Targeting Spinal Interneurons for Respiratory Recovery After Spinal Cord Injury
Abstract
:1. Introduction
2. Respiratory Dysfunction After Spinal Cord Injury
3. Neural Control of Breathing
3.1. Spinal Control of Respiratory Muscles
3.2. Supraspinal Modulation of Breathing
3.3. Premotor Bulbospinal Control of Spinal Respiratory Networks
4. Spinal Interneurons: Classification and Functional Importance
4.1. Ventral Spinal Interneurons in Motor Function
4.2. Spinal Interneurons in the Neural Control of Breathing
4.3. Excitatory V2a Interneurons in Respiratory Control
5. Spinal Interneurons in Respiratory Recovery After Spinal Cord Injury
5.1. Inhibitory Spinal Interneurons in Respiratory Regulation
5.2. Spinal Interneurons in Hypoxic Responses
6. Therapeutic Interventions After SCI: The Importance of Intervention Timing
7. Therapeutic Targeting of Spinal Interneurons After SCI
7.1. Electrical Stimulation of Spinal Interneurons
7.2. Chemogenetic and Optogenetic Stimulation
7.3. Transplantation of Spinal Interneurons
7.4. Neurorehabilitation
7.5. Respiratory Training with Hypercapnia and Intermittent Hypoxia
7.6. Pharmacological Modulation of Spinal Interneurons
7.7. Glial Cells and Spinal Interneurons
7.8. Gene Therapy Targetting Spinal Interneurons
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sezer, N.; Akkuş, S.; Uğurlu, F.G. Chronic complications of spinal cord injury. World J. Orthop. 2015, 6, 24. [Google Scholar] [CrossRef]
- Miller, A.D.; Ezure, K.; Suzuki, I. Control of abdominal muscles by brain stem respiratory neurons in the cat. J. Neurophysiol. 1985, 54, 155–167. [Google Scholar] [CrossRef] [PubMed]
- Douse, M.A.; Duffin, J.; Brooks, D.; Fedorko, L. Role of upper cervical inspiratory neurons studied by cross-correlation in the cat. Exp. Brain Res. 1992, 90, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Tian, G.F.; Duffin, J. Spinal connections of ventral-group bulbospinal inspiratory neurons studied with cross-correlation in the decerebrate rat. Exp. Brain Res. 1996, 111, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Saji, M.; Miura, M. Thoracic expiratory motor neurons of the rat: Localization and sites of origin of their premotor neurons. Brain Res. 1990, 507, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Dobbins, E.G.; Feldman, J.L. Brainstem network controlling descending drive to phrenic motoneurons in rat. J. Comp. Neurol. 1994, 347, 64–86. [Google Scholar] [CrossRef]
- Ellenberger, H.H.; Feldman, J.L. Monosynaptic transmission of respiratory drive to phrenic motoneurons from brainstem bulbospinal neurons in rats. J. Comp. Neurol. 1988, 269, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.C.; Ellenberger, H.H.; Ballanyi, K.; Richter, D.W.; Feldman, J.L. Pre-Bötzinger Complex: A Brainstem Region That May Generate Respiratory Rhythm in Mammals. Science 1991, 254, 726–729. [Google Scholar] [CrossRef]
- Spinal Cord Injury Facts and Figures at a Glance. J. Spinal Cord Med. 2011, 34, 620–621. [CrossRef]
- Zimmer, M.B.; Nantwi, K.; Goshgarian, H.G. Effect of Spinal Cord Injury on the Neural Regulation of Respiratory Function; Academic Press: Cambridge, MA, USA, 2008; Volume 209, pp. 399–406. [Google Scholar]
- Sandhu, M.S.; Dougherty, B.J.; Lane, M.A.; Bolser, D.C.; Kirkwood, P.A.; Reier, P.J.; Fuller, D.D. Respiratory recovery following high cervical hemisection. Respir. Physiol. Neurobiol. 2009, 169, 94–101. [Google Scholar] [CrossRef]
- Burke, R.E. Sir Charles Sherrington’s The integrative action of the nervous system: A centenary appreciation. Brain 2006, 130, 887–894. [Google Scholar] [CrossRef]
- Aoki, M.; Mori, S.; Kawahara, K.; Watanabe, H.; Ebata, N. Generation of spontaneous respiratory rhythm in high spinal cats. Brain Res. 1980, 202, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Oku, Y.; Okabe, A.; Hayakawa, T.; Okada, Y. Respiratory neuron group in the high cervical spinal cord discovered by optical imaging. Neuroreport 2008, 19, 1739–1743. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, L.; Guo, S.; Peng, R.; Gong, H.; Yang, M. Changes in respiratory structure and function after traumatic cervical spinal cord injury: Observations from spinal cord and brain. Front. Neurol. 2023, 14, 1251833. [Google Scholar] [CrossRef] [PubMed]
- Goshgarian, H.G. Invited review: The crossed phrenic phenomenon: A model for plasticity in the respiratory pathways following spinal cord injury. J. Appl. Physiol. 2003, 94, 795–810. [Google Scholar] [CrossRef]
- Lane, M.A.; White, T.E.; Coutts, M.A.; Jones, A.L.; Sandhu, M.S.; Bloom, D.C.; Bolser, D.C.; Yates, B.J.; Fuller, D.D.; Reier, P.J. Cervical Prephrenic Interneurons in the Normal and Lesioned Spinal Cord of the Adult Rat. J. Comp. Neurol. 2008, 511, 692–709. [Google Scholar] [CrossRef]
- Ghali, M.G.Z.; Marchenko, V. Patterns of phrenic nerve discharge after complete high cervical spinal cord injury in the decerebrate rat. J. Neurotrauma 2016, 33, 1115–1127. [Google Scholar] [CrossRef]
- Streeter, K.A.; Sunshine, D.; Patel, S.R.; Gonzalez-Rothi, E.J.; Reier, P.J.; Baekey, D.M.; Fuller, D.D. Mid-cervical interneuron networks following high cervical spinal cord injury. Respir. Physiol. Neurobiol. 2019, 271, 103305. [Google Scholar] [CrossRef]
- Streeter, K.A.; Sunshine, M.D.; Patel, S.; Gonzalez-Rothi, E.J.; Reier, P.J.; Baekey, D.M.; Fuller, D.D. Intermittent Hypoxia Enhances Functional Connectivity of Midcervical Spinal Interneurons. J. Neurosci. Off. J. Soc. Neurosci. 2017, 37, 8349–8362. [Google Scholar] [CrossRef]
- Ling, L.; Bach, K.B.; Mitchell, G.S. Phrenic responses to contralateral spinal stimulation in rats: Effects of old age or chronic spinal hemisection. Neurosci. Lett. 1995, 188, 25–28. [Google Scholar] [CrossRef]
- Bezdudnaya, T.; Hormigo, K.M.; Marchenko, V.; Lane, M.A. Spontaneous respiratory plasticity following unilateral high cervical spinal cord injury in behaving rats. Exp. Neurol. 2018, 305, 56–65. [Google Scholar] [CrossRef]
- Zholudeva, L.V.; Karliner, J.S.; Dougherty, K.J.; Lane, M.A. Anatomical Recruitment of Spinal V2a Interneurons into Phrenic Motor Circuitry After High Cervical Spinal Cord Injury. J. Neurotrauma 2017, 34, 3058–3065. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-Z.; Fuller, D.D. Neural control of phrenic motoneuron discharge. Respir. Physiol. Neurobiol. 2011, 179, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Berlly, M.; Shem, K. Respiratory Management During the First Five Days After Spinal Cord Injury. J. Spinal Cord Med. 2007, 30, 309–318. [Google Scholar] [CrossRef]
- Bach, J.R.; Burke, L.; Chiou, M. Conventional Respiratory Management of Spinal Cord Injury; W.B. Saunders: Philadelphia, PA, USA, 2020; Volume 31, pp. 379–395. [Google Scholar]
- Berlowitz, D.J.; Wadsworth, B.; Ross, J. Respiratory problems and management in people with spinal cord injury. Breathe 2016, 12, 328–340. [Google Scholar] [CrossRef]
- Randelman, M.; Zholudeva, L.V.; Vinit, S.; Lane, M.A. Respiratory Training and Plasticity After Cervical Spinal Cord Injury. Front. Cell. Neurosci. 2021, 15, 700821. [Google Scholar] [CrossRef]
- Alizadeh, A.; Dyck, S.M.; Karimi-Abdolrezaee, S. Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Front. Neurol. 2019, 10, 282. [Google Scholar] [CrossRef] [PubMed]
- Aliverti, A. The respiratory muscles during exercise. Breathe 2016, 12, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.; Chong, K.; Baydur, A. Methods and Applications in Respiratory Physiology: Respiratory Mechanics, Drive and Muscle Function in Neuromuscular and Chest Wall Disorders. Front. Physiol. 2022, 13, 838414. [Google Scholar] [CrossRef] [PubMed]
- Del Negro, C.A.; Funk, G.D.; Feldman, J.L. Breathing matters. Nat. Rev. Neurosci. 2018, 19, 351–367. [Google Scholar] [CrossRef]
- Jensen, V.N.; Seedle, K.; Turner, S.M.; Lorenz, J.N.; Crone, S.A. V2a neurons constrain extradiaphragmatic respiratory muscle activity at rest. eNeuro 2019, 6, ENEURO.0492-18.2019. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.C.; Abdala, A.P.L.; Rybak, I.A.; Paton, J.F.R. Structural and functional architecture of respiratory networks in the mammalian brainstem. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2577–2587. [Google Scholar] [CrossRef]
- Krohn, F.; Novello, M.; van der Giessen, R.S.; De Zeeuw, C.I.; Pel, J.J.M.; Bosman, L.W.J. The integrated brain network that controls respiration. eLife 2023, 12, e83654. [Google Scholar] [CrossRef]
- Cui, Y.; Kam, K.; Sherman, D.; Janczewski, W.A.; Zheng, Y.; Feldman, J.L. Defining preBötzinger Complex Rhythm- and Pattern-Generating Neural Microcircuits In Vivo. Neuron 2016, 91, 602–614. [Google Scholar] [CrossRef] [PubMed]
- Ashhad, S.; Feldman, J.L. Emergent Elements of Inspiratory Rhythmogenesis: Network Synchronization and Synchrony Propagation. Neuron 2020, 106, 482–497.e484. [Google Scholar] [CrossRef]
- Janczewski, W.A.; Tashima, A.; Hsu, P.; Cui, Y.; Feldman, J.L. Role of Inhibition in Respiratory Pattern Generation. J. Neurosci. 2013, 33, 5454–5465. [Google Scholar] [CrossRef] [PubMed]
- Sherman, D.; Worrell, J.W.; Cui, Y.; Feldman, J.L. Optogenetic perturbation of preBötzinger complex inhibitory neurons modulates respiratory pattern. Nat. Neurosci. 2015, 18, 408–414. [Google Scholar] [CrossRef]
- Hülsmann, S.; Hagos, L.; Eulenburg, V.; Hirrlinger, J. Inspiratory Off-Switch Mediated by Optogenetic Activation of Inhibitory Neurons in the preBötzinger Complex In Vivo. Int. J. Mol. Sci. 2021, 22, 2019. [Google Scholar] [CrossRef]
- Wittmeier, S.; Song, G.; Duffin, J.; Poon, C.-S. Pacemakers handshake synchronization mechanism of mammalian respiratory rhythmogenesis. Proc. Natl. Acad. Sci. USA 2008, 105, 18000–18005. [Google Scholar] [CrossRef]
- Bouvier, J.; Thoby-Brisson, M.; Renier, N.; Dubreuil, V.; Ericson, J.; Champagnat, J.; Pierani, A.; Chédotal, A.; Fortin, G. Hindbrain interneurons and axon guidance signaling critical for breathing. Nat. Neurosci. 2010, 13, 1066–1074. [Google Scholar] [CrossRef]
- Fortuna, M.G.; West, G.H.; Stornetta, R.L.; Guyenet, P.G. Bötzinger Expiratory-Augmenting Neurons and the Parafacial Respiratory Group. J. Neurosci. 2008, 28, 2506–2515. [Google Scholar] [CrossRef]
- Anderson, T.M.; Garcia, A.J.; Baertsch, N.A.; Pollak, J.; Bloom, J.C.; Wei, A.D.; Rai, K.G.; Ramirez, J.-M. A novel excitatory network for the control of breathing. Nature 2016, 536, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Garcia, A.J.; Zanella, S.; Koch, H.; Doi, A.; Ramirez, J.-M. Networks Within Networks; Elsevier: Amsterdam, The Netherlands, 2011; pp. 31–50. [Google Scholar] [CrossRef]
- Anderson, T.M.; Ramirez, J.-M. Respiratory rhythm generation: Triple oscillator hypothesis. F1000Research 2017, 6, 139. [Google Scholar] [CrossRef] [PubMed]
- Paterson, D.S.; Trachtenberg, F.L.; Thompson, E.G.; Belliveau, R.A.; Beggs, A.H.; Darnall, R.; Chadwick, A.E.; Krous, H.F.; Kinney, H.C. Multiple Serotonergic Brainstem Abnormalities in Sudden Infant Death Syndrome. JAMA 2006, 296, 2124. [Google Scholar] [CrossRef]
- Fukushi, I.; Yokota, S.; Okada, Y. The role of the hypothalamus in modulation of respiration. Respir. Physiol. Neurobiol. 2019, 265, 172–179. [Google Scholar] [CrossRef]
- Smith, H.R.; Leibold, N.K.; Rappoport, D.A.; Ginapp, C.M.; Purnell, B.S.; Bode, N.M.; Alberico, S.L.; Kim, Y.-C.; Audero, E.; Gross, C.T.; et al. Dorsal Raphe Serotonin Neurons Mediate CO2-Induced Arousal from Sleep. J. Neurosci. 2018, 38, 1915–1925. [Google Scholar] [CrossRef] [PubMed]
- Morinaga, R.; Nakamuta, N.; Yamamoto, Y. Serotonergic projections to the ventral respiratory column from raphe nuclei in rats. Neurosci. Res. 2019, 143, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, K.; Kawakami, K.; Onimaru, H.; Okada, Y.; Yokota, S.; Koshiya, N.; Oku, Y.; Iizuka, M.; Koizumi, H. The respiratory control mechanisms in the brainstem and spinal cord: Integrative views of the neuroanatomy and neurophysiology. J. Physiol. Sci. 2017, 67, 45–62. [Google Scholar] [CrossRef] [PubMed]
- Zholudeva, L.V.; Iyer, N.; Qiang, L.; Spruance, V.M.; Randelman, M.L.; White, N.W.; Bezdudnaya, T.; Fischer, I.; Sakiyama-Elbert, S.E.; Lane, M.A. Transplantation of Neural Progenitors and V2a Interneurons After Spinal Cord Injury. J. Neurotrauma 2018, 35, 2883–2903. [Google Scholar] [CrossRef]
- Lane, M.A.; Lee, K.Z.; Fuller, D.D.; Reier, P.J. Spinal circuitry and respiratory recovery following spinal cord injury. Respir. Physiol. Neurobiol. 2009, 169, 123–132. [Google Scholar] [CrossRef]
- Jensen, V.N.; Alilain, W.J.; Crone, S.A. Role of Propriospinal Neurons in Control of Respiratory Muscles and Recovery of Breathing Following Injury. Front. Syst. Neurosci. 2020, 13, 84. [Google Scholar] [CrossRef]
- Sunshine, M.D.; Sutor, T.W.; Fox, E.J.; Fuller, D.D. Targeted activation of spinal respiratory neural circuits. Exp. Neurol. 2020, 328, 113256. [Google Scholar] [CrossRef]
- Lanuza, G.M.; Gosgnach, S.; Pierani, A.; Jessell, T.M.; Goulding, M. Genetic Identification of Spinal Interneurons that Coordinate Left-Right Locomotor Activity Necessary for Walking Movements. Neuron 2004, 42, 375–386. [Google Scholar] [CrossRef]
- Stachowski, N.J.; Dougherty, K.J. Molecular Sciences Spinal Inhibitory Interneurons: Gatekeepers of Sensorimotor Pathways. Int. J. Mol. Sci. 2021, 22, 2667. [Google Scholar] [CrossRef]
- George, M.; Ghali, Z. Phrenic motoneurons: Output elements of a highly organized intraspinal network. J. Neurophysiol. 2018, 119, 1057–1070. [Google Scholar] [CrossRef]
- Koch, S.C.; Acton, D.; Goulding, M. Spinal Circuits for Touch, Pain, and Itch. Annu. Rev. Physiol. 2018, 80, 189–217. [Google Scholar] [CrossRef]
- Wilson, A.C.; Sweeney, L.B. Spinal cords: Symphonies of interneurons across species. Front. Neural Circuits 2023, 17, 1146449. [Google Scholar] [CrossRef]
- Gray De Cristoforis, A.; Ferrari, F.; Clotman, F.; Vogel, T. Differentiation and localization of interneurons in the developing spinal cord depends on DOT1L expression. Mol. Brain 2020, 13, 85. [Google Scholar] [CrossRef] [PubMed]
- Bikoff, J.B.; Gabitto, M.I.; Rivard, A.F.; Drobac, E.; Machado, T.A.; Miri, A.; Brenner-Morton, S.; Famojure, E.; Diaz, C.; Alvarez, F.J.; et al. Spinal Inhibitory Interneuron Diversity Delineates Variant Motor Microcircuits. Cell 2016, 165, 207–219. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, F.J.; Jonas, P.C.; Sapir, T.; Hartley, R.; Berrocal, M.C.; Geiman, E.J.; Todd, A.J.; Goulding, M. Postnatal phenotype and localization of spinal cord V1 derived interneurons. J. Comp. Neurol. 2005, 493, 177–192. [Google Scholar] [CrossRef]
- Borowska, J.; Jones, C.T.; Zhang, H.; Blacklaws, J.; Goulding, M.; Zhang, Y. Systems/Circuits Functional Subpopulations of V3 Interneurons in the Mature Mouse Spinal Cord. J. Neurosci. 2013, 47, 18553–18565. [Google Scholar] [CrossRef]
- Callahan, R.A.; Roberts, R.; Sengupta, M.; Kimura, Y.; Higashijima, S.-I.; Bagnall, M.W. Spinal V2b neurons reveal a role for ipsilateral inhibition in speed control. Elife 2019, 8, e47837. [Google Scholar] [CrossRef]
- Danner, S.M.; Zhang, H.; Shevtsova, N.A.; Borowska-Fielding, J.; Deska-Gauthier, D.; Rybak, I.A.; Zhang, Y. Spinal V3 Interneurons and Left-Right Coordination in Mammalian Locomotion. Front. Cell. Neurosci. 2019, 13, 516. [Google Scholar] [CrossRef]
- Gosgnach, S.; Lanuza, G.M.; B Butt, S.J.; Saueressig, H.; Zhang, Y.; Velasquez, T.; Riethmacher, D.; Callaway, E.M.; Kiehn, O.; Goulding, M. V1 spinal neurons regulate the speed of vertebrate locomotor outputs. Nature 2006, 440, 215–219. [Google Scholar] [CrossRef]
- Griener, A.; Zhang, W.; Kao, H.; Wagner, C.; Gosgnach, S. Probing Diversity within Subpopulations of Locomotor-Related V0 Interneurons. Dev. Neurobiol. 2015, 75, 1189–1203. [Google Scholar] [CrossRef]
- Sengupta, M.; Daliparthi, V.; Roussel, Y.; Bui, T.V.; Correspondence, M.W.B.; Bagnall, M.W. Spinal V1 neurons inhibit motor targets locally and sensory targets distally ll Spinal V1 neurons inhibit motor targets locally and sensory targets distally. Curr. Biol. 2021, 31, 3820–3833. [Google Scholar] [CrossRef] [PubMed]
- Zagoraiou, L.; Akay, T.; Martin, J.F.; Brownstone, R.M.; Jessell, T.M.; Miles, G.B. A Cluster of Cholinergic Premotor Interneurons Modulates Mouse Locomotor Activity. Neuron 2009, 64, 645–662. [Google Scholar] [CrossRef] [PubMed]
- Zelenin, P.V.; Vemula, M.G.; Lyalka, V.F.; Kiehn, O.; Talpalar, A.E.; Deliagina, T.G. Differential Contribution of V0 Interneurons to Execution of Rhythmic and Nonrhythmic Motor Behaviors. J. Neurosci. 2021, 41, 3432. [Google Scholar] [CrossRef]
- Nascimento, F.; Broadhead, M.J.; Tetringa, E.; Tsape, E.; Zagoraiou, L.; Miles, G.B. Synaptic mechanisms underlying modulation of locomotor-related motoneuron output by premotor cholinergic interneurons. eLife 2020, 9, e54170. [Google Scholar] [CrossRef]
- Kiehn, O. Development and functional organization of spinal locomotor circuits. Curr. Opin. Neurobiol. 2011, 21, 100–109. [Google Scholar] [CrossRef]
- Kathe, C.; Skinnider, M.A.; Hutson, T.H.; Regazzi, N.; Gautier, M.; Demesmaeker, R.; Komi, S.; Ceto, S.; James, N.D.; Cho, N.; et al. The neurons that restore walking after paralysis. Nature 2022, 611, 7936. [Google Scholar] [CrossRef]
- Zholudeva, L.V.; Abraira, V.E.; Satkunendrarajah, K.; McDevitt, T.C.; Goulding, M.D.; Magnuson, D.S.K.; Lane, M.A. Spinal Interneurons as Gatekeepers to Neuroplasticity after Injury or Disease. J. Neurosci. 2021, 41, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Lane, M.A.; Lee, K.-Z.; Salazar, K.; O’Steen, B.E.; Bloom, D.C.; Fuller, D.D.; Reier, P.J. Respiratory function following bilateral mid-cervical contusion injury in the adult rat. Exp. Neurol. 2011, 235, 197–210. [Google Scholar] [CrossRef]
- Sandhu, M.S.; Baekey, D.M.; Maling, N.G.; Sanchez, J.C.; Reier, P.J.; Fuller, D.D. Midcervical neuronal discharge patterns during and following hypoxia. J. Neurophysiol. 2015, 113, 2091–2101. [Google Scholar] [CrossRef]
- Jensen, V.N.; Romer, S.H.; Turner, S.M.; Crone, S.A. Repeated measurement of respiratory muscle activity and ventilation in mouse models of neuromuscular disease. J. Vis. Exp. 2017, 2017, 55599. [Google Scholar] [CrossRef]
- Satkunendrarajah, K.; Karadimas, S.K.; Laliberte, A.M.; Montandon, G.; Fehlings, M.G. Cervical excitatory neurons sustain breathing after spinal cord injury. Nature 2018, 562, 419–422. [Google Scholar] [CrossRef]
- Cregg, J.M.; Chu, K.A.; Hager, L.E.; Maggard, R.S.J.; Stoltz, D.R.; Edmond, M.; Alilain, W.J.; Philippidou, P.; Landmesser, L.T.; Silver, J. A Latent Propriospinal Network Can Restore Diaphragm Function After High Cervical Spinal Cord Injury. Cell Rep. 2017, 21, 654–665. [Google Scholar] [CrossRef]
- Gutierrez, D.V.; Clark, M.; Nwanna, O.; Alilain, W.J. Intermittent hypoxia training after C2 hemisection modifies the expression of PTEN and mTOR. Exp. Neurol. 2013, 248, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Kirkwood, P.A.; Munson, J.B.; Sears, T.A.; Westgaard, R.H. Respiratory interneurones in the thoracic spinal cord of the cat. J. Physiol. 1988, 395, 161–192. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Li, Y.; Lucas-Osma, A.M.; Hari, K.; Stephens, M.J.; Singla, R.; Heckman, C.J.; Zhang, Y.; Fouad, K.; Fenrich, K.K.; et al. Locomotor-related V3 interneurons initiate and coordinate muscles spasms after spinal cord injury. J. Neurophysiol. 2019, 121, 1352–1367. [Google Scholar] [CrossRef] [PubMed]
- Zhong, G.; Sharma, K.; Harris-Warrick, R.M. Frequency-dependent recruitment of V2a interneurons during fictive locomotion in the mouse spinal cord. Nat. Commun. 2011, 2, 274. [Google Scholar] [CrossRef]
- Bellingham, M.; Lipski, J. Respiratory interneurons in the C5 segment of the spinal cord of the cat. Brain Res. 1990, 533, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Duffin, J.; Douse, M.A. Axonal Projections and Synaptic Connections of C5 Segment Expiratory Interneurons in the Cat. J. Physiol. 1993, 470, 431–444. [Google Scholar]
- Lipski, J.; Duffin, J. An electrophysiological investigation of propriospinal inspiratory neurons in the upper cervical cord of the cat. Exp. Brain Res. 1986, 61, 625–637. [Google Scholar] [CrossRef]
- Warren, P.M.; Awad, B.I.; Alilain, W.J. Drawing breath without the command of effectors: The control of respiration following spinal cord injury. Respir. Physiol. Neurobiol. 2014, 203, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Crone, S.A.; Viemari, J.-C.; Droho, S.; Mrejeru, A.; Ramirez, J.-M.; Sharma, K. Irregular Breathing in Mice Following Genetic Ablation of V2a Neurons. J. Neurosci. 2012, 32, 7895–7906. [Google Scholar] [CrossRef] [PubMed]
- Salamatina, A.; Yang, J.H.; Brenner-Morton, S.; Bikoff, J.B.; Fang, L.; Kintner, C.R.; Jessell, T.M.; Sweeney, L.B. Differential Loss of Spinal Interneurons in a Mouse Model of ALS. Neuroscience 2020, 450, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Jensen, V.N.; Huffman, E.E.; Jalufka, F.L.; Pritchard, A.L.; Baumgartner, S.; Walling, I.; Gibbs, H.C.; McCreedy, D.A.; Alilain, W.J.; Crone, S.A. V2a neurons restore diaphragm function in mice following spinal cord injury. Proc. Natl. Acad. Sci. USA 2024, 121, e2313594121. [Google Scholar] [CrossRef]
- Bareyre, F.M.; Kerschensteiner, M.; Raineteau, O.; Mettenleiter, T.C.; Weinmann, O.; Schwab, M.E.; Bareyre, F.M.; Kerschensteiner, M.; Raineteau, O.; Mettenleiter, T.C.; et al. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat. Neurosci. 2004, 7, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Courtine, G.; Gerasimenko, Y.; Van Den Brand, R.; Yew, A.; Musienko, P.; Zhong, H.; Song, B.; Ao, Y.; Ichiyama, R.M.; Lavrov, I.; et al. Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat. Neurosci. 2009, 12, 1333–1342. [Google Scholar] [CrossRef]
- Bui, T.V.; Akay, T.; Loubani, O.; Hnasko, T.S.; Jessell, T.M.; Brownstone, R.M. Circuits for Grasping: Spinal dI3 Interneurons Mediate Cutaneous Control of Motor Behavior. Neuron 2013, 78, 191–204. [Google Scholar] [CrossRef]
- Bui, T.V.; Stifani, N.; Akay, T.; Brownstone, R.M. Spinal microcircuits comprising dI3 interneurons are necessary for motor functional recovery following spinal cord transection. eLife 2016, 5, e21715. [Google Scholar] [CrossRef]
- Zimmer, M.B.; Goshgarian, H.G. GABA, not glycine, mediates inhibition of latent respiratory motor pathways after spinal cord injury. Exp. Neurol. 2007, 203, 493–501. [Google Scholar] [CrossRef]
- Barioni, N.O.; Derakhshan, F.; Lopes, L.T.; Onimaru, H.; Roy, A.; McDonald, F.; Scheibli, E.; Baghdadwala, M.I.; Heidari, N.; Bharadia, M.; et al. Novel oxygen sensing mechanism in the spinal cord involved in cardiorespiratory responses to hypoxia. Sci. Adv. 2022, 8, 1444. [Google Scholar] [CrossRef] [PubMed]
- Quddusi, A.; Pedro, K.M.; Alvi, M.A.; Hejrati, N.; Fehlings, M.G. Early surgical intervention for acute spinal cord injury: Time is spine. Acta Neurochir. 2023, 165, 2665–2674. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Xu, W.; Ren, Y.; Wang, Z.; He, X.; Huang, R.; Ma, B.; Zhao, J.; Zhu, R.; Cheng, L. Spinal cord injury: Molecular mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 2023, 8, 245. [Google Scholar] [CrossRef] [PubMed]
- Fehlings, M.G.; Vaccaro, A.; Wilson, J.R.; Singh, A.; WCadotte, D.; Harrop, J.S.; Aarabi, B.; Shaffrey, C.; Dvorak, M.; Fisher, C.; et al. Early versus delayed decompression for traumatic cervical spinal cord injury: Results of the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS). PLoS ONE 2012, 7, e32037. [Google Scholar] [CrossRef]
- Warren, P.M.; Steiger, S.C.; Dick, T.E.; Macfarlane, P.M.; Alilain, W.J.; Silver, J. Rapid and robust restoration of breathing long after spinal cord injury. Nat. Commun. 2018, 9, 4843. [Google Scholar] [CrossRef] [PubMed]
- Alilain, W.J.; Horn, K.P.; Hu, H.; Dick, T.E.; Silver, J. Functional regeneration of respiratory pathways after spinal cord injury. Nature 2011, 475, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Rosenblueth, A.; Ortiz, T. The Crossed Respiratory Impulses to the Phrenic. Am. J. Physiol. -Leg. Content 1936, 117, 495–513. [Google Scholar] [CrossRef]
- Goshgarian, H.G.; Guth, L. Demonstration of functionally ineffective synapses in the guinea pig spinal cord. Exp. Neurol. 1977, 57, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Goshgarian, H.G. Postnatal conversion of cross phrenic activity from an active to latent state. Exp. Neurol. 2009, 219, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Goshgarian, H.G. Developmental plasticity in the respiratory pathway of the adult rat. Exp. Neurol. 1979, 66, 547–555. [Google Scholar] [CrossRef]
- Nantwi, K.D.; el-Bohy, A.A.; Schrimsher, G.W.; Reier, P.J.; Goshgarian, H.G. Spontaneous Functional Recovery in a Paralyzed Hemidiaphragm Following Upper Cervical Spinal Cord Injury in Adult Rats. Neurorehabilit. Neural Repair 1999, 13, 225–234. [Google Scholar] [CrossRef]
- Inanici, F.; Brighton, L.N.; Samejima, S.; Hofstetter, C.P.; Moritz, C.T. Transcutaneous Spinal Cord Stimulation Restores Hand and Arm Function After Spinal Cord Injury. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 310–319. [Google Scholar] [CrossRef]
- Rowald, A.; Komi, S.; Demesmaeker, R.; Baaklini, E.; Hernandez-Charpak, S.D.; Paoles, E.; Montanaro, H.; Cassara, A.; Becce, F.; Lloyd, B.; et al. Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis. Nat. Med. 2022, 28, 260–271. [Google Scholar] [CrossRef]
- DiMarco, A.F.; Takaoka, Y.; Kowalski, K.E. Combined intercostal and diaphragm pacing to provide artificial ventilation in patients with tetraplegia. Arch. Phys. Med. Rehabil. 2005, 86, 1200–1207. [Google Scholar] [CrossRef]
- DiMarco, A.F.; Kowalski, K.E. High-frequency spinal cord stimulation of inspiratory muscles in dogs: A new method of inspiratory muscle pacing. J. Appl. Physiol. 2009, 107, 662–669. [Google Scholar] [CrossRef] [PubMed]
- DiMarco, A.F.; Kowalski, K.E. Activation of inspiratory muscles via spinal cord stimulation. Respir. Physiol. Neurobiol. 2013, 189, 438–449. [Google Scholar] [CrossRef]
- Sunshine, M.D.; Ganji, C.N.; Reier, P.J.; Fuller, D.D.; Moritz, C.T. Intraspinal microstimulation for respiratory muscle activation. Exp. Neurol. 2018, 302, 93–103. [Google Scholar] [CrossRef]
- Razook, J.C.; Chandler, M.J.; Foreman, R.D. Phrenic afferent input excites C1-C2 spinal neurons in rats. Pain 1995, 63, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Malakhova, O.E.; Davenport, P.W. c-Fos expression in the central nervous system elicited by phrenic nerve stimulation. J. Appl. Physiol. 2001, 90, 1291–1298. [Google Scholar] [CrossRef] [PubMed]
- Mickle, A.R.; Peñaloza-Aponte, J.D.; Coffey, R.; Hall, N.A.; Baekey, D.; Dale, E.A. Closed-loop cervical epidural stimulation partially restores ipsilesional diaphragm EMG after acute C2 hemisection. Respir. Physiol. Neurobiol. 2024, 320, 104182. [Google Scholar] [CrossRef] [PubMed]
- Formento, E.; Minassian, K.; Wagner, F.; Mignardot, J.B.; Le Goff-Mignardot, C.G.; Rowald, A.; Bloch, J.; Micera, S.; Capogrosso, M.; Courtine, G. Electrical spinal cord stimulation must preserve proprioception to enable locomotion in humans with spinal cord injury. Nat. Neurosci. 2018, 21, 1728–1741. [Google Scholar] [CrossRef] [PubMed]
- Wagner, F.B.; Mignardot, J.B.; Le Goff-Mignardot, C.G.; Demesmaeker, R.; Komi, S.; Capogrosso, M.; Rowald, A.; Seáñez, I.; Caban, M.; Pirondini, E.; et al. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature 2018, 563, 65–93. [Google Scholar] [CrossRef] [PubMed]
- Malone, I.G.; Kelly, M.N.; Nosacka, R.L.; Nash, M.A.; Yue, S.; Xue, W.; Otto, K.J.; Dale, E.A. Closed-Loop, Cervical, Epidural Stimulation Elicits Respiratory Neuroplasticity after Spinal Cord Injury in Freely Behaving Rats. eNeuro 2022, 9, ENEURO.0426-0421. [Google Scholar] [CrossRef]
- Onders, R.; Jo Elmo, M.; Ignagni, A. Diaphragm Pacing Stimulation System for Tetraplegia in Individuals Injured During Childhood or Adolescence. J. Spinal Cord Med. 2007, 30, S25–S29. [Google Scholar] [CrossRef] [PubMed]
- Armbruster, B.N.; Li, X.; Pausch, M.H.; Herlitze, S.; Roth, B.L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl. Acad. Sci. USA 2007, 104, 5163–5168. [Google Scholar] [CrossRef]
- Aldrin-Kirk, P.; Björklund, T. Practical Considerations for the Use of DREADD and Other Chemogenetic Receptors to Regulate Neuronal Activity in the Mammalian Brain; Springer: New York, NY, USA, 2019; pp. 59–87. [Google Scholar] [CrossRef]
- Chen, X.; Choo, H.; Huang, X.P.; Yang, X.; Stone, O.; Roth, B.L.; Jin, J. The first structure-activity relationship studies for designer receptors exclusively activated by designer drugs. ACS Chem. Neurosci. 2015, 6, 476–484. [Google Scholar] [CrossRef]
- Martinez, V.K.; Saldana-Morales, F.; Sun, J.J.; Zhu, P.J.; Costa-Mattioli, M.; Ray, R.S. Off-target effects of clozapine-N-oxide on the chemosensory reflex are masked by high stress levels. Front. Physiol. 2019, 10, 521. [Google Scholar] [CrossRef]
- Romer, S.H.; Seedle, K.; Turner, S.M.; Li, J.; Baccei, M.L.; Crone, S.A. Accessory respiratory muscles enhance ventilation in ALS model mice and are activated by excitatory V2a neurons. Exp. Neurol. 2017, 287, 192–204. [Google Scholar] [CrossRef] [PubMed]
- Alilain, W.J.; Li, X.; Horn, K.P.; Dhingra, R.; Dick, T.E.; Herlitze, S.; Silver, J. Light-induced rescue of breathing after spinal cord injury. J. Neurosci. 2008, 28, 11862–11870. [Google Scholar] [CrossRef]
- De Silva, S.R.; Moore, A.T. Optogenetic approaches to therapy for inherited retinal degenerations. J. Physiol. 2022, 600, 4623–4632. [Google Scholar] [CrossRef]
- Claes, M.; De Groef, L.; Moons, L. The DREADDful Hurdles and Opportunities of the Chronic Chemogenetic Toolbox. Cells 2022, 11, 1110. [Google Scholar] [CrossRef] [PubMed]
- White, T.E.; Lane, M.A.; Sandhu, M.S.; O’Steen, B.E.; Fuller, D.D.; Reier, P.J. Neuronal progenitor transplantation and respiratory outcomes following upper cervical spinal cord injury in adult rats. Exp. Neurol. 2010, 225, 231–236. [Google Scholar] [CrossRef]
- Butts, J.C.; McCreedy, D.A.; Martinez-Vargas, J.A.; Mendoza-Camacho, F.N.; Hookway, T.A.; Gifford, C.A.; Taneja, P.; Noble-Haeusslein, L.; McDevitt, T.C. Differentiation of V2a interneurons from human pluripotent stem cells. Proc. Natl. Acad. Sci. USA 2017, 114, 4969–4974. [Google Scholar] [CrossRef]
- Brown, C.R.; Butts, J.C.; McCreedy, D.A.; Sakiyama-Elbert, S.E. Generation of V2a Interneurons from Mouse Embryonic Stem Cells. Stem Cells Dev. 2014, 23, 1765–1776. [Google Scholar] [CrossRef]
- Lee, K.-Z.; Lane, M.A.; Dougherty, B.J.; Mercier, L.M.; Sandhu, M.S.; Sanchez, J.C.; Reier, P.J.; Fuller, D.D. Intraspinal transplantation and modulation of donor neuron electrophysiological activity. Exp. Neurol. 2014, 251, 47–57. [Google Scholar] [CrossRef]
- Spruance, V.M.; Zholudeva, L.V.; Hormigo, K.M.; Randelman, M.L.; Bezdudnaya, T.; Marchenko, V.; Lane, M.A. Integration of Transplanted Neural Precursors with the Injured Cervical Spinal Cord. J. Neurotrauma 2018, 35, 1781–1799. [Google Scholar] [CrossRef] [PubMed]
- Jankowska, E. Spinal interneuronal systems: Identification, multifunctional character and reconfigurations in mammals. J. Physiol. 2001, 533, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Bramble, D.M.; Carrier, D.R. Running and breathing in mammals. Science 1983, 219, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Flynn, J.R.; Graham, B.A.; Galea, M.P.; Callister, R.J. The role of propriospinal interneurons in recovery from spinal cord injury. Neuropharmacology 2011, 60, 809–822. [Google Scholar] [CrossRef]
- Le Gal, J.P.; Juvin, L.; Cardoit, L.; Thoby-Brisson, M.; Morin, D. Remote control of respiratory neural network by spinal locomotor generators. PLoS ONE 2014, 9, e89670. [Google Scholar] [CrossRef]
- Fuller, D.D.; Rana, S.; Smuder, A.J.; Dale, E.A. The Phrenic Neuromuscular System; Elsevier: Amsterdam, The Netherlands, 2022; pp. 393–408. [Google Scholar] [CrossRef]
- Le Gal, J.P.; Juvin, L.; Cardoit, L.; Morin, D. Bimodal respiratory-locomotor neurons in the neonatal rat spinal cord. J. Neurosci. 2016, 36, 926–937. [Google Scholar] [CrossRef]
- Sutor, T.W.; Fuller, D.D.; Fox, E.J. Locomotor-respiratory coupling in ambulatory adults with incomplete spinal cord injury. Spinal Cord Ser. Cases 2022, 8, 49. [Google Scholar] [CrossRef] [PubMed]
- Gee, C.M.; Williams, A.M.; Sheel, A.W.; Eves, N.D.; West, C.R. Respiratory muscle training in athletes with cervical spinal cord injury: Effects on cardiopulmonary function and exercise capacity. J. Physiol. 2019, 597, 3673–3685. [Google Scholar] [CrossRef] [PubMed]
- Van Houtte, S.; Vanlandewijck, Y.; Gosselink, R. Respiratory muscle training in persons with spinal cord injury: A systematic review. Respir. Med. 2006, 100, 1886–1895. [Google Scholar] [CrossRef]
- Foll-De Moro, D.L.; Tordi, N.; Lonsdorfer, E.; Lonsdorfer, J. Ventilation Efficiency and Pulmonary Function After a Wheelchair Interval-Training Program in Subjects With Recent Spinal Cord Injury. Arch. Phys. Med. Rehabil. 2005, 86, 1582–1586. [Google Scholar] [CrossRef]
- Terson De Paleville, D.; McKay, W.; Aslan, S.; Folz, R.; Sayenko, D.; Ovechkin, A. Locomotor step training with body weight support improves respiratory motor function in individuals with chronic spinal cord injury. Respir. Physiol. Neurobiol. 2013, 189, 491–497. [Google Scholar] [CrossRef]
- Van Der Heijden, M.E.; Zoghbi, H.Y. Development of the brainstem respiratory circuit. WIREs Dev. Biol. 2020, 9, e366. [Google Scholar] [CrossRef] [PubMed]
- Boychuk, C.R.; Woerman, A.L.; Mendelowitz, D. Modulation of Bulbospinal Rostral Ventral Lateral Medulla Neurons by Hypoxia/Hypercapnia but Not Medullary Respiratory Activity. Hypertension 2012, 60, 1491–1497. [Google Scholar] [CrossRef] [PubMed]
- Baker-Herman, T.L.; Fuller, D.D.; Bavis, R.W.; Zabka, A.G.; Golder, F.J.; Doperalski, N.J.; Johnson, R.A.; Watters, J.J.; Mitchell, G.S. BDNF is necessary and sufficient for spinal respiratory plasticity following intermittent hypoxia. Nat. Neurosci. 2004, 7, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Rothi, E.J.; Lee, K.Z.; Dale, E.A.; Reier, P.J.; Mitchell, G.S.; Fuller, D.D. Intermittent hypoxia and neurorehabilitation. J. Appl. Physiol. 2015, 119, 1455–1465. [Google Scholar] [CrossRef]
- Hassan, A.; Arnold, B.M.; Caine, S.; Toosi, B.M.; Verge, V.M.K.; Muir, G.D. Acute intermittent hypoxia and rehabilitative training following cervical spinal injury alters neuronal hypoxia- and plasticity-associated protein expression. PLoS ONE 2018, 13, e0197486. [Google Scholar] [CrossRef] [PubMed]
- Ciesla, M.C.; Seven, Y.B.; Allen, L.L.; Smith, K.N.; Asa, Z.A.; Simon, A.K.; Holland, A.E.; Santiago, J.V.; Stefan, K.; Ross, A.; et al. Serotonergic innervation of respiratory motor nuclei after cervical spinal injury: Impact of intermittent hypoxia. Exp. Neurol. 2021, 338, 113609. [Google Scholar] [CrossRef] [PubMed]
- Vose, A.K.; Welch, J.F.; Nair, J.; Dale, E.A.; Fox, E.J.; Muir, G.D.; Trumbower, R.D.; Mitchell, G.S. Therapeutic acute intermittent hypoxia: A translational roadmap for spinal cord injury and neuromuscular disease. Exp. Neurol. 2022, 347, 113891. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, L.; Urbin, M.; Mitchell, G.S.; Perez, M.A. Acute intermittent hypoxia enhances corticospinal synaptic plasticity in humans. eLife 2018, 7, e34304. [Google Scholar] [CrossRef]
- Welch, J.F.; Perim, R.R.; Argento, P.J.; Sutor, T.W.; Vose, A.K.; Nair, J.; Mitchell, G.S.; Fox, E.J. Effect of acute intermittent hypoxia on cortico-diaphragmatic conduction in healthy humans. Exp. Neurol. 2021, 339, 113651. [Google Scholar] [CrossRef] [PubMed]
- Kinkead, R.; Bach, K.B.; Johnson, S.M.; Hodgeman, B.A.; Mitchell, G.S. Plasticity in respiratory motor control: Intermittent hypoxia and hypercapnia activate opposing serotonergic and noradrenergic modulatory systems. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2001, 130, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Welch, J.F.; Nair, J.; Argento, P.J.; Mitchell, G.S.; Fox, E.J. Acute intermittent hypercapnic-hypoxia elicits central neural respiratory motor plasticity in humans. J. Physiol. 2022, 600, 2515–2533. [Google Scholar] [CrossRef]
- Welch, J.F.; Vose, A.K.; Cavka, K.; Brunetti, G.; DeMark, L.A.; Snyder, H.; Wauneka, C.N.; Tonuzi, G.; Nair, J.; Mitchell, G.S.; et al. Cardiorespiratory Responses to Acute Intermittent Hypoxia in Humans with Chronic Spinal Cord Injury. J. Neurotrauma 2024, 41, 2114–2124. [Google Scholar] [CrossRef] [PubMed]
- Sutor, T.; Cavka, K.; Vose, A.K.; Welch, J.F.; Davenport, P.; Fuller, D.D.; Mitchell, G.S.; Fox, E.J. Single-session effects of acute intermittent hypoxia on breathing function after human spinal cord injury. Exp. Neurol. 2021, 342, 113735. [Google Scholar] [CrossRef] [PubMed]
- Viala, D.; Vidal, C.; Freton, E. Coordinated rhythmic bursting in respiratory and locomotor muscle nerves in the spinal rabbit. Neurosci. Lett. 1979, 11, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Viala, D.; Freton, E. Evidence for respiratory and locomotor pattern generators in the rabbit cervico-thoracic cord and for their interactions. Exp. Brain Res. 1983, 49, 247–256. [Google Scholar] [CrossRef]
- Perségo, L.; Viala, D. Characteristics of slow bursting activities recorded in cervical ventral roots in the in vitro brainstem-spinal cord preparation of the neonatal rat. Somatosens. Mot. Res. 1994, 11, 57–64. [Google Scholar] [CrossRef]
- Ling, L.; Bach, K.B.; Mitchell, G.S. Serotonin reveals ineffective spinal pathways to contralateral phrenic motoneurons in spinally hemisected rats. Exp. Brain Res. 1994, 101, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Qin, C.; Foreman, R.D.; Farber, J.P. Chemical activation of C1-C2 spinal neurons modulates intercostal and phrenic nerve activity in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004, 286, R1069–R1076. [Google Scholar] [CrossRef]
- Gwak, Y.S.; Hulsebosch, C.E.; Leem, J.W. Neuronal-Glial Interactions Maintain Chronic Neuropathic Pain after Spinal Cord Injury. Neural Plast. 2017, 2017, 2480689. [Google Scholar] [CrossRef]
- Brown, E.V.; Malik, A.F.; Moese, E.R.; McElroy, A.F.; Lepore, A.C. Differential Activation of Pain Circuitry Neuron Populations in a Mouse Model of Spinal Cord Injury-Induced Neuropathic Pain. J. Neurosci. 2022, 42, 3271–3289. [Google Scholar] [CrossRef]
- Falnikar, A.; Hala, T.J.; Poulsen, D.J.; Lepore, A.C. GLT1 overexpression reverses established neuropathic pain-related behavior and attenuates chronic dorsal horn neuron activation following cervical spinal cord injury. Glia 2016, 64, 396–406. [Google Scholar] [CrossRef]
- Fenrich, K.K.; Rose, P.K. Spinal Interneuron Axons Spontaneously Regenerate after Spinal Cord Injury in the Adult Feline. J. Neurosci. 2009, 29, 12145–12158. [Google Scholar] [CrossRef] [PubMed]
- Tran, A.P.; Warren, P.M.; Silver, J. New insights into glial scar formation after spinal cord injury. Cell Tissue Res. 2022, 387, 319–336. [Google Scholar] [CrossRef]
- Welniarz, Q.; Dusart, I.; Roze, E. The corticospinal tract: Evolution, development, and human disorders. Dev. Neurobiol. 2017, 77, 810–829. [Google Scholar] [CrossRef]
- Kastner, A.; Matarazzo, V. Neuroprotective and Neurorestorative Processes after Spinal Cord Injury: The Case of the Bulbospinal Respiratory Neurons. Neural Plast. 2016, 2016, 7692602. [Google Scholar] [CrossRef]
- Richardson, P.M.; Issa, V.M.K.; Aguayo, A.J. Regeneration of long spinal axons in the rat. J. Neurocytol. 1984, 13, 165–182. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.M.; Zhang, S.X.; Li, H.; Aebischer, P.; Bunge, M.B. Regrowth of axons into the distal spinal cord through a Schwann-cell-seeded mini-channel implanted into hemisected adult rat spinal cord. Eur. J. Neurosci. 1999, 11, 1723–1740. [Google Scholar] [CrossRef]
- Urban, M.W.; Ghosh, B.; Block, C.G.; Strojny, L.R.; Charsar, B.A.; Goulão, M.; Komaravolu, S.S.; Smith, G.M.; Wright, M.C.; Li, S.; et al. Long-Distance Axon Regeneration Promotes Recovery of Diaphragmatic Respiratory Function after Spinal Cord Injury. eNeuro 2019, 6, ENEURO.0096-19.2019. [Google Scholar] [CrossRef] [PubMed]
- Aljović, A.; Jacobi, A.; Marcantoni, M.; Kagerer, F.; Loy, K.; Kendirli, A.; Bräutigam, J.; Fabbio, L.; Van Steenbergen, V.; Pleśniar, K.; et al. Synaptogenic gene therapy with FGF22 improves circuit plasticity and functional recovery following spinal cord injury. EMBO Mol. Med. 2023, 15, e16111. [Google Scholar] [CrossRef]
- Patel, M.; Li, Y.; Anderson, J.; Castro-Pedrido, S.; Skinner, R.; Lei, S.; Finkel, Z.; Rodriguez, B.; Esteban, F.; Lee, K.-B.; et al. Gsx1 promotes locomotor functional recovery after spinal cord injury. Mol. Ther. 2021, 29, 2469–2482. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Gálvez, G.; Zambrano, J.M.; Diaz Soto, J.C.; Zhan, W.-Z.; Gransee, H.M.; Sieck, G.C.; Mantilla, C.B. TrkB gene therapy by adeno-associated virus enhances recovery after cervical spinal cord injury. Exp. Neurol. 2016, 276, 31–40. [Google Scholar] [CrossRef]
- Gransee, H.M.; Zhan, W.-Z.; Sieck, G.C.; Mantilla, C.B. Targeted Delivery of TrkB Receptor to Phrenic Motoneurons Enhances Functional Recovery of Rhythmic Phrenic Activity after Cervical Spinal Hemisection. PLoS ONE 2013, 8, e64755. [Google Scholar] [CrossRef]
- Qiu, K.; Falk, D.J.; Reier, P.J.; Byrne, B.J.; Fuller, D.D. Spinal Delivery of AAV Vector Restores Enzyme Activity and Increases Ventilation in Pompe Mice. Mol. Ther. 2012, 20, 21–27. [Google Scholar] [CrossRef]
- Mantilla, C.B. Gene therapy and respiratory neuroplasticity. Exp. Neurol. 2017, 287, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.-W.; Zhang, C.-L. Neuronal regeneration after injury: A new perspective on gene therapy. Front. Neurosci. 2023, 17, 1181816. [Google Scholar] [CrossRef] [PubMed]
Nucleus | Function |
---|---|
Pre-Bötc | Inspiratory rhythm generation |
Bötc | Transition between inspiration and expiration |
PiCo | Post-inspiration |
KF | Switch from inspiration to expiration |
pFRG | Active expiration |
rVRG & cVRG | Transmission of inspiratory and expiratory rhythms to PMNs |
Raphe | CO2 chemosensation |
LC | Hypercapnia sensation and response |
NTS | Input acquisition from pulmonary and cardiac baro-, chemo-, and stretch receptors, as well as carotid body receptors |
Hypothalamus | Physiologic modulation of respiration |
Dorsal Spinal Interneurons | |||||
---|---|---|---|---|---|
General Class | Class | Subtypes | Neurotransmitter | Transcription Factor | Implicated Function(s) |
Class A Derive in a BMP and Wnt signaling dependent manner | dI1 | X | Glutamate | Lhx2 | Proprioception |
dI2 | X | Glutamate | Foxd3 | Proprioception, Gait | |
dI3 | X | Glutamate | Isl1 | Grip, mechanosensation | |
Class B Derive in a BMP independent manner | dI4 | X | GABA/Glycine | Pax2, Lbx1 | Pain, itch |
dILA | Nociceptin, Enkephalin, DYN, NPY, Galanin | GABA/Glycine | Pax2, Lhx1/5, Ptf1α+ | Gate sensory transmission | |
dI5 | X | Glutamate | Lmx1b, Lbx1, | Pain, itch, heat, light touch | |
dILB | PACAP, GRP, SOM, NPFF, CCK, TAC1, Neurotensin, Calcitonin | Glutamate | Lmx1b, Tlx1/3 | Cutaneous sensory transmission | |
dI6 | x | GABA/Glycine | Pax2, Dmrt3 | Motor/gait |
Ventral Spinal Interneurons | ||||
---|---|---|---|---|
Class | Subtypes | Neurotransmitter | Transcription Factor | Implicated Function(s) |
V0 | V0v | Glutamate | Dbx1, Evx1 | Forward Trotting Locomotion, Scratching |
V0d | GABA and Glycine | Dbx1 | Forward walking Locomotion, Postural correction | |
V0c | Acetylcholine, Glutamate | Dbx1, Pitx2 | C boutons on motor neurons, postural correction | |
V0g | Glutamate | Dbx1 | Unknown | |
V1 | Extensive heterogeneity | GABA | Engrailed 1 | Locomotor cycle speed |
V2 | V2a | Glutamate | Chx10 | Left right coordination, sustain breathing after injury |
V2b | GABA | GATA3 | Regulate locomotor speed | |
V3 | x | Glutamate | Sim1 | Coordinate crossed and interlimb movement, Spasticity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paracha, M.; Brezinski, A.N.; Singh, R.; Sinson, E.; Satkunendrarajah, K. Targeting Spinal Interneurons for Respiratory Recovery After Spinal Cord Injury. Cells 2025, 14, 288. https://doi.org/10.3390/cells14040288
Paracha M, Brezinski AN, Singh R, Sinson E, Satkunendrarajah K. Targeting Spinal Interneurons for Respiratory Recovery After Spinal Cord Injury. Cells. 2025; 14(4):288. https://doi.org/10.3390/cells14040288
Chicago/Turabian StyleParacha, Maha, Allison N. Brezinski, Rhea Singh, Elizabeth Sinson, and Kajana Satkunendrarajah. 2025. "Targeting Spinal Interneurons for Respiratory Recovery After Spinal Cord Injury" Cells 14, no. 4: 288. https://doi.org/10.3390/cells14040288
APA StyleParacha, M., Brezinski, A. N., Singh, R., Sinson, E., & Satkunendrarajah, K. (2025). Targeting Spinal Interneurons for Respiratory Recovery After Spinal Cord Injury. Cells, 14(4), 288. https://doi.org/10.3390/cells14040288