell Stem Cell 2021, 28, 1248–1261.e8. [Google Scholar] [CrossRef] [PubMed]
- Masood, F.; Chang, J.-H.; Akbar, A.; Song, A.; Hu, W.-Y.; Azar, D.T.; Rosenblatt, M.I. Therapeutic Strategies for Restoring Perturbed Corneal Epithelial Homeostasis in Limbal Stem Cell Deficiency: Current Trends and Future Directions. Cells 2022, 11, 3247. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-F.; Chang, N.-W.; Chu, L.-A.; Liu, H.-Y.; Zhou, Y.-X.; Pai, Y.-L.; Yu, Y.-S.; Kuan, C.-H.; Wu, Y.-C.; Lin, S.-J.; et al. Single-Cell Transcriptomics Reveals Cellular Heterogeneity and Complex Cell–Cell Communication Networks in the Mouse Cornea. Investig. Opthalmol. Vis. Sci. 2023, 64, 5. [Google Scholar] [CrossRef]
- Sun, T.-T.; Tseng, S.C.; Lavker, R.M. Location of Corneal Epithelial Stem Cells. Nature 2010, 463, E10–E11. [Google Scholar] [CrossRef]
- Chung, E.H.; Bukusoglu, G.; Zieske, J.D. Localization of Corneal Epithelial Stem Cells in the Developing Rat. Investig. Ophthalmol. Vis. Sci. 1992, 33, 2199–2206. [Google Scholar]
- Collinson, J.M.; Morris, L.; Reid, A.I.; Ramaesh, T.; Keighren, M.A.; Flockhart, J.H.; Hill, R.E.; Tan, S.; Ramaesh, K.; Dhillon, B.; et al. Clonal Analysis of Patterns of Growth, Stem Cell Activity, and Cell Movement during the Development and Maintenance of the Murine Corneal Epithelium. Dev. Dyn. 2002, 224, 432–440. [Google Scholar] [CrossRef]
- Mort, R.L.; Ramaesh, T.; A Kleinjan, D.; Morley, S.D.; West, J.D. Mosaic Analysis of Stem Cell Function and Wound Healing in the Mouse Corneal Epithelium. BMC Dev. Biol. 2009, 9, 4. [Google Scholar] [CrossRef]
- Tanifuji-Terai, N.; Terai, K.; Hayashi, Y.; Chikama, T.-I.; Kao, W.W.-Y. Expression of Keratin 12 and Maturation of Corneal Epithelium during Development and Postnatal Growth. Investig. Opthalmol. Vis. Sci. 2006, 47, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Sonam, S.; Srnak, J.A.; Perry, K.J.; Henry, J.J. Molecular Markers for Corneal Epithelial Cells in Larval vs. Adult Xenopus Frogs. Exp. Eye Res. 2019, 184, 107–125. [Google Scholar] [CrossRef]
- West, J.D.; Dorà, N.J.; Collinson, J.M. Evaluating Alternative Stem Cell Hypotheses for Adult Corneal Epithelial Maintenance. World J. Stem Cells 2015, 7, 281–299. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; de Paiva, C.S.; Luo, L.; Kretzer, F.L.; Pflugfelder, S.C.; Li, D. Characterization of Putative Stem Cell Phenotype in Human Limbal Epithelia. Stem Cells 2004, 22, 355–366. [Google Scholar] [CrossRef]
- Schlötzer-Schrehardt, U.; Kruse, F.E. Identification and Characterization of Limbal Stem Cells. Exp. Eye Res. 2005, 81, 247–264. [Google Scholar] [CrossRef]
- Di Iorio, E.; Barbaro, V.; Ruzza, A.; Ponzin, D.; Pellegrini, G.; De Luca, M. Isoforms of ΔNp63 and the Migration of Ocular Limbal Cells in Human Corneal Regeneration. Proc. Natl. Acad. Sci. USA 2005, 102, 9523–9528. [Google Scholar] [CrossRef]
- Joe, A.W.; Yeung, S.N. Concise Review: Identifying Limbal Stem Cells: Classical Concepts and New Challenges. Stem Cells Transl. Med. 2014, 3, 318–322. [Google Scholar] [CrossRef]
- Ksander, B.R.; Kolovou, P.E.; Wilson, B.J.; Saab, K.R.; Guo, Q.; Ma, J.; McGuire, S.P.; Gregory, M.S.; Vincent, W.J.B.; Perez, V.L.; et al. ABCB5 is a Limbal Stem Cell Gene Required for Corneal Development and Repair. Nature 2014, 511, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Budak, M.T.; Alpdogan, O.S.; Zhou, M.; Lavker, R.M.; Akinci, M.M.; Wolosin, J.M. Ocular Surface Epithelia Contain ABCG2-Dependent Side Population Cells Exhibiting Features Associated with Stem Cells. J. Cell Sci. 2005, 118, 1715–1724. [Google Scholar] [CrossRef] [PubMed]
- de Paiva, C.S.; Chen, Z.; Corrales, R.M.; Pflugfelder, S.C.; Li, D. ABCG2 Transporter Identifies a Population of Clonogenic Human Limbal Epithelial Cells. Stem Cells 2005, 23, 63–73. [Google Scholar] [CrossRef]
- Qi, H.; Li, D.-Q.; Shine, H.D.; Chen, Z.; Yoon, K.-C.; Jones, D.B.; Pflugfelder, S.C. Nerve Growth Factor and Its Receptor TrkA Serve As Potential Markers for Human Corneal Epithelial Progenitor Cells. Exp. Eye Res. 2008, 86, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.; Li, D.-Q.; Bian, F.; Chuang, E.Y.; Jones, D.B.; Pflugfelder, S.C. Expression of Glial Cell-Derived Neurotrophic Factor and Its Receptor in the Stem-Cell-Containing Human Limbal Epithelium. Br. J. Ophthalmol. 2008, 92, 1269–1274. [Google Scholar] [CrossRef]
- Glazer, R.I.; Wang, X.-Y.; Yuan, H.; Yin, Y. Musashi1: A Stem Cell Marker No Longer in Search of a Function. Cell Cycle 2008, 7, 2635–2639. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P.B.; Liu, Y.-H.; Zhuang, F.F.; Selvam, S.; Song, S.W.; Smith, R.E.; Trousdale, M.D.; Yiu, S.C. Identification of Notch-1 Expression in the Limbal Basal Epithelium. Mol. Vis. 2007, 13, 337–344. [Google Scholar] [PubMed]
- Stepp, M.A.; Zhu, L.; Sheppard, D.; Cranfill, R.L. Localized Distribution of alpha 9 Integrin in the Cornea and Changes in expression during Corneal Epithelial Cell Differentiation. J. Histochem. Cytochem. 1995, 43, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Pajoohesh-Ganji, A.; Ghosh, S.P.; Stepp, M.A. Regional Distribution of α9β1 Integrin within the Limbus of the Mouse Ocular Surface. Dev. Dyn. 2004, 230, 518–528. [Google Scholar] [CrossRef]
- Yoshida, S.; Shimmura, S.; Kawakita, T.; Miyashita, H.; Den, S.; Shimazaki, J.; Tsubota, K. Cytokeratin 15 Can Be Used to Identify the Limbal Phenotype in Normal and Diseased Ocular Surfaces. Investig. Opthalmol. Vis. Sci. 2006, 47, 4780–4786. [Google Scholar] [CrossRef]
- Figueira, E.C.; Di Girolamo, N.; Coroneo, M.T.; Wakefield, D. The Phenotype of Limbal Epithelial Stem Cells. Investig. Opthalmol. Vis. Sci. 2007, 48, 144–156. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.-J.; Choi, J.-S.; Joo, C.-K. Wnt4 Promotes Proliferation and Maintaining of Limbal Stem Cells (LSc). Investig. Ophthalmol. Vis. Sci. 2008, 49, 6075. [Google Scholar]
- Sartaj, R.; Zhang, C.; Wan, P.; Pasha, Z.; Guaiquil, V.; Liu, A.; Liu, J.; Luo, Y.; Fuchs, E.; Rosenblatt, M.I. Characterization of Slow Cycling Corneal Limbal Epithelial Cells Identifies Putative Stem Cell Markers. Sci. Rep. 2017, 7, 3793. [Google Scholar] [CrossRef]
- Menzel-Severing, J.; Zenkel, M.; Polisetti, N.; Sock, E.; Wegner, M.; Kruse, F.E.; Schlötzer-Schrehardt, U. Transcription Factor Profiling Identifies Sox9 as Regulator of Proliferation and Differentiation in Corneal Epithelial Stem/Progenitor Cells. Sci. Rep. 2018, 8, 10268. [Google Scholar] [CrossRef] [PubMed]
- Mei, H.; Nakatsu, M.N.; Baclagon, E.R.; Deng, S.X. Frizzled 7 Maintains the Undifferentiated State of Human Limbal Stem/Progenitor Cells. Stem Cells 2014, 32, 938–945. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, R.; Yamato, M.; Sugiyama, H.; Sumide, T.; Yang, J.; Okano, T.; Tano, Y.; Nishida, K. N-Cadherin Is Expressed by Putative Stem/Progenitor Cells and Melanocytes in the Human Limbal Epithelial Stem Cell Niche. Stem Cells 2007, 25, 289–296. [Google Scholar] [CrossRef]
- Pajoohesh-Ganji, A.; Stepp, M.A. In Search of Markers for the Stem Cells of the Corneal Epithelium. Biol. Cell 2005, 97, 265–276. [Google Scholar] [CrossRef] [PubMed]
- O’sullivan, F.; Clynes, M. Limbal Stem Cells, a Review of Their Identification and Culture for Clinical Use. Cytotechnology 2007, 53, 101–106. [Google Scholar] [CrossRef]
- Sasamoto, Y.; Lee, C.A.; Wilson, B.J.; Buerger, F.; Martin, G.; Mishra, A.; Kiritoshi, S.; Tran, J.; Gonzalez, G.; Hildebrandt, F.; et al. Limbal BCAM Expression Identifies a Proliferative Progenitor Population Capable of Holoclone Formation and Corneal Differentiation. Cell Rep. 2022, 40, 111166. [Google Scholar] [CrossRef]
- Chung, E.H.; DeGregorio, P.G.; Wasson, M.; Zieske, J.D. Epithelial Regeneration after Limbus-to-Limbus Debridement. Expression of Alpha-Enolase in Stem and Transient Amplifying Cells. Investig. Ophthalmol. Vis. Sci. 1995, 36, 1336–1343. [Google Scholar]
- Notara, M.; Alatza, A.; Gilfillan, J.; Harris, A.R.; Levis, H.J.; Schrader, S.; Vernon, A.; Daniels, J.T. In Sickness and in Health: Corneal Epithelial Stem Cell Biology, Pathology and Therapy. Exp. Eye Res. 2010, 90, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Secker, G.A.; Daniels, J.T. Limbal Epithelial Stem Cells of the Cornea; The Stem Cell Research Community, StemBook: Cambridge, MA, USA, 2009. [Google Scholar]
- Li, J.-M.; Kim, S.; Zhang, Y.; Bian, F.; Hu, J.; Lu, R.; Pflugfelder, S.C.; Chen, R.; Li, D.-Q. Single-Cell Transcriptomics Identifies a Unique Entity and Signature Markers of Transit-Amplifying Cells in Human Corneal Limbus. Investig. Opthalmol. Vis. Sci. 2021, 62, 36. [Google Scholar] [CrossRef] [PubMed]
- Collin, J.; Queen, R.; Zerti, D.; Bojic, S.; Dorgau, B.; Moyse, N.; Molina, M.M.; Yang, C.; Dey, S.; Reynolds, G.; et al. A Single Cell Atlas of Human Cornea That Defines Its Development, Limbal Progenitor Cells and Their Interactions with the Immune Cells. Ocul. Surf. 2021, 21, 279–298. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, N.; Wang, J.; Wray, B.; Patel, P.; Yang, W.; Peng, H.; Lavker, R.M. Single-Cell RNA Transcriptome Helps Define the Limbal/Corneal Epithelial Stem/Early Transit Amplifying Cells and How Autophagy Affects This Population. Investig. Opthalmol. Vis. Sci. 2019, 60, 3570–3583. [Google Scholar] [CrossRef] [PubMed]
- Català, P.; Groen, N.; Dehnen, J.A.; Soares, E.; van Velthoven, A.J.H.; Nuijts, R.M.M.A.; Dickman, M.M.; LaPointe, V.L.S. Single Cell Transcriptomics Reveals the Heterogeneity of the Human Cornea to Identify Novel Markers of the Limbus And stroma. Sci. Rep. 2021, 11, 21727. [Google Scholar] [CrossRef] [PubMed]
- Swarup, A.; Phansalkar, R.; Morri, M.; Agarwal, A.; Subramaniam, V.; Li, B.; Wu, A.Y. Single-Cell Transcriptomic Analysis of Corneal Organoids during Development. Stem Cell Rep. 2023, 18, 2482–2497. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Shi, W.-Y.; Dou, S.-Q. Single-Cell RNA Sequencing in Cornea Research: Insights into Limbal Stem Cells and Their Niche Regulation. World J. Stem Cells 2023, 15, 466–475. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Flores, L.; Madrid, J.F.; Gutiérrez, R.; Varela, H.; Valladares, F.; Alvarez-Argüelles, H.; Díaz-Flores, L. Adult Stem and Transit-Amplifying Cell Location. Histol. Histopathol. 2006, 21, 995–1027. [Google Scholar] [CrossRef] [PubMed]
- Rezza, A.; Wang, Z.; Sennett, R.; Qiao, W.; Wang, D.; Heitman, N.; Mok, K.W.; Clavel, C.; Yi, R.; Zandstra, P.; et al. Signaling Networks among Stem Cell Precursors, Transit-Amplifying Progenitors, and Their Niche in Developing Hair Follicles. Cell Rep. 2016, 14, 3001–3018. [Google Scholar] [CrossRef]
- Liao, C.-P.; Booker, R.C.; Morrison, S.J.; Le, L.Q. Identification of Hair Shaft Progenitors That Create a Niche for Hair Pigmentation. Genes Dev. 2017, 31, 744–756. [Google Scholar] [CrossRef]
- Laron, E.A.; Aamar, E.; Enshell-Seijffers, D. The Mesenchymal Niche of the Hair Follicle Induces Regeneration by Releasing Primed Progenitors from Inhibitory Effects of Quiescent Stem Cells. Cell Rep. 2018, 24, 909–921.e3. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, K.; Rochat, A.; Barrandon, Y. Segregation of Keratinocyte Colony-Forming Cells in the Bulge of the Rat Vibrissa. Proc. Natl. Acad. Sci. USA 1993, 90, 7391–7395. [Google Scholar] [CrossRef] [PubMed]
- Gola, M.; Czajkowski, R.; Bajek, A.; Dura, A.; Drewa, T. Melanocyte Stem Cells: Biology and Current Aspects. Med. Sci. Monit. 2012, 18, RA155–RA159. [Google Scholar] [CrossRef] [PubMed]
- Aamar, E.; Laron, E.A.; Asaad, W.; Harshuk-Shabso, S.; Enshell-Seijffers, D. Hair-Follicle Mesenchymal Stem Cell Activity during Homeostasis and Wound Healing. J. Investig. Dermatol. 2021, 141, 2797–2807.e6. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Choi, S. Deciphering the Molecular Mechanisms of Stem Cell Dynamics in Hair Follicle Regeneration. Exp. Mol. Med. 2024, 56, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Veijouye, S.J.; Yari, A.; Heidari, F.; Sajedi, N.; Moghani, F.G.; Nobakht, M. Bulge Region as a Putative Hair Follicle Stem Cells Niche: A Brief Review. Iran. J. Public Health 2017, 46, 1167–1175. [Google Scholar]
- Zhang, B.; Tsai, P.-C.; Gonzalez-Celeiro, M.; Chung, O.; Boumard, B.; Perdigoto, C.N.; Ezhkova, E.; Hsu, Y.-C. Hair Follicles’ Transit-Amplifying Cells Govern Concurrent Dermal Adipocyte Production through Sonic Hedgehog. Genes Dev. 2016, 30, 2325–2338. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.-B.; Wang, W.-H.; Hsu, Y.-W.; Tee, S.Y.; Wu, Y.-F.; Huang, W.-Y.; Lai, S.-F.; Lin, S.-J. Hair Follicle Transit-Amplifying Cells Phagocytose Dead Cells after Radiotherapeutic and Chemotherapeutic Injuries for Timely Regeneration. J. Investig. Dermatol. 2024, 144, 243–251.e2. [Google Scholar] [CrossRef]
- Sun, Q.; Lee, W.; Hu, H.; Ogawa, T.; De Leon, S.; Katehis, I.; Lim, C.H.; Takeo, M.; Cammer, M.; Taketo, M.M.; et al. Dedifferentiation Maintains Melanocyte Stem Cells in a Dynamic Niche. Nature 2023, 616, 774–782. [Google Scholar] [CrossRef]
- Lee, S.E.; Sada, A.; Zhang, M.; McDermitt, D.J.; Lu, S.Y.; Kemphues, K.J.; Tumbar, T. High Runx1 Levels Promote a Reversible, More-Differentiated Cell State in Hair-Follicle Stem Cells during Quiescence. Cell Rep. 2014, 6, 499–513. [Google Scholar] [CrossRef]
- Yang, H.; Adam, R.C.; Ge, Y.; Hua, Z.L.; Fuchs, E. Epithelial-Mesenchymal Micro-Niches Govern Stem Cell Lineage Choices. Cell 2017, 169, 483–496.e13. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Yu, W.; Fang, Y.; Yao, M.; Yang, P. Beta-Catenin Can Induce Hair Follicle Stem Cell Differentiation into Transit-Amplifying Cells through c-Myc Activation. Tissue Cell 2017, 49, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Genander, M.; Cook, P.J.; Ramsköld, D.; Keyes, B.E.; Mertz, A.F.; Sandberg, R.; Fuchs, E. BMP Signaling and Its pSMAD1/5 Target Genes Differentially Regulate Hair Follicle Stem Cell Lineages. Cell Stem Cell 2014, 15, 619–633. [Google Scholar] [CrossRef] [PubMed]
- Du, K.-T.; Deng, J.-Q.; He, X.-G.; Liu, Z.-P.; Peng, C.; Zhang, M.-S. MiR-214 Regulates the Human Hair Follicle Stem Cell Proliferation and Differentiation by Targeting EZH2 and Wnt/β-Catenin Signaling Way In Vitro. Tissue Eng. Regen. Med. 2018, 15, 341–350. [Google Scholar] [CrossRef]
- Alonso, L.; Okada, H.; Pasolli, H.A.; Wakeham, A.; You-Ten, A.I.; Mak, T.W.; Fuchs, E. Sgk3 Links Growth Factor Signaling to Maintenance of Progenitor Cells in the Hair Follicle. J. Cell Biol. 2005, 170, 559–570. [Google Scholar] [CrossRef]
- Ragone, G.; Bresin, A.; Piermarini, F.; Lazzeri, C.; Picchio, M.C.; Remotti, D.; Kang, S.-M.; Cooper, M.D.; Croce, C.M.; Narducci, M.G.; et al. The Tcl1 Oncogene Defines Secondary Hair Germ Cells Differentiation at Catagen–Telogen Transition and Affects Stem-Cell Marker CD34 Expression. Oncogene 2009, 28, 1329–1338. [Google Scholar] [CrossRef] [PubMed]
- Lowry, W.E.; Blanpain, C.; Nowak, J.A.; Guasch, G.; Lewis, L.; Fuchs, E. Defining the Impact of β-Catenin/Tcf Transactivation on Epithelial Stem Cells. Genes Dev. 2005, 19, 1596–1611. [Google Scholar] [CrossRef] [PubMed]
- Arnold, I.; Watt, F.M. c-Myc Activation in Transgenic Mouse Epidermis Results in Mobilization of Stem Cells and Differentiation of Their Progeny. Curr. Biol. 2001, 11, 558–568. [Google Scholar] [CrossRef]
- Ernst, N.; Yay, A.; Bíró, T.; Tiede, S.; Humphries, M.; Paus, R.; Kloepper, J.E. β1 Integrin Signaling Maintains Human Epithelial Progenitor Cell Survival In Situ and Controls Proliferation, Apoptosis and Migration of Their Progeny. PLoS ONE 2013, 8, e84356. [Google Scholar] [CrossRef]
- Lai, S.-F.; Huang, W.-Y.; Wang, W.-H.; Hong, J.-B.; Kuo, S.-H.; Lin, S.-J. Prostaglandin E2 Prevents Radiotherapy-Induced Alopecia by Attenuating Transit Amplifying Cell Apoptosis through Promoting G1 Arrest. J. Dermatol. Sci. 2023, 109, 117–126. [Google Scholar] [CrossRef]
- Lim, C.H.; Sun, Q.; Ratti, K.; Lee, S.-H.; Zheng, Y.; Takeo, M.; Lee, W.; Rabbani, P.; Plikus, M.V.; Cain, J.E.; et al. Hedgehog Stimulates Hair Follicle Neogenesis by Creating Inductive Dermis during Murine Skin Wound Healing. Nat. Commun. 2018, 9, 4903. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, N.; Tanigaki, K.; Han, H.; Hiai, H.; Honjo, T. Notch/RBP-J Signaling Regulates Epidermis/Hair Fate Determination of Hair Follicular Stem Cells. Curr. Biol. 2003, 13, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Simon, A.; Frisén, J. From Stem Cell to Progenitor and Back Again. Cell 2007, 128, 825–826. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, T.; Nabeshima, Y.-I.; Yoshida, S. Functional Identification of the Actual and Potential Stem Cell Compartments in Mouse Spermatogenesis. Dev. Cell 2007, 12, 195–206. [Google Scholar] [CrossRef]
- Potten, C.; Loeffler, M. Stem Cells: Attributes, Cycles, Spirals, Pitfalls and Uncertainties. Lessons for and from the Crypt. Development 1990, 110, 1001–1020. [Google Scholar] [CrossRef] [PubMed]
- Ohbo, K.; Yoshida, S.; Ohmura, M.; Ohneda, O.; Ogawa, T.; Tsuchiya, H.; Kuwana, T.; Kehler, J.; Abe, K.; Schöler, H.R.; et al. Identification and Characterization of Stem Cells in Prepubertal Spermatogenesis in Mice. Dev. Biol. 2003, 258, 209–225. [Google Scholar] [CrossRef] [PubMed]
- Shinohara, T.; Orwig, K.E.; Avarbock, M.R.; Brinster, R.L. Spermatogonial Stem Cell Enrichment by Multiparameter Selection of Mouse Testis Cells. Proc. Natl. Acad. Sci. USA 2000, 97, 8346–8351. [Google Scholar] [CrossRef] [PubMed]
- Carrieri, C.; Comazzetto, S.; Grover, A.; Morgan, M.; Buness, A.; Nerlov, C.; Ocarroll, D. A Transit-Amplifying Population Underpins the Efficient Regenerative Capacity of the Testis. J. Exp. Med. 2017, 214, 1631–1641. [Google Scholar] [CrossRef] [PubMed]
- Wallenfang, M.R.; Nayak, R.; DiNardo, S. Dynamics of the Male Germline Stem Cell Population during Aging of Drosophila melanogaster. Aging Cell 2006, 5, 297–304. [Google Scholar] [CrossRef]
- Margolis, J.; Spradling, A. Identification and Behavior of Epithelial Stem Cells in the Drosophila Ovary. Development 1995, 121, 3797–3807. [Google Scholar] [CrossRef]
- Xie, T.; Spradling, A.C. A Niche Maintaining Germ Line Stem Cells in the Drosophila Ovary. Science 2000, 290, 328–330. [Google Scholar] [CrossRef] [PubMed]
- Hermann, B.P.; Sukhwani, M.; Simorangkir, D.R.; Chu, T.; Plant, T.M.; Orwig, K.E. Molecular Dissection of the Male Germ Cell Lineage Identifies Putative Spermatogonial Stem Cells in Rhesus Macaques. Hum. Reprod. 2009, 24, 1704–1716. [Google Scholar] [CrossRef] [PubMed]
- Shields, A.R.; Spence, A.C.; Yamashita, Y.M.; Davies, E.L.; Fuller, M.T. The Actin-Binding Protein Profilin Is Required for Germline Stem Cell Maintenance and Germ Cell Enclosure by Somatic Cyst Cells. Development 2014, 141, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Davies, E.L.; Lim, J.G.; Joo, W.J.; Tam, C.H.; Fuller, M.T. The Transcriptional Regulator Lola Is Required for Stem Cell Maintenance and Germ Cell Differentiation in the Drosophila Testis. Dev. Biol. 2013, 373, 310–321. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.L.; Qian, Y.; Schulz, C. Notch and Delta Are Required for Survival of the Germline Stem Cell Lineage in Testes of Drosophila Melanogaster. PLoS ONE 2019, 14, e0222471. [Google Scholar] [CrossRef] [PubMed]
- Monk, A.C.; Siddall, N.A.; Volk, T.; Fraser, B.; Quinn, L.M.; McLaughlin, E.A.; Hime, G.R. HOW Is Required for Stem Cell Maintenance in the Drosophila Testis and for the Onset of Transit-Amplifying Divisions. Cell Stem Cell 2010, 6, 348–360. [Google Scholar] [CrossRef] [PubMed]
- Joti, P.; Ghosh-Roy, A.; Ray, K. Dynein Light Chain 1 Functions in Somatic Cyst Cells Regulate Spermatogonial Divisions in Drosophila. Sci. Rep. 2011, 1, 173. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Luan, X.; Yan, Y.; Wang, M.; Zheng, Q.; Chen, X.; Yu, J.; Fang, J. CG8005 Mediates Transit-Amplifying Spermatogonial Divisions via Oxidative Stress in Drosophila Testes. Oxidative Med. Cell. Longev. 2020, 2020, 2846727. [Google Scholar] [CrossRef] [PubMed]
- Hudson, A.G.; Parrott, B.B.; Qian, Y.; Schulz, C. A Temporal Signature of Epidermal Growth Factor Signaling Regulates the Differentiation of Germline Cells in Testes of Drosophila melanogaster. PLoS ONE 2013, 8, e70678. [Google Scholar] [CrossRef]
- Yu, J.; Zheng, Q.; Li, Z.; Wu, Y.; Fu, Y.; Wu, X.; Lin, D.; Shen, C.; Zheng, B.; Sun, F. CG6015 Controls Spermatogonia Transit-Amplifying Divisions by Epidermal Growth Factor Receptor Signaling in Drosophila Testes. Cell Death Dis. 2021, 12, 491. [Google Scholar] [CrossRef]
- Inaba, M.; Yuan, H.; Salzmann, V.; Fuller, M.T.; Yamashita, Y.M. E-Cadherin Is Required for Centrosome and Spindle Orientation in Drosophila Male Germline Stem Cells. PLoS ONE 2010, 5, e12473. [Google Scholar] [CrossRef] [PubMed]
- Pek, J.W.; Lim, A.K.; Kai, T. Drosophila Maelstrom Ensures Proper Germline Stem Cell Lineage Differentiation by Repressing microRNA-7. Dev. Cell 2009, 17, 417–424. [Google Scholar] [CrossRef]
- Carbonell, A.; Pérez-Montero, S.; Climent-Cantó, P.; Reina, O.; Azorín, F. The Germline Linker Histone dBigH1 and the Translational Regulator Bam Form a Repressor Loop Essential for Male Germ Stem Cell Differentiation. Cell Rep. 2017, 21, 3178–3189. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Wu, C.; Zhao, S.; Geng, Q.; Gao, Y.; Li, X.; Zhang, Y.; Wang, Z. Three RNA Binding Proteins Form a Complex to Promote Differentiation of Germline Stem Cell Lineage in Drosophila. PLOS Genet. 2014, 10, e1004797. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Varshney, B.; Chatterjee, S.; Ray, K. Somatic ERK Activation during Transit Amplification Is Essential for Maintaining the Synchrony of Germline Divisions in Drosophila Testis. Open Biol. 2018, 8, 180033. [Google Scholar] [CrossRef]
- Insco, M.L.; Leon, A.; Tam, C.H.; McKearin, D.M.; Fuller, M.T. Accumulation of a Differentiation Regulator Specifies Transit Amplifying Division Number in an Adult Stem Cell Lineage. Proc. Natl. Acad. Sci. USA 2009, 106, 22311–22316. [Google Scholar] [CrossRef]
- Takase, H.M.; Nusse, R. Paracrine Wnt/β-Catenin Signaling Mediates Proliferation of Undifferentiated Spermatogonia in the Adult Mouse Testis. Proc. Natl. Acad. Sci. USA 2016, 113, E1489–E1497. [Google Scholar] [CrossRef]
- Shivdasani, A.A.; Ingham, P.W. Regulation of Stem Cell Maintenance and Transit Amplifying Cell Proliferation by TGF-β Signaling in Drosophila Spermatogenesis. Curr. Biol. 2003, 13, 2065–2072. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.; Gururaja-Rao, S.; Banerjee, U. Nutritional Regulation of Stem and Progenitor Cells in Drosophila. Development 2013, 140, 4647–4656. [Google Scholar] [CrossRef]
- Lin, K.-Y.; Hsu, H.-J. Regulation of Adult Female Germline Stem Cells by Nutrient-Responsive Signaling. Curr. Opin. Insect Sci. 2020, 37, 16–22. [Google Scholar] [CrossRef]
- Lu, W.; Casanueva, M.O.; Mahowald, A.P.; Kato, M.; Lauterbach, D.; Ferguson, E.L. Niche-Associated Activation of Rac Promotes the Asymmetric Division of Drosophila Female Germline Stem Cells. PLOS Biol. 2012, 10, e1001357. [Google Scholar] [CrossRef]
- Climent-Cantó, P.; Carbonell, A.; Tamirisa, S.; Henn, L.; Pérez-Montero, S.; Boros, I.M.; Azorín, F. The Tumour Suppressor Brain Tumour (Brat) Regulates Linker Histone dBigH1 Expression in the Drosophila Female Germline and the Early Embryo. Open Biol. 2021, 11, 200408. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Cai, Y. Signal Transduction Pathways Regulating Drosophila Ovarian Germline Stem Cells. Curr. Opin. Insect Sci. 2020, 37, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Endo, T.; Romer, K.A.; Anderson, E.L.; Baltus, A.E.; de Rooij, D.G.; Page, D.C. Periodic Retinoic Acid–STRA8 Signaling Intersects with Periodic Germ-Cell Competencies to Regulate Spermatogenesis. Proc. Natl. Acad. Sci. USA 2015, 112, E2347–E2356. [Google Scholar] [CrossRef] [PubMed]
- Barroca, V.; Racine, C.; Pays, L.; Fouchet, P.; Coureuil, M.; Allemand, I. The Netrin-1 Receptor UNC5C Contributes to the Homeostasis of Undifferentiated Spermatogonia in Adult Mice. Stem Cell Res. 2022, 60, 102723. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.-C.; de Rooij, D.G.; Page, D.C. Tumor Suppressor Gene Rb is Required for Self-Renewal of Spermatogonial Stem Cells in Mice. Proc. Natl. Acad. Sci. USA 2013, 110, 12685–12690. [Google Scholar] [CrossRef]
- Wright, W.W. The Regulation of Spermatogonial Stem Cells in an Adult Testis by Glial Cell Line-Derived Neurotrophic Factor. Front. Endocrinol. 2022, 13, 896390. [Google Scholar] [CrossRef]
- Liu, W.; Wang, F.; Xu, Q.; Shi, J.; Zhang, X.; Lu, X.; Zhao, Z.-A.; Gao, Z.; Ma, H.; Duan, E.; et al. BCAS2 is Involved in Alternative mRNA Splicing in Spermatogonia and the Transition to Meiosis. Nat. Commun. 2017, 8, 14182. [Google Scholar] [CrossRef] [PubMed]
- Busada, J.T.; Niedenberger, B.A.; Velte, E.K.; Keiper, B.D.; Geyer, C.B. Mammalian Target of Rapamycin Complex 1 (mTORC1) Is Required for Mouse Spermatogonial Differentiation in Vivo. Dev. Biol. 2015, 407, 90–102. [Google Scholar] [CrossRef]
- Puri, P.; Phillips, B.T.; Suzuki, H.; Orwig, K.E.; Rajkovic, A.; Lapinski, P.E.; King, P.D.; Feng, G.-S.; Walker, W.H. The Transition from Stem Cell to Progenitor Spermatogonia and Male Fertility Requires the SHP2 Protein Tyrosine Phosphatase. Stem Cells 2014, 32, 741–753. [Google Scholar] [CrossRef]
- McAninch, D.; Mäkelä, J.-A.; La, H.M.; Hughes, J.N.; Lovell-Badge, R.; Hobbs, R.M.; Thomas, P.Q. SOX3 Promotes Generation of Committed Spermatogonia in Postnatal Mouse Testes. Sci. Rep. 2020, 10, 6751. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Lee, C.; Kim, W.H.; Maeng, Y.H.; Jang, B.G. Expression Profile of Intestinal Stem Cell Markers in Colitis-Associated Carcinogenesis. Sci. Rep. 2017, 7, 6533. [Google Scholar] [CrossRef]
- Ma, H.; Morsink, F.H.M.; Offerhaus, G.J.A.; de Leng, W.W.J. Stem Cell Dynamics and Pretumor Progression in the Intestinal Tract. J. Gastroenterol. 2016, 51, 841–852. [Google Scholar] [CrossRef]
- Whitfield, J.F. The Calcium-Sensing Receptor—A Driver of Colon Cell Differentiation. Curr. Pharm. Biotechnol. 2009, 10, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.S.; Chia, L.A.; Li, X.; Ootani, A.; Su, J.; Lee, J.Y.; Su, N.; Luo, Y.; Heilshorn, S.C.; Amieva, M.R.; et al. The Intestinal Stem Cell Markers Bmi1 and Lgr5 Identify Two Functionally Distinct Populations. Proc. Natl. Acad. Sci. USA 2012, 109, 466–471. [Google Scholar] [CrossRef]
- Tian, H.; Biehs, B.; Warming, S.; Leong, K.G.; Rangell, L.; Klein, O.D.; de Sauvage, F.J. A Reserve Stem Cell Population in Small Intestine Renders Lgr5-Positive Cells Dispensable. Nature 2011, 478, 255–259. [Google Scholar] [CrossRef]
- Bankaitis, E.D.; Ha, A.; Kuo, C.J.; Magness, S.T. Reserve Stem Cells in Intestinal Homeostasis and Injury. Gastroenterology 2018, 155, 1348–1361. [Google Scholar] [CrossRef]
- Murata, K.; Jadhav, U.; Madha, S.; van Es, J.; Dean, J.; Cavazza, A.; Wucherpfennig, K.; Michor, F.; Clevers, H.; Shivdasani, R.A. Ascl2-Dependent Cell Dedifferentiation Drives Regeneration of Ablated Intestinal Stem Cells. Cell Stem Cell 2020, 26, 377–390.e6. [Google Scholar] [CrossRef] [PubMed]
- Sanman, L.E.; Chen, I.W.; Bieber, J.M.; Steri, V.; Trentesaux, C.; Hann, B.; Klein, O.D.; Wu, L.F.; Altschuler, S.J. Transit-Amplifying Cells Coordinate Changes in Intestinal Epithelial Cell-Type Composition. Dev. Cell 2021, 56, 356–365.e9. [Google Scholar] [CrossRef]
- Snippert, H.J.; van Es, J.H.; Born, M.v.D.; Begthel, H.; Stange, D.E.; Barker, N.; Clevers, H. Prominin-1/CD133 Marks Stem Cells and Early Progenitors in Mouse Small Intestine. Gastroenterology 2009, 136, 2187–2194.e1. [Google Scholar] [CrossRef]
- López-Arribillaga, E.; Rodilla, V.; Pellegrinet, L.; Guiu, J.; Iglesias, M.; Roman, A.C.; Gutarra, S.; González, S.; Muñoz-Cánoves, P.; Fernández-Salguero, P.; et al. Bmi1 Regulates Murine Intestinal Stem Cell Proliferation and Self-Renewal Downstream of Notch. Development 2015, 142, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Yantiss, R.K.; Nam, H.-S.; Chin, Y.; Zhou, X.K.; Scherl, E.J.; Bosworth, B.P.; Subbaramaiah, K.; Dannenberg, A.J.; Benezra, R. ID1 Is a Functional Marker for Intestinal Stem and Progenitor Cells Required for Normal Response to Injury. Stem Cell Rep. 2014, 3, 716–724. [Google Scholar] [CrossRef] [PubMed]
- Stine, R.R.; Sakers, A.P.; TeSlaa, T.; Kissig, M.; Stine, Z.E.; Kwon, C.W.; Cheng, L.; Lim, H.-W.; Kaestner, K.H.; Rabinowitz, J.D.; et al. PRDM16 Maintains Homeostasis of the Intestinal Epithelium by Controlling Region-Specific Metabolism. Cell Stem Cell 2019, 25, 830–845.e8. [Google Scholar] [CrossRef] [PubMed]
- Heuberger, J.; Hill, U.; Förster, S.; Zimmermann, K.; Malchin, V.; A Kühl, A.; Stein, U.; Vieth, M.; Birchmeier, W.; Leutz, A. A C/EBPα–Wnt Connection in Gut Homeostasis and Carcinogenesis. Life Sci. Alliance 2019, 2, e201800173. [Google Scholar] [CrossRef] [PubMed]
- Sancho, R.; Jandke, A.; Davis, H.; Diefenbacher, M.E.; Tomlinson, I.; Behrens, A. F-Box and WD Repeat Domain-Containing 7 Regulates Intestinal Cell Lineage Commitment and Is a Haploinsufficient Tumor Suppressor. Gastroenterology 2010, 139, 929–941. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.; Bao, L.; Roediger, J.; Su, Y.; Shi, B.; Shi, Y.-B. Protein Arginine Methyltransferase 1 Regulates Cell Proliferation and Differentiation in Adult Mouse Adult Intestine. Cell Biosci. 2021, 11, 113. [Google Scholar] [CrossRef] [PubMed]
- Kabiri, Z.; Greicius, G.; Zaribafzadeh, H.; Hemmerich, A.; Counter, C.M.; Virshup, D.M. Wnt Signaling Suppresses MAPK-Driven Proliferation of Intestinal Stem Cells. J. Clin. Investig. 2018, 128, 3806–3812. [Google Scholar] [CrossRef]
- Duckworth, C.A. Identifying Key Regulators of the Intestinal Stem Cell Niche. Biochem. Soc. Trans. 2021, 49, 2163–2176. [Google Scholar] [CrossRef]
- Gierut, J.J.; Lyons, J.; Shah, M.S.; Genetti, C.; Breault, D.T.; Haigis, K.M. Oncogenic K-Ras Promotes Proliferation in Quiescent Intestinal Stem Cells. Stem Cell Res. 2015, 15, 165–171. [Google Scholar] [CrossRef]
- Qi, Z.; Li, Y.; Zhao, B.; Xu, C.; Liu, Y.; Li, H.; Zhang, B.; Wang, X.; Yang, X.; Xie, W.; et al. BMP Restricts Stemness of Intestinal Lgr5+ Stem Cells by Directly Suppressing Their Signature Genes. Nat. Commun. 2017, 8, 13824. [Google Scholar] [CrossRef]
- Stamataki, D.; Holder, M.; Hodgetts, C.; Jeffery, R.; Nye, E.; Spencer-Dene, B.; Winton, D.J.; Lewis, J. Delta1 Expression, Cell Cycle Exit, and Commitment to a Specific Secretory Fate Coincide within a Few Hours in the Mouse Intestinal Stem Cell System. PLoS ONE 2011, 6, e24484. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Sun, Y.; Jarugumilli, G.K.; Liu, S.; Dang, K.; Cotton, J.L.; Xiol, J.; Chan, P.Y.; DeRan, M.; Ma, L.; et al. Lats1/2 Sustain Intestinal Stem Cells and Wnt Activation through TEAD-Dependent and Independent Transcription. Cell Stem Cell 2020, 26, 675–692.e8. [Google Scholar] [CrossRef]
- Holloway, E.M.; Czerwinski, M.; Tsai, Y.-H.; Wu, J.H.; Wu, A.; Childs, C.J.; Walton, K.D.; Sweet, C.W.; Yu, Q.; Glass, I.; et al. Mapping Development of the Human Intestinal Niche at Single-Cell Resolution. Cell Stem Cell 2021, 28, 568–580.e4. [Google Scholar] [CrossRef]
- Lähdeniemi, I.A.K.; Misiorek, J.O.; Antila, C.J.M.; Landor, S.K.-J.; A Stenvall, C.-G.; Fortelius, L.E.; Bergström, L.K.; Sahlgren, C.; Toivola, D.M. Keratins Regulate Colonic Epithelial Cell Differentiation through the Notch1 Signalling Pathway. Cell Death Differ. 2017, 24, 984–996. [Google Scholar] [CrossRef]
- Deng, F.; Hu, J.; Yang, X.; Wang, Y.; Lin, Z.; Sun, Q.; Liu, K. Interleukin-10 Expands Transit-Amplifying Cells While Depleting Lgr5+ Stem Cells via Inhibition of Wnt and Notch Signaling. Biochem. Biophys. Res. Commun. 2020, 533, 1330–1337. [Google Scholar] [CrossRef] [PubMed]
- Zha, J.-M.; Li, H.-S.; Lin, Q.; Kuo, W.-T.; Jiang, Z.-H.; Tsai, P.-Y.; Ding, N.; Wu, J.; Xu, S.-F.; Wang, Y.-T.; et al. Interleukin 22 Expands Transit-Amplifying Cells While Depleting Lgr5+ Stem Cells via Inhibition of Wnt and Notch Signaling. Cell. Mol. Gastroenterol. Hepatol. 2019, 7, 255–274. [Google Scholar] [CrossRef]
- Danan, C.H.; Naughton, K.E.; Hayer, K.E.; Vellappan, S.; McMillan, E.A.; Zhou, Y.; Matsuda, R.; Nettleford, S.K.; Katada, K.; Parham, L.R.; et al. Intestinal Transit-Amplifying Cells Require METTL3 for Growth Factor Signaling and Cell Survival. J. Clin. Investig. 2023, 8, 171657. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; He, P.; Han, Y.; Yun, C.C. Survival of Stem Cells and Progenitors in the Intestine Is Regulated by LPA5-Dependent Signaling. Cell. Mol. Gastroenterol. Hepatol. 2022, 14, 129–150. [Google Scholar] [CrossRef]
- Goveas, N.; Waskow, C.; Arndt, K.; Heuberger, J.; Zhang, Q.; Alexopoulou, D.; Dahl, A.; Birchmeier, W.; Anastassiadis, K.; Stewart, A.F.; et al. MLL1 is Required for Maintenance of Intestinal Stem Cells. PLOS Genet. 2021, 17, e1009250. [Google Scholar] [CrossRef]
- Kuruvilla, J.G.; Ghaleb, A.M.; Bialkowska, A.B.; Nandan, M.O.; Yang, V.W. Role of Krüppel-like Factor 5 in the Maintenance of the Stem Cell Niche in the Intestinal Crypt. Stem Cell Transl. Investig. 2015, 2, e839. [Google Scholar]
- Nandan, M.O.; Ghaleb, A.M.; Bialkowska, A.B.; Yang, V.W. Krüppel-like Factor 5 Is Essential for Proliferation and Survival of Mouse Intestinal Epithelial Stem Cells. Stem Cell Res. 2015, 14, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Chaves-Pérez, A.; Yilmaz, M.; Perna, C.; de la Rosa, S.; Djouder, N. URI Is Required to Maintain Intestinal Architecture during Ionizing Radiation. Science 2019, 364, eaaq1165. [Google Scholar] [CrossRef] [PubMed]
- Chaves-Pérez, A.; Santos-De-Frutos, K.; de la Rosa, S.; Herranz-Montoya, I.; Perna, C.; Djouder, N. Transit-Amplifying Cells control R-Spondins in the Mouse Crypt to Modulate Intestinal Stem Cell Proliferation. J. Exp. Med. 2022, 219, e20212405. [Google Scholar] [CrossRef] [PubMed]
- Martini, E.; Wittkopf, N.; Günther, C.; Leppkes, M.; Okada, H.; Watson, A.J.; Podstawa, E.; Backert, I.; Amann, K.; Neurath, M.F.; et al. Loss of Survivin in Intestinal Epithelial Progenitor Cells Leads to Mitotic Catastrophe and Breakdown of Gut Immune Homeostasis. Cell Rep. 2016, 14, 1062–1073. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, K.; Wang, Y.; Shi, Z.; Xu, R.; Zhang, Y.; Li, J.; Liu, C.; Xue, B. Death Receptor 5 Is Required for Intestinal Stem Cell Activity during Intestinal Epithelial Renewal at Homoeostasis. Cell Death Dis. 2024, 15, 27. [Google Scholar] [CrossRef] [PubMed]
- Creff, J.; Nowosad, A.; Prel, A.; Pizzoccaro, A.; Aguirrebengoa, M.; Duquesnes, N.; Callot, C.; Jungas, T.; Dozier, C.; Besson, A. p57Kip2 Acts as a Transcriptional Corepressor to Regulate Intestinal Stem Cell Fate and Proliferation. Cell Rep. 2023, 42, 112659. [Google Scholar] [CrossRef]
- Aoki, R.; Shoshkes-Carmel, M.; Gao, N.; Shin, S.; May, C.L.; Golson, M.L.; Zahm, A.M.; Ray, M.; Wiser, C.L.; Wright, C.V.; et al. Foxl1-Expressing Mesenchymal Cells Constitute the Intestinal Stem Cell Niche. Cell. Mol. Gastroenterol. Hepatol. 2016, 2, 175–188. [Google Scholar] [CrossRef]
- Benoit, Y.D.; Lepage, M.B.; Khalfaoui, T.; Tremblay, E.; Basora, N.; Carrier, J.C.; Gudas, L.J.; Beaulieu, J.-F. Polycomb Repressive Complex 2 Impedes Intestinal Cell Terminal Differentiation. J. Cell Sci. 2012, 125, 3454–3463. [Google Scholar] [CrossRef]
- Williams, C.; Brown, R.; Zhao, Y.; Wang, J.; Chen, Z.; Blunt, K.; Pilat, J.; Parang, B.; Choksi, Y.; Lau, K.; et al. MTGR1 Is Required to Maintain Small Intestinal Stem Cell Populations. Res. Sq. 2023, preprint. [Google Scholar] [CrossRef]
- Zutshi, N.; Mohapatra, B.C.; Mondal, P.; An, W.; Goetz, B.T.; Wang, S.; Li, S.; Storck, M.D.; Mercer, D.F.; Black, A.R.; et al. Cbl and Cbl-b Ubiquitin Ligases Are Essential for Intestinal Epithelial Stem Cell Maintenance. bioRxiv 2023. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, F.; Davis, A.K.; Xin, M.; Walz, G.; Tian, W.; Zheng, Y. CDC42 Controlled Apical-Basal Polarity Regulates Intestinal Stem Cell to Transit Amplifying Cell Fate Transition via YAP-EGF-mTOR Signaling. Cell Rep. 2022, 38, 110009. [Google Scholar] [CrossRef] [PubMed]
- Kohlmaier, A.; Fassnacht, C.; Jin, Y.; Reuter, H.; Begum, J.; Dutta, D.; Edgar, B.A. Src Kinase Function Controls Progenitor Cell Pools during Regeneration and Tumor Onset in the Drosophila Intestine. Oncogene 2015, 34, 2371–2384. [Google Scholar] [CrossRef] [PubMed]
- Heijmans, J.; Jeude, J.F.v.L.d.; Koo, B.-K.; Rosekrans, S.L.; Wielenga, M.C.; van de Wetering, M.; Ferrante, M.; Lee, A.S.; Onderwater, J.J.; Paton, J.C.; et al. ER Stress Causes Rapid Loss of Intestinal Epithelial Stemness through Activation of the Unfolded Protein Response. Cell Rep. 2013, 3, 1128–1139. [Google Scholar] [CrossRef] [PubMed]
- Naito, T.; Mulet, C.; De Castro, C.; Molinaro, A.; Saffarian, A.; Nigro, G.; Bérard, M.; Clerc, M.; Pedersen, A.B.; Sansonetti, P.J.; et al. Lipopolysaccharide from Crypt-Specific Core Microbiota Modulates the Colonic Epithelial Proliferation-to-Differentiation Balance. mBio 2017, 8, e01680-17. [Google Scholar] [CrossRef] [PubMed]
- Niederreiter, L.; Fritz, T.M.; Adolph, T.E.; Krismer, A.-M.; Offner, F.A.; Tschurtschenthaler, M.; Flak, M.B.; Hosomi, S.; Tomczak, M.F.; Kaneider, N.C.; et al. ER Stress Transcription Factor Xbp1 Suppresses Intestinal Tumorigenesis and Directs Intestinal Stem Cells. J. Exp. Med. 2013, 210, 2041–2056. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zhang, X.; Xu, H.; Fu, L.; Liu, Y.; Zhao, J.; Huang, J.; Song, Z.; Zhu, M.; Fu, Y.-X.; et al. Intraepithelial Lymphocytes Promote Intestinal Regeneration through CD160/HVEM Signaling. Mucosal Immunol. 2024, 17, 257–271. [Google Scholar] [CrossRef]
- Walker, J.V.; Zhuang, H.; Singer, D.; Illsley, C.S.; Kok, W.L.; Sivaraj, K.K.; Gao, Y.; Bolton, C.; Liu, Y.; Zhao, M.; et al. Transit Amplifying Cells Coordinate Mouse Incisor Mesenchymal Stem Cell Activation. Nat. Commun. 2019, 10, 3596. [Google Scholar] [CrossRef]
- Gronthos, S.; Mankani, M.; Brahim, J.; Robey, P.G.; Shi, S. Postnatal Human Dental Pulp Stem Cells (DPSCs) in Vitro and in Vivo. Proc. Natl. Acad. Sci. USA 2000, 97, 13625–13630. [Google Scholar] [CrossRef] [PubMed]
- Miura, M.; Gronthos, S.; Zhao, M.; Lu, B.; Fisher, L.W.; Robey, P.G.; Shi, S. SHED: Stem Cells from Human Exfoliated Deciduous Teeth. Proc. Natl. Acad. Sci. USA 2003, 100, 5807–5812. [Google Scholar] [CrossRef]
- Seo, B.-M.; Miura, M.; Gronthos, S.; Bartold, P.M.; Batouli, S.; Brahim, J.; Young, M.; Robey, P.G.; Wang, C.Y.; Shi, S. Investigation of Multipotent Postnatal Stem Cells from Human Periodontal Ligament. Lancet 2004, 364, 149–155. [Google Scholar] [CrossRef]
- Sonoyama, W.; Liu, Y.; Yamaza, T.; Tuan, R.S.; Wang, S.; Shi, S.; Huang, G.T.-J. Characterization of the Apical Papilla and Its Residing Stem Cells from Human Immature Permanent Teeth: A Pilot Study. J. Endod. 2008, 34, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Morsczeck, C.; Götz, W.; Schierholz, J.; Zeilhofer, F.; Kühn, U.; Möhl, C.; Sippel, C.; Hoffmann, K.H. Isolation of Precursor Cells (PCs) from Human Dental Follicle of Wisdom Teeth. Matrix Biol. 2005, 24, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.T.-J.; Gronthos, S.; Shi, S. Mesenchymal Stem Cells Derived from Dental Tissues vs. Those from Other Sources: Their Biology and Role in Regenerative Medicine. J. Dent. Res. 2009, 88, 792–806. [Google Scholar] [CrossRef] [PubMed]
- Jing, J.; Feng, J.; Li, J.; Zhao, H.; Ho, T.-V.; He, J.; Yuan, Y.; Guo, T.; Du, J.; Urata, M.; et al. Reciprocal Interaction between Mesenchymal Stem Cells and Transit Amplifying Cells Regulates Tissue Homeostasis. eLife 2021, 10, 59459. [Google Scholar] [CrossRef] [PubMed]
- Paduano, F.; Aiello, E.; Cooper, P.R.; Marrelli, B.; Makeeva, I.; Islam, M.; Spagnuolo, G.; Maged, D.; De Vito, D.; Tatullo, M. A Dedifferentiation Strategy to Enhance the Osteogenic Potential of Dental Derived Stem Cells. Front. Cell Dev. Biol. 2021, 9, 668558. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Jing, J.; Chen, S.; Yuan, Y.; Feng, J.; Ho, T.-V.; Sehgal, P.; Xu, J.; Jiang, X.; Chai, Y. Arid1a Regulates Cell Cycle Exit of Transit-Amplifying Cells by Inhibiting the Aurka-Cdk1 Axis in Mouse Incisor. Development 2021, 148, 198838. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Jing, J.; Yuan, Y.; Feng, J.; Han, X.; Wen, Q.; Ho, T.-V.; Lee, C.; Chai, Y. Runx2+ Niche Cells Maintain Incisor Mesenchymal Tissue Homeostasis through IGF Signaling. Cell Rep. 2020, 32, 108007. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Goodwin, A.; Tian, H.; Jheon, A.; Klein, O. Ras Signaling Regulates Stem Cells and Amelogenesis in the Mouse Incisor. J. Dent. Res. 2017, 96, 1438–1444. [Google Scholar] [CrossRef] [PubMed]
- Harada, H.; Kettunen, P.; Jung, H.-S.; Mustonen, T.; Wang, Y.A.; Thesleff, I. Localization of Putative Stem Cells in Dental Epithelium and Their Association with Notch and FGF Signaling. J. Cell Biol. 1999, 147, 105–120. [Google Scholar] [CrossRef]
- Parsa, S.; Kuremoto, K.-I.; Seidel, K.; Tabatabai, R.; MacKenzie, B.; Yamaza, T.; Akiyama, K.; Branch, J.; Koh, C.J.; Al Alam, D.; et al. Signaling by FGFR2b Controls the Regenerative Capacity of Adult Mouse Incisors. Development 2010, 137, 3743–3752. [Google Scholar] [CrossRef]
- Zhao, H.; Li, S.; Han, D.; Kaartinen, V.; Chai, Y. Alk5-Mediated Transforming Growth Factor β Signaling Acts Upstream of Fibroblast Growth Factor 10 to Regulate the Proliferation and Maintenance of Dental Epithelial Stem Cells. Mol. Cell. Biol. 2011, 31, 2079–2089. [Google Scholar] [CrossRef] [PubMed]
- Singer, D.; Thamm, K.; Zhuang, H.; Karbanová, J.; Gao, Y.; Walker, J.V.; Jin, H.; Wu, X.; Coveney, C.R.; Marangoni, P.; et al. Prominin-1 Controls Stem Cell Activation by Orchestrating Ciliary Dynamics. EMBO J. 2019, 38, e99845. [Google Scholar] [CrossRef] [PubMed]
- An, Z.; Akily, B.; Sabalic, M.; Zong, G.; Chai, Y.; Sharpe, P.T. Regulation of Mesenchymal Stem to Transit-Amplifying Cell Transition in the Continuously Growing Mouse Incisor. Cell Rep. 2018, 23, 3102–3111. [Google Scholar] [CrossRef] [PubMed]
- Lapthanasupkul, P.; Feng, J.; Mantesso, A.; Takada-Horisawa, Y.; Vidal, M.; Koseki, H.; Wang, L.; An, Z.; Miletich, I.; Sharpe, P.T. Ring1a/b Polycomb Proteins Regulate the Mesenchymal Stem Cell Niche in Continuously Growing Incisors. Dev. Biol. 2012, 367, 140–153. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-Y.; Cha, W.; Luder, H.-U.; Charles, R.-P.; McMahon, M.; Mitsiadis, T.A.; Klein, O.D. E-Cadherin Regulates the Behavior and Fate of Epithelial Stem Cells and Their Progeny in the Mouse Incisor. Dev. Biol. 2012, 366, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Svandova, E.; Vesela, B.; Smarda, J.; Hampl, A.; Radlanski, R.J.; Matalova, E. Mouse Incisor Stem Cell Niche and Myb Transcription Factors. Anat. Histol. Embryol. 2015, 44, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Pan, Y. Immunolocalization of Transforming Growth Factor-Beta1, Connective Tissue Growth Factor, Phosphorylated-SMAD2/3, and Phosphorylated-ERK1/2 during Mouse Incisor Development. Connect. Tissue Res. 2019, 60, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Kwon, H.-J.; Harada, H.; Ohshima, H.; Cho, S.-W.; Jung, H.-S. Expression Patterns of ABCG2, Bmi-1, Oct-3/4, and Yap in the developing mouse incisor. Gene Expr. Patterns 2011, 11, 163–170. [Google Scholar] [CrossRef]
- Hu, J.K.-H.; Du, W.; Shelton, S.J.; Oldham, M.C.; DiPersio, C.M.; Klein, O.D. An FAK-YAP-mTOR Signaling Axis Regulates Stem Cell-Based Tissue Renewal in Mice. Cell Stem Cell 2017, 21, 91–106.e6. [Google Scholar] [CrossRef]
- Yokohama-Tamaki, T.; Otsu, K.; Harada, H.; Shibata, S.; Obara, N.; Irie, K.; Taniguchi, A.; Nagasawa, T.; Aoki, K.; Caliari, S.R.; et al. CXCR4/CXCL12 Signaling Impacts Enamel Progenitor Cell Proliferation and Motility in the Dental Stem Cell Niche. Cell Tissue Res. 2015, 362, 633–642. [Google Scholar] [CrossRef]
- Schwob, J.E.; Jang, W.; Holbrook, E.H.; Lin, B.; Herrick, D.B.; Peterson, J.N.; Coleman, J.H. Stem and Progenitor Cells of the Mammalian Olfactory Epithelium: Taking Poietic License. J. Comp. Neurol. 2017, 525, 1034–1054. [Google Scholar] [CrossRef] [PubMed]
- Gokoffski, K.K.; Kawauchi, S.; Wu, H.-H.; Santos, R.; Hollenbeck, P.L.W.; Lander, A.D.; Calof, A.L. Feedback Regulation of Neurogenesis in the Mammalian Olfactory Epithelium: New Insights from Genetics and Systems Biology; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2010; ISBN 9781420071979. [Google Scholar]
- Gordon, M.K.; Mumm, J.S.; Davis, R.A.; Holcomb, J.D.; Calof, A.L. Dynamics of MASH1 Expression in Vitro and in Vivo Suggest a Non-Stem Cell Site of MASH1 Action in the Olfactory Receptor Neuron Lineage. Mol. Cell. Neurosci. 1995, 6, 363–379. [Google Scholar] [CrossRef] [PubMed]
- Beites, C.L.; Kawauchi, S.; Crocker, C.E.; Calof, A.L. Identification and Molecular Regulation of Neural Stem Cells in the Olfactory Epithelium. Exp. Cell Res. 2005, 306, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Packard, A.; Krolewski, R.C.; Harris, M.T.; Manglapus, G.L.; Schwob, J.E. Expression of Pax6 and Sox2 in Adult Olfactory Epithelium. J. Comp. Neurol. 2010, 518, 4395–4418. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Coleman, J.H.; Peterson, J.N.; Zunitch, M.J.; Jang, W.; Herrick, D.B.; Schwob, J.E. Injury Induces Endogenous Reprogramming and Dedifferentiation of Neuronal Progenitors to Multipotency. Cell Stem Cell 2017, 21, 761–774.e5. [Google Scholar] [CrossRef] [PubMed]
- Gadye, L.; Das, D.; Sanchez, M.A.; Street, K.; Baudhuin, A.; Wagner, A.; Cole, M.B.; Choi, Y.G.; Yosef, N.; Purdom, E.; et al. Injury Activates Transient Olfactory Stem Cell States with Diverse Lineage Capacities. Cell Stem Cell 2017, 21, 775–790.e9. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.L.; Wood, B.; Karpinski, B.A.; LaMantia, A.-S.; Maynard, T.M. Testicular Receptor 2, Nr2c1, Is Associated with Stem Cells in the Developing Olfactory Epithelium and Other Cranial Sensory and Skeletal Structures. Gene Expr. Patterns 2016, 20, 71–79. [Google Scholar] [CrossRef] [PubMed]
- DeHamer, M.K.; Guevara, J.L.; Hannon, K.; Olwin, B.B.; Calof, A.L. Genesis of Olfactory Receptor Neurons in Vitro: Regulation of Progenitor Cell Divisions by Fibroblast Growth Factors. Neuron 1994, 13, 1083–1097. [Google Scholar] [CrossRef] [PubMed]
- Kawauchi, S.; Beites, C.L.; Crocker, C.E.; Wu, H.-H.; Bonnin, A.; Murray, R.; Calof, A.L. Molecular Signals Regulating Proliferation of Stem and Progenitor Cells in Mouse Olfactory Epithelium. Dev. Neurosci. 2004, 26, 166–180. [Google Scholar] [CrossRef]
- Calof, A.L.; Bonnin, A.; Crocker, C.; Kawauchi, S.; Murray, R.C.; Shou, J.; Wu, H. Progenitor Cells of the Olfactory Receptor Neuron Lineage. Microsc. Res. Tech. 2002, 58, 176–188. [Google Scholar] [CrossRef]
- Saxena, P.K.; Rastogi, R.K.; Chieffi, G. Role of Eyes and Pineal Gland in Melanophore Response in the Green Frog. Rana Esculenta. Anat. Anz. 1981, 149, 127–132. [Google Scholar] [PubMed]
- Rosenbaum, J.N.; Duggan, A.; García-Añoveros, J. Insm1promotes the Transition of Olfactory Progenitors from Apical and Proliferative to Basal, Terminally Dividing and Neuronogenic. Neural Dev. 2011, 6, 6. [Google Scholar] [CrossRef] [PubMed]
Cell Type | Putative Marker | Species | Reference(s) |
---|---|---|---|
LESC (negative markers) | Cytokeratin 3 (CK3) | Rabbit | [26] |
Cytokeratin 12 (CK12) | Human | [78,79] | |
Connexin 43 | Human | [78,79] | |
Involucrin | Human | [78] | |
E-cadherin | Human | [78] | |
NGF receptor (p75NTR) | Human | [78] | |
Nestin | Human | [79] | |
LESC (positive markers) | N-terminal truncated form of p63α (ΔNp63α) | Human | [80] |
CCAAT-enhancer-binding protein δ (C/EBP δ) | Human | [28] | |
Polycomb complex protein-Bmi1 | Human | [81] | |
ATP-binding cassette sub-family B member 5 (ABCB5) | Human, mouse | [82] | |
ATP-binding cassette super-family G member 2 (ABCG2) | Human, rabbit, rat | [32,47,78,79,83,84] | |
Nerve growth factor (NGF) and its receptors tropomyosin receptor kinase A (TrkA) | Human | [85] | |
GDNF family receptor alpha-1 (GFRα-1) | Human | [86] | |
Musashi-1 | Human | [87] | |
Notch-1 | Human | [88] | |
Integrin α9 | Human, mouse | [78,89,90] | |
Cytokeratin 15 (CK15) | Human, mouse | [91] | |
Cytokeratin 14 (CK14) | Mouse | [92] | |
Cytokeratin 19 (CK19) | Human, mouse | [91,92] | |
Wnt family member 4 (Wnt-4) | Human | [93] | |
SRY-box transcription Factor 9 (Sox9) | Human | [94,95] | |
Alpha-actinin-1 (Actn1) | Mouse | [94] | |
Frizzled class receptor 7 (Fzd7) | Human, mouse | [94,96] | |
Cytokeratin 17 (CK17) | Mouse | [94] | |
N- and P-cadherin | Human | [97] | |
Vimentin | Human | [79] | |
TAC markers | α9β1 integrins | Mouse | [98,99] |
Basal cell adhesion molecule (BCAM) | Human, mouse | [100] | |
α-enolase | Human, rabbit | [99,101] | |
Connexin-43 | Human | [78,79,99] | |
Cytokeratin 19 (CK19) | Human | [99] |
Factor/Pathway | Species | Role | Reference(s) |
---|---|---|---|
Lola | Male Drosophila | Maintains SCs and germ cell differentiation | [145] |
Profilin | Maintains SCs germ cell enclosure by somatic cyst cells | [146] | |
Notch and Delta | Required for survival of the germline stem cell lineage | [147] | |
Held-out-wings (HOW) | Maintains SC maintenance and controls the onset of transit-amplifying divisions | [148] | |
Dynein-light-chain-1 (DDLC1/LC8) | Regulates spermatogonial divisions | [149] | |
CG8005 | Mediates TACs’ spermatogonial divisions via oxidative stress | [150] | |
Epidermal growth factor signaling | Regulates the differentiation of germline cells | [151] | |
CG6015 | Controls the TACs divisions by EGFs signaling | [152] | |
E-cadherin-based adherens junctions | Regulates asymmetric stem cell division | [153] | |
Maelstrom (Mael) | Differentiates the GSC lineage | [154] | |
dBigH1 and bag of marbles (Bam) | Regulates SC differentiation | [155] | |
Terminal uridylyl transferase 1 (tut), bag of marbles (bam), or benign gonial cell neoplasm (bgcn) | Coordinates the proliferation and differentiation | [156] | |
ERK downstream targets | Regulates TACs and subsequent differentiation of neighboring germline cells | [157] | |
Bam | Switches from proliferation to terminal differentiation in TACs | [158] | |
Wnt/b-catenin signaling | Mediates proliferation of undifferentiated spermatogonia (SSCs and TACs) | [159] | |
Transforming growth factor-beta (TGFb) | Regulates SC maintenance and TAC proliferation | [160] | |
Insulin/IGF signaling, TOR signaling, and GCN2-dependent amino acid sensing | Promotes the proliferation and maintenance of the stem/progenitor population | [161,162] | |
Rac family small GTPase (Rac) | Female Drosophila | Mediates polarity to ensure a robust pattern of asymmetric division | [163] |
Tumor suppressor brain tumor (Brat) | Regulates the linker histone dBigH1 expression | [164] | |
Niche-derived Hh and Wnts and germline-derived EGFs | Promotes the differentiation of GSCs | [165] | |
Insulin/IGF signaling, TOR signaling, and GCN2-dependent amino acid sensing | Promotes the proliferation and maintenance of the stem/progenitor population | [161,162] | |
Retinoic acid-STRA8 signaling | Mouse testis | Regulate spermatogenesis by controlling spermatogonial differentiation and meiotic initiation | [166] |
Netrin-1 receptor UNC5C | Contributes to the homeostasis of undifferentiated spermatogonia | [167] | |
Tumor suppressor gene Rb | Required for self-renewal of spermatogonial stem cells | [168] | |
Glial cell line-derived neurotrophic factor | Regulates spermatogonial stem cells | [169] | |
Breast cancer-amplified sequence 2 (BCAS2) | Involved in alternative mRNA splicing in spermatogonia and the transition to meiosis | [170] | |
Mammalian target of rapamycin complex 1 (mTORC1) | Required for spermatogonial differentiation | [171] | |
SH2 domain-containing protein tyrosine phosphatase-2 (SHP2) | Required for the transition from stem cell to progenitor spermatogonia and male fertility | [172] | |
SOX3 | SOX3 promotes the generation of committed spermatogonia in postnatal testes | [173] |
Factor/Pathway | Species | Role | Reference(s) |
---|---|---|---|
Wnt/β-catenin-based suppression of the mitogen-activated protein kinase (MAPK) | Mouse | Balances proliferation and differentiation in ISCs | [189,190] |
K-Ras | Mouse | Promotes expansion and hyperproliferation of TACs | [191] |
BMP signaling | Mouse | Dampens Lgr5+ ISC renewal | [192] |
Delta1-Notch signaling | Mouse | Controls the secretory commitment of TACs through lateral inhibition | [193] |
Hippo signaling | Mouse | Deletion of Lats1/2 (Hippo kinases) results in the loss of Lgr5+ ISCs and expansion TACs | [194] |
Growth factor signaling such as epidermal growth factor receptor (EGFR)/ErbB1 | Human | Major drivers of proliferation in the ISC niche | [195] |
Cytokeratin-8 (K8)-regulated Notch signaling | Mouse | Promotes differentiation of TACs | [196] |
IL-10 (rmIL-10) | Mouse and ISC cultures | Expands the number of TACs and enhances the differentiation | [197] |
Interleukin 22 via inhibition of Notch and Wnt signaling | Mouse and ISC cultures | Expands TACs | [198] |
Methyltransferase 3, N6-Adenosine-Methyltransferase (METTL3) | Mouse | Survival of TACs | [199] |
Lysophosphatidic acid receptor 5 (LPA5) receptor | Mouse | Survival of SCs and TACs | [200] |
Mixed-lineage leukemia 1 (MLL1/KMT2A) | Mouse | Loss of MLL1 is accompanied by loss of ISCs and differentiation bias toward the secretory lineage | [201] |
Krüppel-like factor 5 (Klf5) | Mouse | Maintains proliferation of both CBCs and TACs | [202,203] |
Prefoldin RPB5 interactor (URI) | Mouse | Helps in survival and differentiation of TACs | [204,205] |
Survivin | Mouse | Survival of TACs | [206] |
Death receptor 5 (DR5) | Mouse | Survival of TACs | [207] |
Cyclin/CDK inhibitor p57Kip2 | Mouse | Maintains Hopx+ ISC quiescence | [208] |
Foxl1+ mesenchymal cells | Mouse | Maintains proliferation of ISCs and TACs | [209] |
Polycomb group (PcG) proteins | Human | Repress the terminal differentiation in the TACs | [210] |
Myeloid translocation gene-related 1 (MTGR1) | Mouse | Maintains the ISCs in an undifferentiated state | [211] |
CBL family ubiquitin ligases | Mouse | Maintain ISCs | [212] |
Rho GTPase family member, CDC42 | Mouse | CDC42 deletion leads to diminished ISCs and highly expanded TACs | [213] |
Src42a and Src64b | Drosophila | Required for ISC divisions | [214] |
Unfolded protein response (UPR) | Mouse | Required for SC to TAC transition | [215] |
Lipopolysaccharide (LPS) | Mouse | Represses cell proliferation through RIPK3-mediated necroptosis of ISCs and TACs | [216] |
Hypomorphic X-box–binding protein 1 (Xbp1) | Mouse | Increases ISC numbers | [217] |
Intraepithelial lymphocytes (IELs) | Mouse | Modulate the proliferation of TACs | [218] |
Factor/Pathway | Species | Role | Reference(s) |
---|---|---|---|
Arid1a | Mouse | Regulates the fate of TACs by limiting proliferation, promoting cell cycle exit and differentiation | [228] |
Runt-related transcription factor (Runx)2+/glioma-associated oncogene (Gli)1+ cells via insulin-like growth factor IGF signaling | Mouse | Maintain MSC niche, regulates proliferation and differentiation of TACs and growth rate of the incisor tooth | [229] |
MAPK and PI3K pathways | Mouse | Regulate dental epithelial stem cell activity, transit-amplifying cell proliferation, and enamel formation | [230] |
Notch and FGF signaling | Mouse and organ culture model | Decide the fate of SCs in incisors | [231,232] |
TGF-βI (Alk5) | Mouse | Regulates the proliferation of TACs and maintenance of SCs | [233] |
Prominin-1 (Prom1/CD133) | Mouse | Absence results in the disruption of stem cell quiescence maintenance and activation | [234] |
Polycomb repressive complex 1 (PRC1) | Mouse | Regulates the TAC phenotype by controlling the expression of key cell-cycle regulatory genes and Wnt/β-catenin signaling | [235,236] |
E-cadherin | Mouse | Inactivation leads to decreased label-retaining stem cells, decreased cell migration and increased proliferation | [237] |
c-Myb | Mouse | Involved in differentiation | [238] |
Transforming growth factor-beta 1 (TGF-β1) and connective tissue growth factor (CTGF) | Mouse | Involved in the functioning of TACs during incisor development (embryonic day 16.5–post-natal day 3.5) | [239] |
Yap | Mouse | Maintains proliferation and inhibits differentiation | [240] |
YAP/TAZ and mTOR signaling | Mouse | Drive the proliferation of TACs | [241] |
CXCR4/CXCL12 signaling | Mouse | Activates enamel progenitor cell division and controls the movement of epithelial progenitors from the dental stem cell niche | [242] |
Factor/Pathway | Species | Role | Reference |
---|---|---|---|
Testicular receptor 2, Nr2c1 | Mouse | Involved in regulating the progenitor or early differentiation state | [250] |
Fibroblast growth factors (FGF) | Mouse | Delay differentiation of a committed neuronal TAC (the INP) and support proliferation or survival of a rare cell, possibly a stem cell, that acts as a progenitor of INPs | [251] |
Transforming growth factor beta (TGF-β) | Mouse | Plays key roles in feedback loops to regulate the size of progenitor cell pools, and thereby the neuron number, during development and regeneration | [252] |
Bone morphogenetic protein (BMP4) | OE cultures from mouse | Inhibits proliferation of MASH1-expressing progenitors when present at high concentrations and stimulates survival of newly generated ORNs when present at low concentrations | [253] |
De novo methyltransferase DNmt3b | Mouse | Plays a role in the initial steps of progenitor cell differentiation | [254] |
Zinc finger transcription factor Insm1 | Mouse | Promotes the transition of progenitor cells from proliferative apical to terminal, neurogenic basal cells | [255] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verma, S.; Lin, X.; Coulson-Thomas, V.J. The Potential Reversible Transition between Stem Cells and Transient-Amplifying Cells: The Limbal Epithelial Stem Cell Perspective. Cells 2024, 13, 748. https://doi.org/10.3390/cells13090748
Verma S, Lin X, Coulson-Thomas VJ. The Potential Reversible Transition between Stem Cells and Transient-Amplifying Cells: The Limbal Epithelial Stem Cell Perspective. Cells. 2024; 13(9):748. https://doi.org/10.3390/cells13090748
Chicago/Turabian StyleVerma, Sudhir, Xiao Lin, and Vivien J. Coulson-Thomas. 2024. "The Potential Reversible Transition between Stem Cells and Transient-Amplifying Cells: The Limbal Epithelial Stem Cell Perspective" Cells 13, no. 9: 748. https://doi.org/10.3390/cells13090748
APA StyleVerma, S., Lin, X., & Coulson-Thomas, V. J. (2024). The Potential Reversible Transition between Stem Cells and Transient-Amplifying Cells: The Limbal Epithelial Stem Cell Perspective. Cells, 13(9), 748. https://doi.org/10.3390/cells13090748