The Articular Chromatin Landscape in Osteoarthritis
Abstract
Highlights
- Emerging data from multidimensional and high-resolution phenotyping of disease-relevant tissues indicates that osteoarthritis (OA) is a polygenic disease, where genetic factors disrupt the chromatin landscape in disease-relevant cells leading to aberrant expression of effector genes that drive OA pathogenesis.
- According to the concept of a developmental origin for OA, the functional cooperation between chromatin dynamics and transcription factors (TFs) regulates the unfolding of a development-specific gene expression program, defines the outcome of skeletogenesis, and ultimately determines the articular biomechanics and the risk of OA.
- Detailed mapping and functional characterization of the OA-associated chromatin conformation and epigenetic disruptions may accelerate the discovery of disease-modifying drugs for OA.
- Novel technologies pave the way for precise epigenetic editing at the desired genomic regions and may allow a targeted transcriptional regulation of OA-relevant genes in disease-relevant cells.
Abstract
1. Introduction
2. GWASs Implicate Epigenetic Regulation and Chromatin Structure in OA Pathogenesis
3. Methodological Advances Enabling Study and Interpretation of the OA Chromatin Landscape
4. Unraveling the DNA Methylome Landscape in OA
5. Chromatin Structure as a Calibrator for Gene Expression Defining the Risk for OA
6. The Chromatin Landscape and the “Developmental Origin” of OA
7. Chromatin as a Guide for Drug Discovery in OA: Opportunities and Challenges
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, S.; Zhang, C.; Oo, W.M.; Fu, K.; Risberg, M.A.; Bierma-Zeinstra, S.M.; Neogi, T.; Atukorala, I.; Malfait, A.-M.; Ding, C.; et al. Osteoarthritis. Nat. Rev. Dis. Prim. 2025, 11, 10. [Google Scholar] [CrossRef] [PubMed]
- GBD 2021 Osteoarthritis Collaborators. Global, regional, and national burden of osteoarthritis, 1990–2020 and projections to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023, 5, e508–e522. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Jeong, S.; Kim, H.; Kang, D.; Lee, J.; Kang, S.-B.; Kim, J.-H. Disease-modifying therapeutic strategies in osteoarthritis: Current status and future directions. Exp. Mol. Med. 2021, 53, 1689–1696. [Google Scholar] [CrossRef]
- Brandt, M.D.; Malone, J.B.; Kean, T.J. Advances and Challenges in the Pursuit of Disease-Modifying Osteoarthritis Drugs: A Review of 2010–2024 Clinical Trials. Biomedicines 2025, 13, 355. [Google Scholar] [CrossRef]
- Yao, Q.; Wu, X.; Tao, C.; Gong, W.; Chen, M.; Qu, M.; Zhong, Y.; He, T.; Chen, S.; Xiao, G. Osteoarthritis: Pathogenic signaling pathways and therapeutic targets. Signal Transduct. Target. Ther. 2023, 8, 56. [Google Scholar] [CrossRef] [PubMed]
- Jinks, C.; Bemden, A.B.-V.; Bunzli, S.; Bowden, J.; Egerton, T.; Eyles, J.; Foster, N.; Healey, E.L.; Maddison, J.; O’bRien, D.; et al. Changing the narrative on osteoarthritis: A call for global action. Osteoarthr. Cartil. 2024, 32, 414–420. [Google Scholar] [CrossRef]
- Loeser, R.F.; Goldring, S.R.; Scanzello, C.R.; Goldring, M.B. Osteoarthritis: A disease of the joint as an organ. Arthritis Rheum. 2012, 64, 1697–1707. [Google Scholar] [CrossRef]
- Sanchez-Lopez, E.; Coras, R.; Torres, A.; Lane, N.E.; Guma, M. Synovial inflammation in osteoarthritis progression. Nat. Rev. Rheumatol. 2022, 18, 258–275. [Google Scholar] [CrossRef]
- Wang, M.G.; Seale, P.; Furman, D. The infrapatellar fat pad in inflammaging, knee joint health, and osteoarthritis. npj Aging 2024, 10, 34. [Google Scholar] [CrossRef]
- Ozeki, N.; Koga, H.; Sekiya, I. Degenerative Meniscus in Knee Osteoarthritis: From Pathology to Treatment. Life 2022, 12, 603. [Google Scholar] [CrossRef]
- Pandey, A.; Bhutani, N. Profiling joint tissues at single-cell resolution: Advances and insights. Nat. Rev. Rheumatol. 2023, 20, 7–20. [Google Scholar] [CrossRef]
- Emmi, A.; Stocco, E.; Boscolo-Berto, R.; Contran, M.; Belluzzi, E.; Favero, M.; Ramonda, R.; Porzionato, A.; Ruggieri, P.; De Caro, R.; et al. Infrapatellar Fat Pad-Synovial Membrane Anatomo-Fuctional Unit: Microscopic Basis for Piezo1/2 Mechanosensors Involvement in Osteoarthritis Pain. Front. Cell Dev. Biol. 2022, 10, 886604. [Google Scholar] [CrossRef]
- Lories, R.J.; Luyten, F.P. The bone–cartilage unit in osteoarthritis. Nat. Rev. Rheumatol. 2010, 7, 43–49. [Google Scholar] [CrossRef] [PubMed]
- A Deveza, L.; Loeser, R.F. Is osteoarthritis one disease or a collection of many? Rheumatology 2017, 57, iv34–iv42. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Bian, X.; Meng, X.; Li, L.; Fu, L.; Zhang, Y.; Wang, L.; Zhang, Y.; Gao, D.; Guo, X.; et al. Unveiling inflammatory and prehypertrophic cell populations as key contributors to knee cartilage degeneration in osteoarthritis using multi-omics data integration. Ann. Rheum. Dis. 2024, 83, 926–944. [Google Scholar] [CrossRef] [PubMed]
- Hao, T.; Pei, Z.; Hu, S.; Zhao, Z.; He, W.; Wang, J.; Jiang, L.; Ariben, J.; Wu, L.; Yang, X.; et al. Identification of osteoarthritis-associated chondrocyte subpopulations and key gene-regulating drugs based on multi-omics analysis. Sci. Rep. 2025, 15, 12448. [Google Scholar] [CrossRef]
- Sun, Z.; Yan, M.; Wang, J.; Zhang, H.; Ji, X.; Xiao, Y.; Wang, T.; Yu, T. Single-cell RNA sequencing reveals different chondrocyte states in femoral cartilage between osteoarthritis and healthy individuals. Front. Immunol. 2024, 15, 1407679. [Google Scholar] [CrossRef]
- Matta, C.; Takács, R.; Dvir-Ginzberg, M.; Richardson, S.M.; Pelttari, K.; Pattappa, G.; Risbud, M.V.; Mobasheri, A. Insights into chondrocyte populations in cartilaginous tissues at the single-cell level. Nat. Rev. Rheumatol. 2025, 21, 465–477. [Google Scholar] [CrossRef]
- Arruda, A.L.; Katsoula, G.; Chen, S.; Reimann, E.; Kreitmaier, P.; Zeggini, E. The Genetics and Functional Genomics of Osteoarthritis. Annu. Rev. Genom. Hum. Genet. 2024, 25, 239–257. [Google Scholar] [CrossRef]
- arcOGEN Consortium; Tachmazidou, I.; Hatzikotoulas, K.; Southam, L.; Esparza-Gordillo, J.; Haberland, V.; Zheng, J.; Johnson, T.; Koprulu, M.; Zengini, E.; et al. Identification of new therapeutic targets for osteoarthritis through genome-wide analyses of UK Biobank data. Nat. Genet. 2019, 51, 230–236. [Google Scholar] [CrossRef]
- Boer, C.G.; Hatzikotoulas, K.; Southam, L.; Stefánsdóttir, L.; Zhang, Y.; de Almeida, R.C.; Wu, T.T.; Zheng, J.; Hartley, A.; Teder-Laving, M.; et al. Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations. Cell 2021, 184, 4784–4818.e17. [Google Scholar] [CrossRef]
- Hatzikotoulas, K.; Southam, L.; Stefansdottir, L.; Boer, C.G.; McDonald, M.-L.; Pett, J.P.; Park, Y.-C.; Tuerlings, M.; Mulders, R.; Barysenka, A.; et al. Translational genomics of osteoarthritis in 1,962,069 individuals. Nature 2025, 641, 1217–1224. [Google Scholar] [CrossRef]
- Rice, S.J.; Beier, F.; Young, D.A.; Loughlin, J. Interplay between genetics and epigenetics in osteoarthritis. Nat. Rev. Rheumatol. 2020, 16, 268–281. [Google Scholar] [CrossRef]
- Roberts, J.B.; Rockel, J.S.; Mulders, R.; Capellini, T.D.; Appleton, C.T.; Phanstiel, D.H.; Lories, R.; Geurts, J.; Ali, S.A.; Bhutani, N.; et al. From mechanism to medicine: The progress and potential of epigenetics in osteoarthritis. Osteoarthr. Cartil. Open 2025, 7, 100621. [Google Scholar] [CrossRef]
- Roberts, J.B.; Rice, S.J. Osteoarthritis as an Enhanceropathy: Gene Regulation in Complex Musculoskeletal Disease. Curr. Rheumatol. Rep. 2024, 26, 222–234. [Google Scholar] [CrossRef]
- Jiang, F.; Hu, S.-Y.; Tian, W.; Wang, N.-N.; Yang, N.; Dong, S.-S.; Song, H.-M.; Zhang, D.-J.; Gao, H.-W.; Wang, C.; et al. A landscape of gene expression regulation for synovium in arthritis. Nat. Commun. 2024, 15, 1409. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, R.C.; Tuerlings, M.; Ramos, Y.; Hollander, W.D.; Suchiman, E.; Lakenberg, N.; Nelissen, R.G.H.H.; Mei, H.; Meulenbelt, I. Allelic expression imbalance in articular cartilage and subchondral bone refined genome-wide association signals in osteoarthritis. Rheumatology 2022, 62, 1669–1676. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, C.; Zhu, D.; Skelton, A.J.; Combe, J.; Threadgold, H.; Zhu, L.; Vincent, T.L.; Stuart, P.; Reynard, L.N.; Loughlin, J. Functional Characterization of the Osteoarthritis Genetic Risk Residing at ALDH1A2 Identifies rs12915901 as a Key Target Variant. Arthritis Rheumatol. 2018, 70, 1577–1587. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, C.; Reese, A.E.; Reynard, L.N.; Loughlin, J. Expression analysis of the osteoarthritis genetic susceptibility mapping to the matrix Gla protein gene MGP. Arthritis Res. Ther. 2019, 21, 149. [Google Scholar] [CrossRef]
- Sorial, A.; Hofer, I.; Tselepi, M.; Cheung, K.; Parker, E.; Deehan, D.; Rice, S.; Loughlin, J. Multi-tissue epigenetic analysis of the osteoarthritis susceptibility locus mapping to the plectin gene PLEC. Osteoarthr. Cartil. 2020, 28, 1448–1458. [Google Scholar] [CrossRef]
- Zhu, L.; Kamalathevan, P.; Koneva, L.A.; Zarebska, J.M.; Chanalaris, A.; Ismail, H.; Wiberg, A.; Ng, M.; Muhammad, H.; Walsby-Tickle, J.; et al. Variants in ALDH1A2 reveal an anti-inflammatory role for retinoic acid and a new class of disease-modifying drugs in osteoarthritis. Sci. Transl. Med. 2022, 14, eabm4054. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, J.; Southam, L.; Roumeliotis, T.I.; Clark, M.J.; Jayasuriya, R.L.; Swift, D.; Shah, K.M.; Butterfield, N.C.; Brooks, R.A.; McCaskie, A.W.; et al. A molecular quantitative trait locus map for osteoarthritis. Nat. Commun. 2021, 12, 1309. [Google Scholar] [CrossRef] [PubMed]
- Kramer, N.E.; Byun, S.; Coryell, P.; D’cOsta, S.; Thulson, E.; Kim, H.; Parkus, S.M.; Bond, M.L.; Klein, E.R.; Shine, J.; et al. Response eQTLs, chromatin accessibility, and 3D chromatin structure in chondrocytes provide mechanistic insight into osteoarthritis risk. Cell Genom. 2025, 5, 100738. [Google Scholar] [CrossRef]
- Núñez-Carro, C.; Blanco-Blanco, M.; Villagrán-Andrade, K.M.; Blanco, F.J.; de Andrés, M.C. Epigenetics as a Therapeutic Target in Osteoarthritis. Pharmaceuticals 2023, 16, 156. [Google Scholar] [CrossRef] [PubMed]
- Kreitmaier, P.; Park, Y.-C.; Swift, D.; Gilly, A.; Wilkinson, J.M.; Zeggini, E. Epigenomic profiling of the infrapatellar fat pad in osteoarthritis. Hum. Mol. Genet. 2023, 33, 501–509. [Google Scholar] [CrossRef]
- Grandi, F.C.; Modi, H.; Kampman, L.; Corces, M.R. Chromatin accessibility profiling by ATAC-seq. Nat. Protoc. 2022, 17, 1518–1552. [Google Scholar] [CrossRef]
- Song, L.; Zhang, Z.; Grasfeder, L.L.; Boyle, A.P.; Giresi, P.G.; Lee, B.-K.; Sheffield, N.C.; Gräf, S.; Huss, M.; Keefe, D.; et al. Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. Genome Res. 2011, 21, 1757–1767. [Google Scholar] [CrossRef]
- Li, G.; Fullwood, M.J.; Xu, H.; Mulawadi, F.H.; Velkov, S.; Vega, V.; Ariyaratne, P.N.; Bin Mohamed, Y.; Ooi, H.-S.; Tennakoon, C.; et al. ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing. Genome Biol. 2010, 11, R22. [Google Scholar] [CrossRef]
- Oksuz, B.A.; Yang, L.; Abraham, S.; Venev, S.V.; Krietenstein, N.; Parsi, K.M.; Ozadam, H.; Oomen, M.E.; Nand, A.; Mao, H.; et al. Systematic evaluation of chromosome conformation capture assays. Nat. Methods 2021, 18, 1046–1055. [Google Scholar] [CrossRef]
- Chatterjee, A.; Rodger, E.J.; Morison, I.M.; Eccles, M.R.; Stockwell, P.A. Tools and Strategies for Analysis of Genome-Wide and Gene-Specific DNA Methylation Patterns. In Oral Biology: Molecular Techniques and Applications; Seymour, G.J., Cullinan, M.P., Heng, N.C.K., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2017; pp. 249–277. ISBN 978-1-4939-6685-1. [Google Scholar]
- Park, P.J. ChIP–seq: Advantages and challenges of a maturing technology. Nat. Rev. Genet. 2009, 10, 669–680. [Google Scholar] [CrossRef]
- Skene, P.J.; Henikoff, S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. eLife 2017, 6, e21856. [Google Scholar] [CrossRef]
- Kaya-Okur, H.S.; Wu, S.J.; Codomo, C.A.; Pledger, E.S.; Bryson, T.D.; Henikoff, J.G.; Ahmad, K.; Henikoff, S. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 2019, 10, 1930. [Google Scholar] [CrossRef]
- Kaya-Okur, H.S.; Janssens, D.H.; Henikoff, J.G.; Ahmad, K.; Henikoff, S. Efficient low-cost chromatin profiling with CUT&Tag. Nat. Protoc. 2020, 15, 3264–3283. [Google Scholar] [CrossRef] [PubMed]
- Boer, C.G. Osteoarthritis year in review 2024: Genetics, genomics, and epigenetics. Osteoarthr. Cartil. 2024, 33, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, J.; Ritchie, G.R.S.; Roumeliotis, T.I.; Jayasuriya, R.L.; Clark, M.J.; Brooks, R.A.; Binch, A.L.A.; Shah, K.M.; Coyle, R.; Pardo, M.; et al. Integrative epigenomics, transcriptomics and proteomics of patient chondrocytes reveal genes and pathways involved in osteoarthritis. Sci. Rep. 2017, 7, 8935. [Google Scholar] [CrossRef]
- Kreitmaier, P.; Suderman, M.; Southam, L.; de Almeida, R.C.; Hatzikotoulas, K.; Meulenbelt, I.; Steinberg, J.; Relton, C.L.; Wilkinson, J.M.; Zeggini, E. An epigenome-wide view of osteoarthritis in primary tissues. Am. J. Hum. Genet. 2022, 109, 1255–1271. [Google Scholar] [CrossRef]
- Moore, L.D.; Le, T.; Fan, G. DNA Methylation and Its Basic Function. Neuropsychopharmacology 2013, 38, 23–38. [Google Scholar] [CrossRef]
- Taylor, S.E.B.; Smeriglio, P.; Dhulipala, L.; Rath, M.; Bhutani, N. A Global Increase in 5-Hydroxymethylcytosine Levels Marks Osteoarthritic Chondrocytes. Arthritis Rheumatol. 2013, 66, 90–100. [Google Scholar] [CrossRef]
- Fernández-Tajes, J.; Soto-Hermida, A.; E Vázquez-Mosquera, M.; Cortés-Pereira, E.; Mosquera, A.; Fernández-Moreno, M.; Oreiro, N.; Fernández-López, C.; Fernández, J.L.; Rego-Pérez, I.; et al. Genome-wide DNA methylation analysis of articular chondrocytes reveals a cluster of osteoarthritic patients. Ann. Rheum. Dis. 2014, 73, 668–677. [Google Scholar] [CrossRef]
- Rushton, M.D.; Reynard, L.N.; Barter, M.J.; Refaie, R.; Rankin, K.S.; Young, D.A.; Loughlin, J. Characterization of the Cartilage DNA Methylome in Knee and Hip Osteoarthritis. Arthritis Rheumatol. 2014, 66, 2450–2460. [Google Scholar] [CrossRef] [PubMed]
- Jeffries, M.A.; Donica, M.; Baker, L.W.; Stevenson, M.E.; Annan, A.C.; Humphrey, M.B.; James, J.A.; Sawalha, A.H. Genome-Wide DNA Methylation Study Identifies Significant Epigenomic Changes in Osteoarthritic Cartilage. Arthritis Rheumatol. 2014, 66, 2804–2815. [Google Scholar] [CrossRef]
- Jeffries, M.A.; Donica, M.; Baker, L.W.; Stevenson, M.E.; Annan, A.C.; Humphrey, M.B.; James, J.A.; Sawalha, A.H. Genome-Wide DNA Methylation Study Identifies Significant Epigenomic Changes in Osteoarthritic Subchondral Bone and Similarity to Overlying Cartilage. Arthritis Rheumatol. 2015, 68, 1403–1414. [Google Scholar] [CrossRef] [PubMed]
- Hollander, W.D.; Ramos, Y.F.M.; Bos, S.D.; Bomer, N.; van der Breggen, R.; Lakenberg, N.; de Dijcker, W.J.; Duijnisveld, B.J.; E Slagboom, P.; Nelissen, R.G.H.H.; et al. Knee and hip articular cartilage have distinct epigenomic landscapes: Implications for future cartilage regeneration approaches. Ann. Rheum. Dis. 2014, 73, 2208–2212. [Google Scholar] [CrossRef] [PubMed]
- Hollander, W.D.; Ramos, Y.F.M.; Bomer, N.; Elzinga, S.; van der Breggen, R.; Lakenberg, N.; de Dijcker, W.J.; Suchiman, H.E.D.; Duijnisveld, B.J.; Houwing-Duistermaat, J.J.; et al. Transcriptional Associations of Osteoarthritis-Mediated Loss of Epigenetic Control in Articular Cartilage. Arthritis Rheumatol. 2015, 67, 2108–2116. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Fukui, N.; Yahata, M.; Katsuragawa, Y.; Tashiro, T.; Ikegawa, S.; Lee, M.M. Genome-wide DNA methylation profile implicates potential cartilage regeneration at the late stage of knee osteoarthritis. Osteoarthr. Cartil. 2016, 24, 835–843. [Google Scholar] [CrossRef]
- Reynard, L.N.; Bui, C.; Canty-Laird, E.G.; Young, D.A.; Loughlin, J. Expression of the osteoarthritis-associated gene GDF5 is modulated epigenetically by DNA methylation. Hum. Mol. Genet. 2011, 20, 3450–3460. [Google Scholar] [CrossRef]
- Kim, K.-I.; Park, Y.-S.; Im, G.-I. Changes in the epigenetic status of the SOX-9 promoter in human osteoarthritic cartilage. J. Bone Miner. Res. 2012, 28, 1050–1060. [Google Scholar] [CrossRef]
- McDonnell, E.; Orr, S.E.; Barter, M.J.; Rux, D.; Brumwell, A.; Wrobel, N.; Murphy, L.; Overman, L.M.; Sorial, A.K.; Young, D.A.; et al. The methylomic landscape of human articular cartilage development contains epigenetic signatures of osteoarthritis risk. Am. J. Hum. Genet. 2024, 111, 2756–2772. [Google Scholar] [CrossRef]
- Rice, S.; Cheung, K.; Reynard, L.; Loughlin, J. Discovery and analysis of methylation quantitative trait loci (mQTLs) mapping to novel osteoarthritis genetic risk signals. Osteoarthr. Cartil. 2019, 27, 1545–1556. [Google Scholar] [CrossRef]
- Zhao, S.; Zheng, J.; Yue, S.; Chen, X.; Dong, Y. Landscape of Histone Posttranslational Modifications in Osteoarthritis. J. Inflamm. Res. 2025, 18, 7893–7906. [Google Scholar] [CrossRef]
- Spicuglia, S.; Vanhille, L. Chromatin signatures of active enhancers. Nucleus 2012, 3, 126–131. [Google Scholar] [CrossRef]
- Kubo, N.; Ishii, H.; Xiong, X.; Bianco, S.; Meitinger, F.; Hu, R.; Hocker, J.D.; Conte, M.; Gorkin, D.; Yu, M.; et al. Promoter-proximal CTCF binding promotes distal enhancer-dependent gene activation. Nat. Struct. Mol. Biol. 2021, 28, 152–161. [Google Scholar] [CrossRef]
- Barral, A.; Déjardin, J. The chromatin signatures of enhancers and their dynamic regulation. Nucleus 2023, 14, 2160551. [Google Scholar] [CrossRef]
- Roadmap Epigenomics Consortium; Kundaje, A.; Meuleman, W.; Ernst, J.; Bilenky, M.; Yen, A.; Heravi-Moussavi, A.; Kheradpour, P.; Zhang, Z.; Wang, J.; et al. Integrative analysis of 111 reference human epigenomes. Nature 2015, 518, 317–330. [Google Scholar] [CrossRef]
- Rikkers, M.; Korpershoek, J.V.; Levato, R.; Malda, J.; Vonk, L.A. The clinical potential of articular cartilage-derived progenitor cells: A systematic review. npj Regen. Med. 2022, 7, 2. [Google Scholar] [CrossRef]
- Lafont, J.E.; Moustaghfir, S.; Durand, A.-L.; Mallein-Gerin, F. The epigenetic players and the chromatin marks involved in the articular cartilage during osteoarthritis. Front. Physiol. 2023, 14, 1070241. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chang, J.-C.; Hon, C.-C.; Fukui, N.; Tanaka, N.; Zhang, Z.; Lee, M.T.M.; Minoda, A. Chromatin accessibility landscape of articular knee cartilage reveals aberrant enhancer regulation in osteoarthritis. Sci. Rep. 2018, 8, 15499. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, Y.; Li, X.; Yuan, L.; Guo, X.; Lammi, M.J. ATAC-seq reveals the roles of chromatin accessibility in the chondrocytes of Kashin–Beck disease compared with primary osteoarthritis. Front. Genet. 2023, 14, 1169417. [Google Scholar] [CrossRef] [PubMed]
- Richard, D.; Liu, Z.; Cao, J.; Kiapour, A.M.; Willen, J.; Yarlagadda, S.; Jagoda, E.; Kolachalama, V.B.; Sieker, J.T.; Chang, G.H.; et al. Evolutionary Selection and Constraint on Human Knee Chondrocyte Regulation Impacts Osteoarthritis Risk. Cell 2020, 181, 362–381.e28. [Google Scholar] [CrossRef]
- To, K.; Fei, L.; Pett, J.P.; Roberts, K.; Blain, R.; Polański, K.; Li, T.; Yayon, N.; He, P.; Xu, C.; et al. A multi-omic atlas of human embryonic skeletal development. Nature 2024, 635, 657–667. [Google Scholar] [CrossRef]
- Klein-Wieringa, I.R.; de Lange-Brokaar, B.J.; Yusuf, E.; Andersen, S.N.; Kwekkeboom, J.C.; Kroon, H.M.; van Osch, G.J.; Zuurmond, A.-M.; Stojanovic-Susulic, V.; Nelissen, R.G.; et al. Inflammatory Cells in Patients with Endstage Knee Osteoarthritis: A Comparison between the Synovium and the Infrapatellar Fat Pad. J. Rheumatol. 2016, 43, 771–778. [Google Scholar] [CrossRef]
- Barter, M.J.; Cheung, K.; Falk, J.; Panagiotopoulos, A.C.; Cosimini, C.; O’bRien, S.; Teja-Putri, K.; Neill, G.; Deehan, D.J.; Young, D.A. Dynamic chromatin accessibility landscape changes following interleukin-1 stimulation. Epigenetics 2020, 16, 106–119. [Google Scholar] [CrossRef] [PubMed]
- Thulson, E.; Davis, E.S.; D’cOsta, S.; Coryell, P.R.; E Kramer, N.; Mohlke, K.L.; Loeser, R.F.; O Diekman, B.; Phanstiel, D.H. 3D chromatin structure in chondrocytes identifies putative osteoarthritis risk genes. Genetics 2022, 222, iyac141. [Google Scholar] [CrossRef] [PubMed]
- Bittner, N.; Shi, C.; Zhao, D.; Ding, J.; Southam, L.; Swift, D.; Kreitmaier, P.; Tutino, M.; Stergiou, O.; Cheung, J.T.S.; et al. Primary osteoarthritis chondrocyte map of chromatin conformation reveals novel candidate effector genes. Ann. Rheum. Dis. 2024, 83, 1048–1059. [Google Scholar] [CrossRef] [PubMed]
- Harboe, M.; Kjaer-Sorensen, K.; Füchtbauer, E.-M.; Fenton, R.A.; Thomsen, J.S.; Brüel, A.; Oxvig, C. The metalloproteinase PAPP-A is required for IGF-dependent chondrocyte differentiation and organization. Sci. Rep. 2024, 14, 20161. [Google Scholar] [CrossRef]
- Wilkinson, J.M.; Zeggini, E. The Genetic Epidemiology of Joint Shape and the Development of Osteoarthritis. Calcif. Tissue Int. 2020, 109, 257–276. [Google Scholar] [CrossRef]
- Richard, D.; Muthuirulan, P.; Young, M.; Yengo, L.; Vedantam, S.; Marouli, E.; Bartell, E.; Hirschhorn, J.; Capellini, T.D. Functional genomics of human skeletal development and the patterning of height heritability. Cell 2024, 188, 15–32.e24. [Google Scholar] [CrossRef]
- Rice, S.J.; Brumwell, A.; Falk, J.; Kehayova, Y.S.; Casement, J.; Parker, E.; Hofer, I.M.J.; Shepherd, C.; Loughlin, J. Genetic risk of osteoarthritis operates during human skeletogenesis. Hum. Mol. Genet. 2022, 32, 2124–2138. [Google Scholar] [CrossRef]
- Kania, K.; Colella, F.; Riemen, A.H.K.; Wang, H.; Howard, K.A.; Aigner, T.; Dell’aCcio, F.; Capellini, T.D.; Roelofs, A.J.; De Bari, C. Regulation of Gdf5 expression in joint remodelling, repair and osteoarthritis. Sci. Rep. 2020, 10, 157. [Google Scholar] [CrossRef]
- Biswas, S.; Rao, C.M. Epigenetic tools (The Writers, The Readers and The Erasers) and their implications in cancer therapy. Eur. J. Pharmacol. 2018, 837, 8–24. [Google Scholar] [CrossRef]
- Shen, J.; Wang, C.; Li, D.; Xu, T.; Myers, J.; Ashton, J.M.; Wang, T.; Zuscik, M.J.; McAlinden, A.; O’kEefe, R.J. DNA methyltransferase 3b regulates articular cartilage homeostasis by altering metabolism. J. Clin. Investig. 2017, 2, e93612. [Google Scholar] [CrossRef]
- Smeriglio, P.; Grandi, F.C.; Davala, S.; Masarapu, V.; Indelli, P.F.; Goodman, S.B.; Bhutani, N. Inhibition of TET1 prevents the development of osteoarthritis and reveals the 5hmC landscape that orchestrates pathogenesis. Sci. Transl. Med. 2020, 12, eaax2332. [Google Scholar] [CrossRef]
- Pandey, A.; Hoover, M.; Singla, M.; Bedi, Y.; Storaci, H.; Goodman, S.B.; Chan, C.; Bhutani, N. TET1 Regulates Skeletal Stem–Cell Mediated Cartilage Regeneration. Arthritis Rheumatol. 2023, 76, 216–230. [Google Scholar] [CrossRef]
- Monteagudo, S.; Cornelis, F.M.F.; Aznar-Lopez, C.; Yibmantasiri, P.; Guns, L.-A.; Carmeliet, P.; Cailotto, F.; Lories, R.J. DOT1L safeguards cartilage homeostasis and protects against osteoarthritis. Nat. Commun. 2017, 8, 15889. [Google Scholar] [CrossRef]
- Cornelis, F.; de Roover, A.; Storms, L.; Hens, A.; Lories, R.; Monteagudo, S. Increased susceptibility to develop spontaneous and post-traumatic osteoarthritis in Dot1l-deficient mice. Osteoarthr. Cartil. 2019, 27, 513–525. [Google Scholar] [CrossRef]
- De Roover, A.; Núñez, A.E.; Cornelis, F.M.; Cherifi, C.; Casas-Fraile, L.; Sermon, A.; Cailotto, F.; Lories, R.J.; Monteagudo, S. Hypoxia induces DOT1L in articular cartilage to protect against osteoarthritis. J. Clin. Investig. 2021, 6, e150451. [Google Scholar] [CrossRef]
- Assi, R.; Cherifi, C.; Cornelis, F.M.; Zhou, Q.; Storms, L.; Pazmino, S.; de Almeida, R.C.; Meulenbelt, I.; Lories, R.J.; Monteagudo, S. Inhibition of KDM7A/B histone demethylases restores H3K79 methylation and protects against osteoarthritis. Ann. Rheum. Dis. 2023, 82, 963–973. [Google Scholar] [CrossRef] [PubMed]
- Ohzono, H.; Hu, Y.; Nagira, K.; Kanaya, H.; Okubo, N.; Olmer, M.; Gotoh, M.; Kurakazu, I.; Akasaki, Y.; Kawata, M.; et al. Targeting FoxO transcription factors with HDAC inhibitors for the treatment of osteoarthritis. Ann. Rheum. Dis. 2022, 82, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ji, L.; Yang, Y.; Zhang, X.; Gang, Y.; Bai, L. The Role of HDACs and HDACi in Cartilage and Osteoarthritis. Front. Cell Dev. Biol. 2020, 8, 560117. [Google Scholar] [CrossRef]
- Karamouzis, M.V.; Gorgoulis, V.G.; Papavassiliou, A.G. Transcription factors and neoplasia: Vistas in novel drug design. Clin. Cancer Res. 2002, 8, 949–961. [Google Scholar] [PubMed]
- Chen, Y.; Luo, X.; Kang, R.; Cui, K.; Ou, J.; Zhang, X.; Liang, P. Current therapies for osteoarthritis and prospects of CRISPR-based genome, epigenome, and RNA editing in osteoarthritis treatment. J. Genet. Genom. 2023, 51, 159–183. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalliolias, G.D.; Basdra, E.K.; Papavassiliou, A.G. The Articular Chromatin Landscape in Osteoarthritis. Cells 2025, 14, 1600. https://doi.org/10.3390/cells14201600
Kalliolias GD, Basdra EK, Papavassiliou AG. The Articular Chromatin Landscape in Osteoarthritis. Cells. 2025; 14(20):1600. https://doi.org/10.3390/cells14201600
Chicago/Turabian StyleKalliolias, George D., Efthimia K. Basdra, and Athanasios G. Papavassiliou. 2025. "The Articular Chromatin Landscape in Osteoarthritis" Cells 14, no. 20: 1600. https://doi.org/10.3390/cells14201600
APA StyleKalliolias, G. D., Basdra, E. K., & Papavassiliou, A. G. (2025). The Articular Chromatin Landscape in Osteoarthritis. Cells, 14(20), 1600. https://doi.org/10.3390/cells14201600