Allogeneic Stem Cell Transplantation in Refractory Acute Myeloid Leukaemia
Abstract
:1. Introduction
2. Results from Retrospective Studies
2.1. Results from Prospective Studies
2.2. How Can Allo-SCT Be Modified to Improve Outcomes?
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ferguson, P.; Hills, R.H.; Grech, A.; Betteridge, S.; Kjeldsen, L.; Dennis, M.; Vyas, P.; Goldstone, A.H.; Milligan, D.; Clark, R.E.; et al. An operational definition of primary refractory acute myeloid leukemia allowing early identification of patients who may benefit from allogeneic stem cell transplantation. Hematologica 2016, 101, 1351–1358. [Google Scholar] [CrossRef]
- Dohner, H.; Wei, A.H.; Appelbaum, F.R.; Craddock, C.; DiNardo, C.D.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Godley, L.A.; Hasserjian, R.P.; et al. Diagnosis management of AML in adults: 2022 recommendations from an International expert panel on behalf of the ELN. Blood 2022, 140, 1345–1377. [Google Scholar] [CrossRef] [PubMed]
- Thol, F.; Schlenk, R.F.; Heuser, M.; Ganser, A. How I treat refractory and early relapsed acute myeloid leukemia. Blood 2022, 126, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Perl, A.E.; Martinelli, G.; Cortes, J.E.; Neubauer, A.; Berman, E.; Paolini, S.; Montesinos, P.; Baer, M.R.; Larson, R.A.; Ustun, C.; et al. Gilteritinib or Chemotherapy for Relapsed or Refractory FLT3-Mutated AML. N. Engl. J. Med. 2019, 381, 1728–1740. [Google Scholar] [CrossRef] [PubMed]
- Cortes, J.E.; Khaled, S.; Martinelli, G.; Perl, A.E.; Ganguly, S.; Russell, N.; Krämer, A.; Dombret, H.; Hogge, D.; Jonas, B.A.; et al. Quizartinib versus salvage chemotherapy in relapsed or refractory FLT3-ITD acute myeloid leukaemia (QuANTUM-R): A multicentre, randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2019, 20, 984–997. [Google Scholar] [CrossRef] [PubMed]
- DiNardo, C.D.; Pratz, K.; Pullarkat, V.; Jonas, B.A.; Arellano, M.; Becker, P.S.; Frankfurt, O.; Konopleva, M.; Wei, A.H.; Kantarjian, H.M.; et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood 2019, 133, 7–17. [Google Scholar] [CrossRef]
- Todisco, E.; Papayannidis, C.; Fracchiolla, N.; Petracci, E.; Zingaretti, C.; Vetro, C.; Martelli, M.P.; Zappasodi, P.; Di Renzo, N.; Gallo, S.; et al. AVALON: The Italian cohort study on real-life efficacy of hypomethylating agents plus venetoclax in newly diagnosed or relapsed/refractory patients with acute myeloid leukemia. Cancer 2023, 129, 992–1004. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Lachowiez, C.A.; Takahashi, K.; Loghavi, S.; Xiao, L.; Kadia, T.; Daver, N.; Adeoti, M.; Short, N.J.; Sasaki, K.; et al. Venetoclax Combined with FLAG-IDA Induction and Consolidation in Newly Diagnosed and Relapsed or Refractory Acute Myeloid Leukemia. J. Clin. Oncol. 2022, 39, 2768–2778. [Google Scholar] [CrossRef]
- Burnett, A.K.; Russell, N.H.; Hills, R.K.; Hunter, A.E.; Kjeldsen, L.; Yin, J.; Gibson, B.E.; Wheatley, K.; Milligan, D. Optimization of chemotherapy for younger patients with acute myeloid leukemia: Results of the medical research council AML15 trial. J. Clin. Oncol. 2013, 31, 3360–3368. [Google Scholar] [CrossRef]
- Burnett, A.K.; Russell, N.H.; Hills, R.K.; Kell, J.; Cavenagh, J.; Kjeldsen, L.; McMullin, M.F.; Cahalin, P.; Dennis, M.; Friis, L.; et al. A randomized comparison of daunorubicin 90 mg/m2 vs. 60 mg/m2 in AML induction: Results from the UK NCRI AML17 trial in 1206 patients. Blood 2015, 125, 3878–3885. [Google Scholar] [CrossRef]
- Burnett, A.; Cavenagh, J.; Russell, N.; Hills, R.; Kell, J.; Jones, G.; Nielsen, O.J.; Khwaja, A.; Thomas, I.; Clark, R.; et al. Defining the dose of gemtuzumab ozogamicin in combination with induction chemotherapy in acute myeloid leukemia: A comparison of 3 mg/m2 with 6 mg/m2 in the NCRI AML17 Trial. Haematologica 2016, 101, 724–731. [Google Scholar] [CrossRef]
- Castaigne, S.; Pautas, C.; Terré, C.; Raffoux, E.; Bordessoule, D.; Bastie, J.N.; Legrand, O.; Thomas, X.; Turlure, P.; Reman, O.; et al. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): A randomised, open-label, phase 3 study. Lancet 2012, 379, 1508–1516. [Google Scholar] [CrossRef] [PubMed]
- Borthakur, G.; Cortes, J.E.; Estey, E.E.; Jabbour, E.; Faderl, S.; O’Brien, S.; Garcia-Manero, G.; Kadia, T.M.; Wang, X.; Patel, K.; et al. Gemtuzumab ozogamicin with fludarabine, cytarabine, and granulocyte colony stimulating factor (FLAG-GO) as front-line regimen in patients with core binding factor acute myelogenous leukemia. Am. J. Hematol. 2014, 89, 964–968. [Google Scholar] [CrossRef]
- Löwenberg, B.; Pabst, T.; Maertens, J.; van Norden, Y.; Biemond, B.J.; Schouten, H.C.; Spertini, O.; Vellenga, E.; Graux, C.; Havelange, V.; et al. Therapeutic value of clofarabine in younger and middle-aged (18–65 years) adults with newly diagnosed AML. Blood 2017, 129, 1636–1645. [Google Scholar] [CrossRef]
- Stone, R.M.; Mandrekar, S.J.; Sanford, B.L.; Laumann, K.; Geyer, S.; Bloomfield, C.D.; Thiede, C.; Prior, T.W.; Döhner, K.; Marcucci, G.; et al. Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation. N. Engl. J. Med. 2017, 377, 454–464. [Google Scholar] [CrossRef]
- Erba, H.P.; Montesinos, P.; Kim, H.J.; Patkowska, E.; Vrhovac, R.; Žák, P.; Wang, P.N.; Mitov, T.; Hanyok, J.; Kamel, Y.M.; et al. Quizartinib plus chemotherapy in newly diagnosed patients with FLT3-internal-tandem-duplication-positive acute myeloid leukaemia (QuANTUM-First): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2023, 401, 1571–1583. [Google Scholar] [CrossRef] [PubMed]
- Döhner, H.; Weber, D.; Krzykalla, J.; Fiedler, W.; Kühn, M.W.M.; Schroeder, T.; Mayer, K.; Lübbert, M.; Wattad, M.; Götze, K.; et al. Intensive chemotherapy with or without gemtuzumab ozogamicin in patients with NPM1-mutated acute myeloid leukaemia (AMLSG 09-09): A randomised, open-label, multicentre, phase 3 trial. Lancet Haematol. 2023, 10, e495–e509. [Google Scholar] [CrossRef]
- Russell, N.; Hills, R.; Kjeldsen, L.; Dennis, M.; Burnett, A. Treatment intensification with FLAG-Ida may improve disease control in younger patients with secondary acute myeloid leukaemia: Long-term follow up of the MRC AML15 trial. Br. J. Haematol. 2022, 196, 1344–1347. [Google Scholar] [CrossRef]
- Lancet, J.E.; Cortes, J.E.; Hogge, D.E.; Tallman, M.S.; Kovacsovics, T.J.; Damon, L.E.; Komrokji, R.; Solomon, S.R.; Kolitz, J.E.; Cooper, M.; et al. Phase 2 trial of CPX-351, a fixed 5:1 molar ratio of cytarabine/daunorubicin, vs cytarabine/daunorubicin in older adults with untreated AML. Blood 2014, 123, 3239–3246. [Google Scholar] [CrossRef]
- Lancet, J.E.; Uy, G.L.; Cortes, J.E.; Newell, L.F.; Lin, T.L.; Ritchie, E.K.; Stuart, R.K.; Strickland, S.A.; Hogge, D.; Solomon, S.R.; et al. CPX-351 (cytarabine and daunorubicin) Liposome for Injection Versus Conventional Cytarabine Plus Daunorubicin in Older Patients with Newly Diagnosed Secondary Acute Myeloid Leukemia. J. Clin. Oncol. 2018, 36, 2684–2692. [Google Scholar] [CrossRef]
- Rautenberg, C.; Stölzel, F.; Röllig, C.; Stelljes, M.; Gaidzik, V.; Lauseker, M.; Kriege, O.; Verbeek, M.; Unglaub, J.M.; Thol, F.; et al. Real-world experience of CPX-351 as first-line treatment for patients with acute myeloid leukemia. Blood Cancer J. 2021, 11, 164. [Google Scholar] [CrossRef]
- Chiche, E.; Rahmé, R.; Bertoli, S.; Dumas, P.Y.; Micol, J.B.; Hicheri, Y.; Pasquier, F.; Peterlin, P.; Chevallier, P.; Thomas, X.; et al. Real-life experience with CPX-351 and impact on the outcome of high-risk AML patients: A multicentric French cohort. Blood Adv. 2021, 5, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Guolo, F.; Fianchi, L.; Minetto, P.; Clavio, M.; Gottardi, M.; Galimberti, S.; Rizzuto, G.; Rondoni, M.; Bertani, G.; Dargenio, M.; et al. CPX-351 treatment in secondary acute myeloblastic leukemia is effective and improves the feasibility of allogeneic stem cell transplantation: Results of the Italian compassionate use program. Blood Cancer J. 2020, 10, 96. [Google Scholar] [CrossRef] [PubMed]
- Othman, J.; Wilhelm-Benartzi, C.; Dillon, R.; Knapper, S.; Freeman, S.D.; Batten, L.M.; Canham, J.; Hinson, E.L.; Wych, J.; Betteridge, S.; et al. A randomized comparison of CPX-351 and FLAG-Ida in adverse karyotype AML and high-risk MDS: The UK NCRI AML19 trial. Blood Adv. 2023, 7, 4539–4549. [Google Scholar] [CrossRef] [PubMed]
- Minetto, P.; Candoni, A.; Guolo, F.; Clavio, M.; Zannier, M.E.; Miglino, M.; Dubbini, M.V.; Carminati, E.; Sicuranza, A.; Ciofini, S.; et al. Fludarabine, High-Dose Cytarabine and Idarubicin-Based Induction May Overcome the Negative Prognostic Impact of FLT3-ITD in NPM1 Mutated AML, Irrespectively of FLT3-ITD Allelic Burden. Cancers 2020, 13, 34. [Google Scholar] [CrossRef] [PubMed]
- Michallet, M.; Thomas, X.; Vernant, J.P.; Kuentz, M.; Socié, G.; Espérou-Bourdeau, H.; Milpied, N.; Blaise, D.; Rio, B.; Reiffers, J.; et al. Long-term outcome after allogeneic hematopoietic stem cell transplantation for advanced stage acute myeloblastic leukemia: A retrospective study of 379 patients reported to the Société Française de Greffe de Moelle (SFGM). Bone Marrow Transplant. 2000, 26, 1157–1163. [Google Scholar] [CrossRef] [PubMed]
- Abou Dalle, I.; Labopin, M.; Kröger, N.; Schroeder, T.; Finke, J.; Stelljes, M.; Neubauer, A.; Blaise, D.; Yakoub-Agha, I.; Salmenniemi, U.; et al. Impact of disease burden on clinical outcomes of AML patients receiving allogeneic hematopoietic cell transplantation: A study from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Bone Marrow Transplant. 2023, 58, 784–790. [Google Scholar] [CrossRef] [PubMed]
- Stelljes, M.; Bornhauser, M.; Kroger, M.; Beyer, J.; Sauerland, M.C.; Heinecke, A.; Berning, B.; Scheffold, C.; Silling, G.; Buchner, T.; et al. Cooperative German Transplant Study Group. Conditioning with 8-Gy total body irradiation and fludarabine for allogeneic hematopoietic stem cell transplantation in acute myeloid leukemia. Blood 2005, 106, 3314–3321. [Google Scholar] [CrossRef] [PubMed]
- Ringdén, O.; Karlsson, H.; Olsson, R.; Omazic, B.; Uhlin, M. The allogeneic graft-versus-cancer effect. Br. J. Haematol. 2009, 147, 614–633. [Google Scholar] [CrossRef]
- Schlenk, R.F.; Döhner, K.; Mack, S.; Stoppel, M.; Király, F.; Götze, K.; Hartmann, F.; Horst, H.A.; Koller, E.; Petzer, A.; et al. Prospective evaluation of allogeneic hematopoietic stem-cell transplantation from matched related and matched unrelated donors in younger adults with high-risk acute myeloid leukemia: German-Austrian trial AMLHD98A. J. Clin. Oncol. 2010, 28, 4642–4648. [Google Scholar] [CrossRef]
- Luger, S.M.; Ringdén, O.; Zhang, M.J.; Pérez, W.S.; Bishop, M.R.; Bornhauser, M.; Bredeson, C.N.; Cairo, M.S.; Copelan, E.A.; Gale, R.P.; et al. Similar outcomes using myeloablative vs reduced-intensity allogeneic transplant preparative regimens for AML or MDS. Bone Marrow Transplant. 2012, 47, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Pfrepper, C.; Klinke, A.; Behre, G.; Schenk, T.; Franke, G.N.; Jentzsch, M.; Schwind, S.; Al-Ali, H.K.; Hochhaus, A.; Niederwieser, D.; et al. Risk factors for outcome in refractory acute myeloid leukemia patients treated with a combination of fludarabine, cytarabine, and amsacrine followed by a reduced-intensity conditioning and allogeneic stem cell transplantation. J. Cancer Res. Cin. Oncol. 2016, 142, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Todisco, E.; Ciceri, F.; Boschini, C.; Giglio, F.; Bacigalupo, A.; Patriarca, F.; Donnini, I.; Alessandrino, E.P.; Arcese, W.; Iori, A.P.; et al. Factors predicting outcome after allogeneic transplant in refractory acute myeloid leukemia: A retrospective analysis of Gruppo Italiano Trapianto di Midollo Osseo (GITMO). Bone Marrow Transplant. 2017, 52, 955–961. [Google Scholar] [CrossRef]
- Singhal, S.; Powles, R.; Henslee-Downey, P.J.; Chiang, K.Y.; Treleaven, J.; Godder, K.; Kulkarni, S.; van Rhee, F.; Sirohi, B.; Pinkerton, C.R.; et al. Allogeneic transplantation from HLA-matched sibling or partially HLA-mismatched related donors for primary refractory acute leukemia. Bone Marrow Transplant. 2002, 29, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Oyekunle, A.A.; Kröger, N.; Zabelina, T.; Ayuk, F.; Schieder, H.; Renges, H.; Fehse, N.; Waschke, O.; Fehse, B.; Kabisch, H.; et al. Allogeneic stem-cell transplantation in patients with refractory acute leukemia: A long-term follow-up. Bone Marrow Transplant. 2006, 37, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Craddock, C.; Labopin, M.; Pillai, S.; Finke, J.; Bunjes, D.; Greinix, H.; Ehninger, G.; Steckel, N.K.; Zander, A.R.; Schwerdtfeger, R.; et al. Factors predicting outcome after unrelated donor stem cell transplantation in primary refractory acute myeloid leukaemia. Leukemia 2011, 25, 808–813. [Google Scholar] [CrossRef] [PubMed]
- Hemmati, P.G.; Terwey, T.H.; Na, I.K.; Jehn, C.F.; le Coutre, P.; Vuong, L.G.; Dörken, B.; Arnold, R. Allogeneic stem cell transplantation for refractory acute myeloid leukemia: A single center analysis of long-term outcome. Eur. J. Haematol. 2015, 95, 498–506. [Google Scholar] [CrossRef]
- Yanada, M.; Harada, K.; Shimomura, Y.; Arai, Y.; Konuma, T. Conditioning regimens for allogeneic hematopoietic cell transplantation in acute myeloid leukemia: Real-world data from the Japanese registry studies. Front. Oncol. 2022, 12, 1050633. [Google Scholar] [CrossRef]
- Nagler, A.; Ngoya, A.; Galimard, J.E.; Labopin, M.; Bornhäuser, M.; Stelljes, M.; Finke, J.; Ganser, A.; Einsele, H.; Kröger, N.; et al. Longitudinal Outcome over Two Decades of Unrelated Allogeneic Stem Cell Transplantation for Relapsed/Refractory Acute Myeloid Leukemia: An ALWP/EBMT Analysis. Clin. Cancer Res. 2022, 28, 4258–4266. [Google Scholar] [CrossRef]
- Liu, N.; Ning, H.M.; Hu, L.D.; Jiang, M.; Xu, C.; Hu, J.W.; Wang, J.; Li, Y.H.; Li, B.T.; Lou, X.; et al. Outcome of myeloablative allogeneic peripheral blood hematopoietic stem cell transplantation for refractory/relapsed AML patients in NR status. Leuk. Res. 2015, 39, 1375–1381. [Google Scholar] [CrossRef]
- Baron, F.; Labopin, M.; Tischer, J.; Ciceri, F.; Raiola, A.M.; Blaise, D.; Sica, S.; Vydra, J.; Fanin, R.; Diez-Martin, J.L.; et al. Comparison of HLA-mismatched unrelated donor transplantation with post-transplant cyclophosphamide versus HLA-haploidentical transplantation in patients with active acute myeloid leukemia. Bone Marrow Transplant. 2022, 57, 1657–1663. [Google Scholar] [CrossRef]
- Duval, M.; Klein, J.; He, W.; Cahn, J.Y.; Cairo, M.; Camitta, B.M.; Kamble, R.; Copelan, E.; de Lima, M.; Gupta, V.; et al. Hematopoietic Stem-Cell Transplantation for Acute Leukemia in Relapse or Primary Induction Failure. J. Clin. Oncol. 2022, 28, 3730–3738. [Google Scholar] [CrossRef]
- Nagler, A.; Savani, B.N.; Labopin, M.; Polge, E.; Passweg, J.; Finke, J.; Kyrcz-Krzemien, S.; Volin, L.; Anagnostopoulos, A.; Aljurf, M.; et al. Outcomes after use of two standard ablative regimens in patients with refractory acute myeloid leukaemia: A retrospective, multicentre, registry analysis. Lancet Haematol. 2015, 2, e384–e392. [Google Scholar] [CrossRef] [PubMed]
- Ringdén, O.; Labopin, M.; Schmid, C.; Sadeghi, B.; Polge, E.; Tischer, J.; Ganser, A.; Michallet, M.; Kanz, L.; Schwerdtfeger, R.; et al. Sequential chemotherapy followed by reduced-intensity conditioning and allogeneic haematopoietic stem cell transplantation in adult patients with relapse or refractory acute myeloid leukaemia: A survey from the Acute Leukaemia Working Party of EBMT. Br. J. Haematol. 2017, 176, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Duléry, R.; Ménard, A.L.; Chantepie, S.; El-Cheikh, J.; François, S.; Delage, J.; Giannotti, F.; Ruggeri, A.; Brissot, E.; Battipaglia, G.; et al. Sequential Conditioning with Thiotepa in T Cell- Replete Hematopoietic Stem Cell Transplantation for the Treatment of Refractory Hematologic Malignancies: Comparison with Matched Related, Haplo-Mismatched, and Unrelated Donors. Biol. Blood Marrow Transplant. 2018, 24, 1013–1021. [Google Scholar] [CrossRef] [PubMed]
- Steckel, N.K.; Groth, C.; Mikesch, J.H.; Trenschel, R.; Ottinger, H.; Kordelas, L.; Mueller-Tidow, C.; Schliemann, C.; Reicherts, C.; Albring, J.C.; et al. High-dose melphalan-based sequential conditioning chemotherapy followed by allogeneic haematopoietic stem cell transplantation in adult patients with relapsed or refractory acute myeloid leukaemia. Br. J. Haematol. 2018, 180, 840–853. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Arbolí, E.; Labopin, M.; Tischer, J.; Brecht, A.; Ganser, A.; Finke, J.; Blau, I.W.; Kröger, N.; Kalhs, P.; Forcade, E.; et al. FLAMSA-Based Reduced-Intensity Conditioning versus Myeloablative Conditioning in Younger Patients with Relapsed/Refractory Acute Myeloid Leukemia with Active Disease at the Time of Allogeneic Stem Cell Transplantation: An Analysis from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Biol. Blood Marrow Transplant. 2020, 26, 2165–2173. [Google Scholar] [PubMed]
- Le Bourgeois, A.; Labopin, M.; Marçais, A.; de Latour, R.P.; Blaise, D.; Chantepie, S.; N’Guyen, S.; Maillard, N.; Forcade, E.; Yakoub-Agha, I.; et al. Sequential allogeneic hematopoietic stem cell transplantation for active refractory/relapsed myeloid malignancies: Results of a reduced-intensity conditioning preceded by clofarabine and cytosine arabinoside, a retrospective study on behalf of the SFGM-TC. Ann. Hematol. 2020, 99, 1855–1862. [Google Scholar] [CrossRef] [PubMed]
- Sockel, K.; Stölzel, F.; Hönl, F.; Baldauf, H.; Röllig, C.; Wermke, M.; von Bonin, M.; Teipel, R.; Link-Rachner, C.; Brandt, K.; et al. Allogeneic Stem Cell Transplantation with Sequential Melphalan-Based Conditioning in AML: Residual Morphological Blast Count Determines the Risk of Relapse. Cancer Manag. Res. 2022, 14, 547–559. [Google Scholar] [CrossRef]
- Guijarro, F.; Bataller, A.; Diaz-Beyá, M.; Garrido, A.; Coll-Ferrà, C.; Vives, S.; Salamero, O.; Valcárcel, D.; Tormo, M.; Arnan, M.; et al. Long-term outcomes in patients with relapsed/refractory acute myeloid leukemia and other high-risk myeloid malignancies after undergoing sequential conditioning regimen based on IDA-FLAG and high-dose melphalan. Bone Marrow Transplant. 2022, 57, 1304–1312. [Google Scholar] [CrossRef]
- Weller, J.F.; Mezger, M.; Seifert, L.L.; Vogel, W.; Schneidawind, D.; Faul, C.; Bethge, W.; Lengerke, C.; Christopeit, M. Time-dependent analysis of adoptive immunotherapy following sequential FLAMSA-reduced intensity conditioning and allogeneic hematopoietic stem cell transplantation in patients with high-risk myeloid neoplasia. Eur. J. Haematol. 2022, 108, 244–263. [Google Scholar] [CrossRef]
- Schmid, C.; Schleuning, M.; Ledderose, G.; Tischer, J.; Kolb, H.J. Sequential Regimen of Chemotherapy, Reduced- Intensity Conditioning for Allogeneic Stem-Cell Transplantation, and Prophylactic Donor Lymphocyte Transfusion in High-Risk Acute Myeloid Leukemia and Myelodysplastic Syndrome. J. Clin. Oncol. 2005, 23, 5675–5687. [Google Scholar] [CrossRef] [PubMed]
- Saraceni, F.; Labopin, M.; Brecht, A.; Kröger, N.; Eder, M.; Tischer, J.; Labussière-Wallet, H.; Einsele, H.; Beelen, D.; Bunjes, D.; et al. Fludarabine-treosulfan compared to thiotepa-busulfan-fludarabine or FLAMSA as conditioning regimen for patients with primary refractory or relapsed acute myeloid leukemia: A study from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation (EBMT). J. Hematol. Oncol. 2019, 12, 44. [Google Scholar]
- Schmid, C.; Labopin, M.; Schaap, N.; Veelken, H.; Brecht, A.; Stadler, M.; Finke, J.; Baron, F.; Collin, M.; Bug, G.; et al. Long-term results and GvHD after prophylactic and preemptive donor lymphocyte infusion after allogeneic stem cell transplantation for acute leukemia. Bone Marrow Transplant. 2022, 57, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Davies, J.K.; Hassan, S.; Sarker, S.J.; Besley, C.; Oakervee, H.; Smith, M.; Taussig, D.; Gribben, J.G.; Cavenagh, J.D. Durable graft-versus-leukaemia effects without donor lymphocyte infusions—Results of a phase II study of sequential T-replete allogeneic transplantation for high-risk acute myeloid leukaemia and myelodysplasia. Br. J. Haematol. 2018, 180, 346–355. [Google Scholar] [CrossRef]
- Penack, O.; Peczynski, C.; Mohty, M.; Yakoub-Agha, I.; Styczynski, J.; Montoto, S.; Duarte, R.F.; Kröger, N.; Schoemans, H.; Koenecke, C.; et al. How much has allogeneic stem cell transplant-related mortality improved since the 1980s? A retrospective analysis from the EBMT. Blood Adv. 2020, 4, 6283–6290. [Google Scholar] [CrossRef]
- Schmid, C.; Schleuning, M.; Schwerdtfeger, R.; Hertenstein, B.; Mischak-Weissinger, E.; Bunjes, D.; Harsdorf, S.V.; Scheid, C.; Holtick, U.; Greinix, H.; et al. Long-term survival in refractory acute myeloid leukemia after sequential treatment with chemotherapy and reduced-intensity conditioning for allogeneic stem cell transplantation. Blood 2006, 108, 1093–1099. [Google Scholar] [CrossRef]
- Middeke, J.M.; Herbst, R.; Parmentier, S.; Bug, G.; Hänel, M.; Stuhler, G.; Schäfer-Eckart, K.; Rösler, W.; Klein, S.; Bethge, W.; et al. Clofarabine salvage therapy before allogeneic hematopoietic stem cell transplantation in patients with relapsed or refractory AML: Results of the BRIDGE trial. Leukemia 2016, 30, 261–267. [Google Scholar] [CrossRef]
- Jaiswal, S.R.; Zaman, S.; Chakrabarti, A.; Sen, S.; Mukherjee, S.; Bhargava, S.; Ray, K.; O’Donnell, P.V.; Chakrabarti, S. Improved Outcome of Refractory/Relapsed Acute Myeloid Leukemia after Post-Transplantation Cyclophosphamide-Based Haploidentical Transplantation with Myeloablative Conditioning and Early Prophylactic Granulocyte Colony-Stimulating Factor–Mobilized Donor Lymphocyte Infusions. Blood Marrow Transplant. 2016, 22, 1867–1873. [Google Scholar]
- Mohty, M.; Malard, F.; Blaise, D.; Milpied, N.; Socié, G.; Huynh, A.; Reman, O.; Yakoub-Agha, I.; Furst, S.; Guillaume, T.; et al. Sequential regimen of clofarabine, cytosine arabinoside and reduced-intensity conditioned transplantation for primary refractory acute myeloid leukemia. Haematologica 2017, 102, 184–191. [Google Scholar] [CrossRef]
- Bonifazi, F.; Pavon, C.; Peccatori, J.; Giglio, F.; Arpinati, M.; Busca, A.; Bernasconi, P.; Grassi, A.; Iori, A.P.; Patriarca, F.; et al. Myeloablative conditioning with thiotepa-busulfan-fludarabine does not improve the outcome of patients transplanted with active leukemia: Final results of the GITMO prospective trial GANDALF-01. Bone Marrow Transplant. 2022, 57, 949–958. [Google Scholar] [CrossRef]
- Decroocq, J.; Itzykson, R.; Vigouroux, S.; Michallet, M.; Yakoub-Agha, I.; Huynh, A.; Beckerich, F.; Suarez, F.; Chevallier, P.; Nguyen-Quoc, S.; et al. Similar outcome of allogeneic stem cell transplantation after myeloablative and sequential conditioning regimen in patients with refractory or relapsed acute myeloid leukemia: A study from the Société Francophone de Greffe de Moelle et de Thérapie Cellulaire. Am. J. Hematol. 2018, 93, 416–423. [Google Scholar]
- Scott, B.L.; Pasquini, M.C.; Logan, B.R.; Wu, J.; Devine, S.M.; Porter, D.L.; Maziarz, R.T.; Warlick, E.D.; Fernandez, H.F.; Alyea, E.P.; et al. Myeloablative Versus Reduced-Intensity Hematopoietic Cell Transplantation for Acute Myeloid Leukemia and Myelodysplastic Syndromes. J. Clin. Oncol. 2017, 35, 1154–1161. [Google Scholar] [CrossRef]
- Alatrash, G.; Thall, P.F.; Valdez, B.C.; Fox, P.S.; Ning, J.; Garber, H.R.; Janbey, S.; Worth, L.L.; Popat, U.; Hosing, C.; et al. Long-Term Outcomes after Treatment with Clofarabine ± Fludarabine with Once-Daily Intravenous Busulfan as Pretransplant Conditioning Therapy for Advanced Myeloid Leukemia and Myelodysplastic Syndrome. Biol. Blood Marrow Transplant. 2016, 22, 1792–1800. [Google Scholar] [CrossRef]
- Tang, X.; Valdez, B.C.; Ma, Y.; Zhang, Q.; Qu, C.; Dai, H.; Yin, J.; Li, Z.; Xu, T.; Xu, Y.; et al. Low-dose decitabine as part of a modified Bu-Cy conditioning regimen improves survival in AML patients with active disease undergoing allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2021, 56, 1674–1682. [Google Scholar] [CrossRef] [PubMed]
- Gavriilaki, E.; Sakellari, I.; Labopin, M.; Bornhäuser, M.; Hamladji, R.M.; Casper, J.; Edinger, M.; Zák, P.; Yakoub-Agha, I.; Ciceri, F.; et al. Survival advantage of treosulfan plus fludarabine (FT14) compared to busulfan plus fludarabine (FB4) in active acute myeloid leukemia post allogeneic transplantation: An analysis from the European Society for Blood and Marrow Transplantation (EBMT) Acute Leukemia Working Party (ALWP). Bone Marrow Transplant. 2023, 58, 1084–1088. [Google Scholar] [PubMed]
- Andersson, B.S. Fludarabine-IV busulfan, dose-intensity and progression-free survival: Are we finally finding the way to reach a consensus opinion?: Higher busulfan dose intensity appears to improve leukemia-free and overall survival in AML allografted in CR2: An analysis from the acute leukemia working party of the European group for blood and marrow transplantation. Leuk. Res. 2016, 41, 5–6. [Google Scholar]
- Bramanti, S.; De Philippis, C.; Bartoli, A.; Giordano, L.; Mariotti, J.; Sarina, B.; Mannina, D.; Valli, V.; De Gregori, S.; Roperti, M.; et al. Feasibility and Efficacy of a Pharmacokinetics-Guided Busulfan Conditioning Regimen for Allogeneic Stem Cell Transplantation with Post-Transplantation Cyclophosphamide as Graft-versus-Host Disease Prophylaxis in Adult Patients with Hematologic Malignancies. Transplant. Cell Ther. 2021, 27, 912.e1–912.e6. [Google Scholar] [CrossRef]
- Beelen, D.W.; Stelljes, M.; Reményi, P.; Wagner-Drouet, E.M.; Dreger, P.; Bethge, W.; Ciceri, F.; Stölzel, F.; Junghanß, C.; Labussiere-Wallet, H.; et al. Treosulfan compared with reduced-intensity busulfan improves allogeneic hematopoietic cell transplantation outcomes of older acute myeloid leukemia and myelodysplastic syndrome patients: Final analysis of a prospective randomized trial. Am. J. Hematol. 2022, 97, 1023–1034. [Google Scholar] [CrossRef] [PubMed]
- Legrand, F.; Le Floch, A.C.; Granata, A.; Fürst, S.; Faucher, C.; Lemarie, C.; Harbi, S.; Bramanti, S.; Calmels, B.; El-Cheikh, J.; et al. Prophylactic donor lymphocyte infusion after allogeneic stem cell transplantation for high-risk AML. Bone Marrow Transplant. 2017, 52, 620–621. [Google Scholar] [CrossRef]
- Santoro, N.; Mooyaart, J.E.; Devillier, R.; Koc, Y.; Vydra, J.; Castagna, L.; Gülbas, Z.; Martin, J.D.; Araujo, M.C.; Kulagin, A.; et al. Donor lymphocyte infusions after haploidentical stem cell transplantation with PTCY: A study on behalf of the EBMT cellular therapy & immunobiology working party. Bone Marrow Transplant. 2023, 58, 54–60. [Google Scholar] [PubMed]
- Yan, C.H.; Liu, Q.F.; Wu, D.P.; Zhang, X.; Xu, L.P.; Zhang, X.H.; Wang, Y.; Huang, H.; Bai, H.; Huang, F.; et al. Prophylactic Donor Lymphocyte Infusion (DLI) Followed by Minimal Residual Disease and Graft-versus-Host Disease-Guided Multiple DLIs Could Improve Outcomes after Allogeneic Hematopoietic Stem Cell Transplantation in Patients with Refractory/Relapsed Acute Leukemia. Biol. Blood Marrow Transplant. 2017, 23, 1311–1319. [Google Scholar] [PubMed]
- Dholaria, B.; Savani, B.N.; Labopin, M.; Luznik, L.; Ruggeri, A.; Mielke, S.; Al Malki, M.M.; Kongtim, P.; Fuchs, E.; Huang, X.J.; et al. Clinical applications of donor lymphocyte infusion from an HLA-haploidentical donor: Consensus recommendations from the Acute Leukemia Working Party of the EBMT. Haematologica 2020, 105, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Rheinländer, A.; Schraven, B.; Bommhardt, U. CD45 in human physiology and clinical medicine. Immunol. Lett. 2018, 196, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Castagna, L.; Valli, V.; Timofeeva, I.; Capizzuto, R.; Bramanti, S.; Mariotti, J.; De Philippis, C.; Sarina, B.; Mannina, D.; Giordano, L.; et al. Feasibility and Efficacy of CD45RA+ Depleted Donor Lymphocytes Infusion after Haploidentical Transplantation with Post-Transplantation Cyclophosphamide in Patients with Hematological Malignancies. Transplant. Cell Ther. 2021, 27, 478.e1–478.e5. [Google Scholar] [CrossRef] [PubMed]
- Ciurea, S.O.; Schafer, J.R.; Bassett, R.; Denman, C.J.; Cao, K.; Willis, D.; Rondon, G.; Chen, J.; Soebbing, D.; Kaur, I.; et al. Phase 1 clinical trial using mbIL21 ex vivo-expanded donor-derived NK cells after haploidentical transplantation. Blood 2017, 130, 1857–1868. [Google Scholar] [CrossRef] [PubMed]
- Broers, A.E.C.; de Jong, C.N.; Bakunina, K.; Hazenberg, M.D.; van Marwijk Kooy, M.; de Groot, M.R.; van Gelder, M.; Kuball, J.; van der Holt, B.; Meijer, E.; et al. Posttransplant cyclophosphamide for prevention of graft-versus-host disease: Results of the prospective randomized HOVON-96 trial. Blood Adv. 2022, 6, 3378–3385. [Google Scholar] [CrossRef]
- Bolaños-Meade, J.; Hamadani, M.; Wu, J.; Al Malki, M.M.; Martens, M.J.; Runaas, L.; Elmariah, H.; Rezvani, A.R.; Gooptu, M.; Larkin, K.T.; et al. Post-Transplantation Cyclophosphamide-Based Graft-versus-Host Disease Prophylaxis. N. Engl. J. Med. 2023, 388, 2338–2348. [Google Scholar] [CrossRef]
- Shaw, B.E.; Jimenez-Jimenez, A.M.; Burns, L.J.; Logan, B.R.; Khimani, F.; Shaffer, B.C.; Shah, N.N.; Mussetter, A.; Tang, X.Y.; McCarty, J.M.; et al. National Marrow Donor Program-Sponsored Multicenter, Phase II Trial of HLA-Mismatched Unrelated Donor Bone Marrow Transplantation Using Post-Transplant Cyclophosphamide. J. Clin. Oncol. 2021, 39, 1971–1982. [Google Scholar] [CrossRef]
- Watkins, B.; Qayed, M.; McCracken, C.; Bratrude, B.; Betz, K.; Suessmuth, Y.; Yu, A.; Sinclair, S.; Furlan, S.; Bosinger, S.; et al. Phase II Trial of Costimulation Blockade with Abatacept for Prevention of Acute GVHD. J. Clin. Oncol. 2021, 39, 1865–1877. [Google Scholar] [CrossRef]
- Al-Homsi, A.S.; Cirrone, F.; Wo, S.; Cole, K.; Suarez-Londono, J.A.; Gardner, S.L.; Hsu, J.; Stocker, K.; Bruno, B.; Goldberg, J.D.; et al. PTCy, abatacept, and a short course of tacrolimus for GVHD prevention after haploidentical transplantation. Blood Adv. 2023, 7, 3604–3611. [Google Scholar] [CrossRef] [PubMed]
- Oran, B.; de Lima, M.; Garcia-Manero, G.; Thall, P.F.; Lin, R.; Popat, U.; Alousi, A.M.; Hosing, C.; Giralt, S.; Rondon, G.; et al. A phase 3 randomized study of 5-azacitidine maintenance vs observation after transplant in high-risk AML and MDS patients. Blood Adv. 2020, 4, 580–5588. [Google Scholar] [CrossRef] [PubMed]
- Burchert, A.; Bug, G.; Fritz, L.V.; Finke, J.; Stelljes, M.; Röllig, C.; Wollmer, E.; Wäsch, R.; Bornhäuser, M.; Berg, T.; et al. Sorafenib maintenance after allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia with FLT3-internal tandem duplication mutation (SORMAIN). J. Clin. Oncol. 2020, 38, 2993–3002. [Google Scholar] [CrossRef] [PubMed]
- Xuan, L.; Wang, Y.; Yang, K.; Shao, R.; Huang, F.; Fan, Z.; Chi, P.; Xu, Y.; Xu, N.; Deng, L.; et al. Sorafenib maintenance after allogeneic haemopoietic stem-cell transplantation in patients with FLT3-ITD acute myeloid leukaemia: Long-term follow-up of an open-label, multicentre, randomised, phase 3 trial. Lancet Haematol. 2023, 10, e600–e611. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Stein, E.M.; de Botton, S.; Roboz, G.J.; Altman, J.K.; Mims, A.S.; Swords, R.; Collins, R.H.; Mannis, G.N.; Pollyea, D.A.; et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N. Engl. J. Med. 2018, 378, 2386–2398. [Google Scholar] [CrossRef]
N | Age | Inclusion Criteria | % Blasts (Median) | Donor Type | Conditioning | GvHD Prophylaxis | IS Tapering | pDLI | CIR | LFS | OS | NRM | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Duval 2010 [42] | 1673 | 38 | PIF, untreated, refractory relapse | 21% | MRD/MUD | MAC | FK/CyA +/− MTX T-cell depletion (13%) | NR | No | NR | NR | 19% | 38% |
Craddock 2011 [36] | 168 | 40 | PIF | 38% | MUD | MAC/RIC | NR | No | NR | 20%@5y | 22%@5y | NR | |
Hemmati 2014 [37] | 131 | 52 | PIF and relapse | 22% | MRD/MUD | MAC/RIC FLAMSA-RIC (21%) | CyA + MTX/MMF | MRD +30 MUD +60 | Yes | 48%@5y | 25%@5y | / | 26%@3y |
Liu 2015 [40] | 133 | 40, 30 21 | PIF and relapse | 26% | MRD/MUD Haplo | MAC | CyA + MTX CyA + MTX + MMF GIAC protocol | NR | No | NR | 36%@3y | 40%@3y | 19%@3y |
Nagler 2015 [43] | 852 | 43 39 | PIF and relapse | 20% 16% | MRD/MUD | BUCY TBICY | CyA + MTX ATG | NR | No | 53%@2y 54%@2y | 25%@2y 28%@2y | 31%@2y 33%@2y | 21%@2y 17%@2y |
Todisco 2017 [33] | 227 | 49 | PIF | >25% | MRD/MUD Haplo CB | MAC 69% RIC 31% | T-cell depletion 50% | NR | No | 61%@3y | 23%@y | 14%@3y | 27%@3y |
Nagler 2022 [39] | 3430 | 55 | PIF and relapse | NR | MRD/MUDHaplo | MAC 54% RIC 46% FLAMSA-RIC 13% | CyA + MTX/MMF ATG 78% PTCY 4% | NR | no | 48%@2y | 28%@2y | 36%@2y | 24%@2y |
Baron 2022 [41] | 219 | 56 | PIF and relapse | NR | mMUD/Haplo | MAC/RIC | PTCY-based | NR | no | 40%@2y 50%@2y | 42%@2y 26%@2y | 46%@2y 28%@2y | 18%@2y 24%@2y |
Yanada 2023 [38] | 6927 | 53 | PIF and relapse | NR | MRD/MUD CB | MAC 67% RIC 33% | FK/CyA-based | NR | no | 53%@5y | NR | 23%@5y | 27%@5y |
N | Age | Inclusion Criteria | % Blasts (Median) | Donor | Sequential CT | Rest | Conditioning | GvHD Prophylaxis | IS Tapering | pDLI | CIR | OS | LFS | NRM | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ringden 2017 [44] | 267 | 51 | PIF and relapse | NR | MRD/MUD | FLAMSA | 3d | TBI4Gy, Cy BU-based PAM | CyA + MTX/MMF ATG | NR | no | 48%@3y | 30%@3y | 26%@3y | 26%@3y |
Dulery 2018 [45] | 72 | 54 | PIF, first/second relapse | NR | MRD/MUD haplo | TEC | 3d | BU6.4FLU | CyA + MMF ATG | +60 | yes | 38%@2y | 57%@2y | NR | 24%@2y |
Steckel 2018 [46] | 292 | 56 | Primary refractory Untreated relapse | 32% | MRD/MUD | PAM140 | 5d | TBI8Gy/FLU TREO/FLU | CyA ± MTX/MMF ATG | NR | no | 34%@1y | 34%@3y | 31%@3y | 36%@1y |
Saraceni 2019 [47] | 856 | 51–58 | PIF and relapse | NR | MRD/MUD | FLAMSA / / | NR | BU/TBI-based TREO/FLU TBF | CyA + MTX/MMF ATG | NR | yes | 53%@2y 46%@2y 54%@2y | 34%@2y 37%@2y 24%@2y | 27%@2y 22%@2y 29%@2y | 20%@2y 26%@2y 24%@2y |
Rodrìguez-Arbolì, 2020 [47] | 1018 | 39 | PIF and relapse | NR | MRD/MUD | FLAMSA | NR | TBI-based CT-based MAC | CyA+ MTX/MMF ATG | NR | NR | 55%@2y 53%@2y 51%@2y | 36%@2y 50%@2y 33%@2y | 27%@2y 40%@2y 30%@2y | 18%@2y 7%@2y 19%@2y |
Le Bourgeois 2020 [48] | 131 | 52 | PIF and relapse | NR | MRD | ClofaARAC | 3d | BU9.6CY | CyA + MTX/MMF ATG | NR | no | 45%@2y | 38%@2y | 29%@2y | 35%@2y |
Sockel 2022 [49] | 173 | 56 | Relapse (36%) first line | 10% | MRD/MUD haplo | ClofaARAC | / | FLU-PAM Clofa-PAM | CyA + MTX/MMF PTCY | NR | no | 30%@4y | 43%@4y | NR | 36%@4y |
Guijarro 2022 [50] | 140 | 55 | PIF or relapse | 20% | MRD/MUD haplo | FLAG-IDA | 3d | PAM140 mg/m2 | CyA + MTX/MMF ATG PTCY | NR | no | 30%@5y | 25%@5y | NR | 45%@5y |
Weller 2022 [51] | 114 | 60 | PIF or relapse | 17% | MRD/MUD haplo | FLAMSA | 3d | RIC | CyA + MTX/MMF ATG/PTCY | +90 | yes | 41%@2y | 45%@2y | 46%@2y (no DLI) 70%@2y (DLI) | 27%@2y |
OS | HR | LFS | HR | CIR | HR | NRM | HR | |
---|---|---|---|---|---|---|---|---|
Duval 2010 [42] | Duration of first CR < 6 months | 1.26 | Not done | Not done | Not done | |||
Duration of first CR > 6 months | 0.83 | |||||||
Blasts PB at transplantation | 1.48 | |||||||
HLA familiar other related | 1.48 | |||||||
mMUD | 2.21 | |||||||
KPS > 90% | 0.65 | |||||||
Craddock 2011 [36] | >3 CT | 1.66 | >3 CT | 1.63 | Not done | Not done | ||
BM blast > median (38%) | 1.49 | BM blast > median (38%) | 1.53 | |||||
Recipient CMV+ | 1.63 | Recipient CMV+ | 1.67 | |||||
Hemmati 2015 [37] | Not done | BM blast > 20% | 1.58 | BM blast > 20% | 1.7 | Not done | ||
Any cGVHD | 0.21 | Any cGVHD | 0.18 | |||||
Any aGVHD | 0.39 | |||||||
Nagler 2015 [43] | Second relapse | 1.5 | Second relapse | 1.54 | First relapse | 1.24 | CYTBI | 0.69 |
Second relapse | 1.73 | Recipient age | 1.24 | |||||
Todisco 2017 [33] | >2 CT | 1.87 | Not done | Not done | Not done | |||
BM blasts ≥ 25%/any level in PB | 1.75 | |||||||
KPS < 90% | 1.43 | |||||||
Recipient age > 60 | 1.77 | |||||||
Int/adverse cytogenetic | 1.44 | |||||||
Nagler 2022 [39] | Recent period HSCT | 0.86 | Recent period HSCT | 0.87 | Recent period HSCT | 0.85 | mMUD 9/10 Recipient CMV+ | 1.31 1.39 |
Recipient age | 1.05 | mMUD 9/10 | 1.14 | Recipient age | 0.94 | |||
mMUD 9/10 | 1.2 | Recipient CMV+ | 1.13 | TBI | 1.2 | |||
Recipient CMV+ | 1.2 | Relapse | 1.1 | Relapse | 1.21 | |||
Poor Cytogenetic | 1.33 | Poor Cytogenetic | 1.51 | Poor Cytogenetic | 1.96 | |||
Yanada 2022 [38] | Recipient age 40–49 y | 1.29 | Not done | PS 2–4 | 1.13 | Recipient age 40–49 y | 1.38 | |
Recipient age 50–59 y | 1.52 | Poor cytogenetic | 1.6 | Recipient age 50–59 y | 1.72 | |||
Recipient age > 60 y | 1.74 | Unevaluable cytogenetic | 1.23 | Recipient age > 60 y | 2.25 | |||
Recipient male | 1.22 | PB blasts 1–4% | 1.29 | Recipient male | 1.23 | |||
PS 2–4 | 1.79 | PB blasts 5–19% | 1.49 | PS 2–4 | 1.21 | |||
PIF | 0.93 | PB blasts > 20% | 1.77 | Poor cytogenetic | 0.84 | |||
Poor cytogenetic | 1.66 | CB | 0.8 | PB blasts > 20% | 0.85 | |||
Unevaluable cytogenetic | 1.5 | FK-based prophylaxis | 0.91 | CB | 1.20 | |||
PB blasts 1–4% | 1.18 | Year transplant 2016–2020 | 0.821 | Year transplant 2016–2020 | 0.781 | |||
PB blasts 5–19% | 1.38 | |||||||
PB blasts > 20% | 1.75 | |||||||
Year transplant 2011–2015 | 0.83 | |||||||
Year transplant 2016–2020 | 0.74 |
N | Score Components and Points | Score | OS | LFS | |
---|---|---|---|---|---|
Duval 2010 [42] | 1673 | PIF or CR duration > 6 M = 0 CR duration < 6 M = 1 Cytogenetic good/INT = 0 Cytogenetic poor = 1 HLA match = 0 mMUD = 1 Haplo = 2 Circulating blasts yes = 1 KPS < 90 = 1 | 0 (1 point) 1 (1 point) 2 (2 points) ≥3 (3 points) | 42% 28% 15% 6% | Not done |
Craddock 2011 [36] | 168 | >2 CT = 1 BM blasts > median = 1 R CMV+ = 1 | 0 (0 point) 1 (1 point) 2 (2 points) 3 (3 points) | 44% 24% 10% 0% | 40% 24% 12% 0% |
Todisco 2017 [33] | 227 | >2 CT = 1 BM blasts >25%/circulating any level = 1 Age > 60 = 1 Cytogenetic poor = 1 | 0 (0–1 points) 1 (2 points) 2 (>2 points) | 32%@3y 10%@3y 0%@3y | Not done |
OS | HR | LFS | HR | CIR | HR | NRM | HR | |
---|---|---|---|---|---|---|---|---|
Ringden [48] | In vivo T-cell depletion | 0.46 | In vivo T-cell depletion | 0.49 | UD (vs. MRD) | 0.6 | Recipient age UD (vs. MRD) In vivo T-cell depletion | 1.33 1.96 0.35 |
Steckel [44] | Recipient age > 59 y Time from diagnosis to HSCT < 9M >20% blasts (BM/PB) mMUD | adverse adverse adverse adverse | Not done | Not done | Recipient age > 59 y HCT-CI ≥ 2 mMUD Infection before conditioning | NR | ||
Dulery [54] | None | Not done | Not done | KPS < 90% | 3 | |||
Saraceni [47] | KPS ≥ 80% Recipient CMV+ | 0.7 1.3 | Recipient CMV+ | 1.4 | Age Relapse (vs. primary refr) Recipient CMV+ | 0.9 1.3 1.3 | Recipient age mMUD | 1.3 1.8 |
Rodrìguez-Arbolì [45] | FLAMSA-CT Adverse/failed cytogenetic Second relapse KPS > 90% UD (vs. MRD) | 0.65 2.13/2.02 1.88 0.54 1.23 | FLAMSA-CT Adverse/failed cytogenetic Second relapse KPS > 90% | 0.73 2.07/1.99 1.78 0.64 | Recipient age Adverse/failed cytogenetic Second relapse KPS > 90% | 0.85 2.93/2.55 1.94 0.67 | FLAMSA-CT Recipient age KPS > 90% UD (vs. MRD) | 0.4 1.28 0.57 1.94 |
Le Bourgeois [50] | CMV−/− | 1.75 | CMV−/− | 1.71 | CMV−/− | 2.49 | None | |
Sockel [9] | >20% blasts (BM) Recipient age AML therapy related | 1.8 1.26 2.10 | Not done | 5–20% blasts (BM) >20% blasts (BM) | 1.18 1.24 | AML therapy related Recipient age UD | 3.39 1.26 2.46 | |
Guijarro [49] | Recipient age > 55 y | 2.56 | Not done | Adverse cytogenetic | 2.65 | Recipient age > 55 y | 2.4 |
N | Median Age | Inclusion Criteria | % Blasts at ALLO | CR | Sequential | Rest | CTX | Donor | GVHD Prophylaxis | IS Tapering | Prophylactic DLI | CIR | OS | LFS | NRM | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Schmid 2005 [52] | 75 | 52 y (18–65) | No response to HD ARAC Relapse 3 M after CR Second relapse Delayed response to IC Relapse after auto Secondary AML/MDS | NR | 11% | FLAMSA-RIC * | 3 days | TBI4Gy, Cy | MRD 49% MUD 51% | CSA day −1 MMF Day 0 ATG | CSA day +60 to 90 MMF day +50 | 24% Day +120 Median day +160 | 20% | 42%@2y | 40%@2y | 33%@1y |
Schmid 2006 [57] | 103 | 51 y (18–68) | PIF after ≥2 IC Relapse 6 M after CR Refractory to salvage IC ≥2nd relapse | 30% (0–90%) | 4% | FLAMSA-RIC * | 3 days | TBI4Gy, Cy | MRD 40% MUD 60% | CSA day −1 MMF Day 0 ATG | CSA day +60 to 90 MMF day +50 | 24% Day +120 Median day +159 | 37% | 40@2y | 39%@2y | 17%@1y |
Middeke 2016 [58] | 84 | 61 y (40–75) | PIF after ≥2 IC Relapsed | 54% (5–92%) | None | ClofaARAC | ALLO in aplasia | ClofaPAM | MRD 18% MUD 54% mMUD 29% | CSA day −1 MMF Day 0 ATG (only in mMUD) | Not reported | No | 26%@2y | 43@2y | DFS 52% | 23%@2y |
Jaiswal 2016 [59] ^ | 41 | 26 y (2–65) | PIF after ≥2 IC Relapsed refractory | 14–16% (5–65%) | None | no | / | BUFLUPAM ^ | Haplo | PTCY day +3 and 4 CSA day +5 MMF day +5 | CSA day +60 MMF from +14 to +21 | 90% Day +21, +35, +60 | 43% 21% with DLI | 53%@18 M 70% with DLI 35% w/out | 44%@18 M 62% with DLI 25% w/out | 19%@1y |
Mohty 2017 [60] | 24 | 47 y (20–57) | PIF after 2 IC Persisting hypoplasia | 20% (6–82%) | None | ClofaARAC-RIC § | 3 days | BUCY | MRD 63% UD 37% | CSA day −1 MMF Day 0 (only in UD) ATG | CSA day +90 MMF +62 to 90 | 25% Day +120 | 54%@2y | 38%@2y | 29%@2y | 12%@2y |
Davies 2018 [55] | 47 | 53 y (23–68) | PIF after 1 IC Relapse 6 M after CR | NR | None | DaunoARAC-RIC | 3 days | FLUCY | MRD 49% MUD 51% | CSA day −1 Short MTX | CSA day +90 | No | 30%@3y | 39%@2y | 39%@2y | 35%@1y |
Bonifazi 2022 [61] | 101 | 54 y (16–69) | PIF Relapse | 30% in PB | None | no | / | TBF ° | MUD 57% Haplo 38% CB 9% | ATG-based PTCY-based | NR | No | 53% | 19%@2y | 19%@2y | 35%@1y |
N | Sequential | pDLI | OS | LFS | NRM | |
---|---|---|---|---|---|---|
Schmid 2005 [52] | 75 | FLAMSA-RIC | yes | CD34 | CD34 | CD34 MRD |
Schmid 2006 [57] | 103 | FLAMSA-RIC | yes | CD34 <2 IC | CD34 <2 IC | / |
Middeke 2016 [58] | 84 | ClofaARAC | No | Age No response on day +15 | / | / |
Jaiswal 2016 [59] | 41 | no | yes | MAC + pDLI | MAC + pDLI | / |
Mohty 2017 [60] | 24 | ClofaARAC-RIC | yes | / | / | / |
Davies 2018 [55] | 47 | DaunoARAC-RIC | No | cGVHD | cGVHD | / |
Bonifazi 2022 [61] | 101 | no | No | HCT-CI > 0 Low risk cytogenetic | / | HCT-CI > 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bono, R.; Sapienza, G.; Tringali, S.; Rotolo, C.; Patti, C.; Mulè, A.; Calafiore, V.; Santoro, A.; Castagna, L. Allogeneic Stem Cell Transplantation in Refractory Acute Myeloid Leukaemia. Cells 2024, 13, 755. https://doi.org/10.3390/cells13090755
Bono R, Sapienza G, Tringali S, Rotolo C, Patti C, Mulè A, Calafiore V, Santoro A, Castagna L. Allogeneic Stem Cell Transplantation in Refractory Acute Myeloid Leukaemia. Cells. 2024; 13(9):755. https://doi.org/10.3390/cells13090755
Chicago/Turabian StyleBono, Roberto, Giuseppe Sapienza, Stefania Tringali, Cristina Rotolo, Caterina Patti, Antonino Mulè, Valeria Calafiore, Alessandra Santoro, and Luca Castagna. 2024. "Allogeneic Stem Cell Transplantation in Refractory Acute Myeloid Leukaemia" Cells 13, no. 9: 755. https://doi.org/10.3390/cells13090755
APA StyleBono, R., Sapienza, G., Tringali, S., Rotolo, C., Patti, C., Mulè, A., Calafiore, V., Santoro, A., & Castagna, L. (2024). Allogeneic Stem Cell Transplantation in Refractory Acute Myeloid Leukaemia. Cells, 13(9), 755. https://doi.org/10.3390/cells13090755