Shaping Rare Granulomatous Diseases in the Lab: How New Models Are Changing the Game
Abstract
:1. Introduction
2. Available Models for Granulomas Studies
2.1. Two-Dimensional Models: MGC Induction Strategies
2.1.1. Natural Mitogens
2.1.2. Cytokines Combinations
2.1.3. Bacteria and Parasites
2.1.4. Chemical Treatments
2.2. Three-Dimensional In Vitro Models
2.2.1. Spheroids Models
2.2.2. Extracellular Matrix Models
2.2.3. Fluidic Systems and Biochips
2.3. Animal Models
2.4. Computational Models
3. Discussion and Future Perspectives
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, E.S.; Moller, D.R. Etiologies of Sarcoidosis. Clin. Rev. Allergy Immunol. 2015, 49, 6–18. [Google Scholar] [CrossRef] [PubMed]
- Adams, D.O. The Granulomatous Inflammatory Response. A Review. Am. J. Pathol. 1976, 84, 164–192. [Google Scholar]
- Cinetto, F.; Scarpa, R.; Dell’edera, A.; Jones, M.G. Immunology of sarcoidosis: Old companions, new relationships. Curr. Opin. Pulm. Med. 2020, 26, 535–543. [Google Scholar] [CrossRef]
- Facco, M.; Cabrelle, A.; Teramo, A.; Olivieri, V.; Gnoato, M.; Teolato, S.; Ave, E.; Gattazzo, C.; Fadini, G.P.; Calabrese, F.; et al. Sarcoidosis is a Th1/Th17 multisystem disorder. Thorax 2010, 66, 144–150. [Google Scholar] [CrossRef]
- Llanwarne, F.; Helmby, H. Granuloma formation and tissue pathology in Schistosoma japonicum versus Schistosoma mansoni infections. Parasite Immunol. 2020, 43, e12778. [Google Scholar] [CrossRef]
- Ristow, L.C.; Davis, J.M. The granuloma in cryptococcal disease. PLoS Pathog. 2021, 17, e1009342. [Google Scholar] [CrossRef] [PubMed]
- Durdu, M.; Kandemir, H.; Ilkit, M.; de Hoog, G.S. Changing Concepts and Current Definition of Majocchi’s Granuloma. Mycopathologia 2019, 185, 187–192. [Google Scholar] [CrossRef]
- Sia, J.K.; Rengarajan, J. Immunology of Mycobacterium tuberculosis Infections. Microbiol. Spectr. 2019, 7, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Barna, B.P.; Judson, M.A.; Thomassen, M.J. Carbon Nanotubes and Chronic Granulomatous Disease. Nanomaterials 2014, 4, 508–521. [Google Scholar] [CrossRef] [PubMed]
- Oliver, L.C.; Zarnke, A.M. Sarcoidosis. Chest 2021, 160, 1360–1367. [Google Scholar] [CrossRef] [PubMed]
- Llanos, O.; Hamzeh, N. Sarcoidosis. Med. Clin. N. Am. 2019, 103, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Hurst, J.R.; Verma, N.; Lowe, D.; Baxendale, H.E.; Jolles, S.; Kelleher, P.; Longhurst, H.J.; Patel, S.Y.; Renzoni, E.A.; Sander, C.R.; et al. British Lung Foundation/United Kingdom Primary Immunodeficiency Network Consensus Statement on the Definition, Diagnosis, and Management of Granulomatous-Lymphocytic Interstitial Lung Disease in Common Variable Immunodeficiency Disorders. J. Allergy Clin. Immunol. Pract. 2017, 5, 938–945. [Google Scholar] [CrossRef] [PubMed]
- Hena, K.M. Sarcoidosis Epidemiology: Race Matters. Front. Immunol. 2020, 11, 537382. [Google Scholar] [CrossRef]
- Grunewald, J.; Grutters, J.C.; Arkema, E.V.; Saketkoo, L.A.; Moller, D.R.; Müller-Quernheim, J. Sarcoidosis. Nat. Rev. Dis. Prim. 2019, 5, 45. [Google Scholar] [CrossRef]
- Bargagli, E.; Prasse, A. Sarcoidosis: A review for the internist. Intern. Emerg. Med. 2018, 13, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Schuetz, C.; Huck, K.; Gudowius, S.; Megahed, M.; Feyen, O.; Hubner, B.; Schneider, D.T.; Manfras, B.; Pannicke, U.; Willemze, R.; et al. An Immunodeficiency Disease with RAG Mutations and Granulomas. N. Engl. J. Med. 2008, 358, 2030–2038. [Google Scholar] [CrossRef] [PubMed]
- Ardeniz, O.; Cunningham-Rundles, C. Granulomatous disease in common variable immunodeficiency. Clin. Immunol. 2009, 133, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Martelius, T.; Seppänen, M.R. Glimpses into treating GLILD. J. Allergy Clin. Immunol. 2023, 152, 365–367. [Google Scholar] [CrossRef]
- Natarajan, A.; Beena, P.; Devnikar, A.V.; Mali, S. A systemic review on tuberculosis. Indian J. Tuberc. 2020, 67, 295–311. [Google Scholar] [CrossRef]
- Zhai, W.; Wu, F.; Zhang, Y.; Fu, Y.; Liu, Z. The Immune Escape Mechanisms of Mycobacterium tuberculosis. Int. J. Mol. Sci. 2019, 20, 340. [Google Scholar] [CrossRef]
- Agrawal, R.; Kee, A.R.; Ang, L.; Hang, Y.T.; Gupta, V.; Kon, O.M.; Mitchell, D.; Zierhut, M.; Pavesio, C. Tuberculosis or sarcoidosis: Opposite ends of the same disease spectrum? Tuberculosis 2016, 98, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Mortaz, E.; Masjedi, M.R.; Abedini, A.; Matroodi, S.; Kiani, A.; Soroush, D.; Adcock, I.M. Common features of tuberculosis and sarcoidosis. Int. J. Mycobacteriol. 2016, 5, S240–S241. [Google Scholar] [CrossRef] [PubMed]
- van Stigt, A.C.; von der Thüsen, J.H.; Mustafa, D.A.M.; Bosch, T.P.P.v.D.; Lila, K.A.; Vadgama, D.; van Hagen, M.; Dalm, V.A.S.H.; Dik, W.A.; Ijspeert, H. Granulomas in Common Variable Immunodeficiency Display Different Histopathological Features Compared to Other Granulomatous Diseases. J. Clin. Immunol. 2024, 45, 22. [Google Scholar] [CrossRef] [PubMed]
- Weeratunga, P.; Moller, D.R.; Ho, L.-P. Immune mechanisms of granuloma formation in sarcoidosis and tuberculosis. J. Clin. Investig. 2024, 134, e175264. [Google Scholar] [CrossRef]
- Dugast, C.; Gaudin, A.; Toujas, L. Generation of multinucleated giant cells by culture of monocyte-derived macrophages with IL-4. J. Leukoc. Biol. 1997, 61, 517–521. [Google Scholar] [CrossRef]
- Mukundan, S.; Bhatt, R.; Lucas, J.; Tereyek, M.; Chang, T.L.; Subbian, S.; Parekkadan, B. 3D host cell and pathogen-based bioassay development for testing anti-tuberculosis (TB) drug response and modeling immunodeficiency. Biomol. Concepts 2021, 12, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Kala, M.; Casanova, N.G.; Feng, A.; Jacobsen, J.R.; Grischo, G.; Liang, Y.; Moreno, Y.; Wang, T.; Knox, K.S. Carbon nanotube stimulation of human mononuclear cells to model granulomatous inflammation. Am. J. Transl. Res. 2023, 15, 1704–1714. [Google Scholar] [PubMed]
- Crouser, E.D.; White, P.; Caceres, E.G.; Julian, M.W.; Papp, A.C.; Locke, L.W.; Sadee, W.; Schlesinger, L.S. A Novel In Vitro Human Granuloma Model of Sarcoidosis and Latent Tuberculosis Infection. Am. J. Respir. Cell. Mol. Biol. 2017, 57, 487–498. [Google Scholar] [CrossRef] [PubMed]
- Franklin, G.; Coghill, G.; McIntosh, L.; Cree, I. Monocyte aggregation around agarose beads in collagen gels: A 3-dimensional model of early granuloma formation? J. Immunol. Methods 1995, 186, 285–291. [Google Scholar] [CrossRef]
- Braian, C.; Svensson, M.; Brighenti, S.; Lerm, M.; Parasa, V.R. A 3D Human Lung Tissue Model for Functional Studies on Mycobacterium tuberculosis Infection. J. Vis. Exp. 2015, 104, e53084. [Google Scholar] [CrossRef]
- Workman, V.L.; Tezera, L.B.; Elkington, P.T.; Jayasinghe, S.N. Controlled Generation of Microspheres Incorporating Extracellular Matrix Fibrils for Three-Dimensional Cell Culture. Adv. Funct. Mater. 2014, 24, 2648–2657. [Google Scholar] [CrossRef]
- Calcagno, T.M.; Zhang, C.; Tian, R.; Ebrahimi, B.; Mirsaeidi, M. Novel three-dimensional biochip pulmonary sarcoidosis model. PLoS ONE 2021, 16, e0245805. [Google Scholar] [CrossRef] [PubMed]
- Linke, M.; Pham, H.T.T.; Katholnig, K.; Schnöller, T.; Miller, A.; Demel, F.; Schütz, B.; Rosner, M.; Kovacic, B.; Sukhbaatar, N.; et al. Chronic signaling via the metabolic checkpoint kinase mTORC1 induces macrophage granuloma formation and marks sarcoidosis progression. Nat. Immunol. 2017, 18, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.; Clay, H.; Lewis, J.L.; Ghori, N.; Herbomel, P.; Ramakrishnan, L. Real-Time Visualization of Mycobacterium-Macrophage Interactions Leading to Initiation of Granuloma Formation in Zebrafish Embryos. Immunity 2002, 17, 693–702. [Google Scholar] [CrossRef]
- Mizuno, K.; Okamoto, H.; Horio, T. Heightened ability of monocytes from sarcoidosis patients to form multi-nucleated giant cells in vitro by supernatants of concanavalin A-stimulated mononuclear cells. Clin. Exp. Immunol. 2001, 126, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Yanagishita, T.; Watanabe, D.; Akita, Y.; Nakano, A.; Ohshima, Y.; Tamada, Y.; Matsumoto, Y. Construction of novel in vitro epithelioid cell granuloma model from mouse macrophage cell line. Arch. Dermatol. Res. 2007, 299, 399–403. [Google Scholar] [CrossRef]
- Weinberg, J.B.; Hobbs, M.M.; A Misukonis, M. Recombinant human gamma-interferon induces human monocyte polykaryon formation. Proc. Natl. Acad. Sci. USA 1984, 81, 4554–4557. [Google Scholar] [CrossRef]
- Möst, J.; Neumayer, H.P.; Dierich, M.P. Cytokine-induced generation of multinucleated giant cells in vitro requires interferon-γ and expression of LFA-1. Eur. J. Immunol. 1990, 20, 1661–1667. [Google Scholar] [CrossRef]
- Takashima, T.; Ohnishi, K.; Tsuyuguchi, I.; Kishimoto, S. Differential regulation of formation of multinucleated giant cells from concanavalin A-stimulated human blood monocytes by IFN-gamma and IL-4. J. Immunol. 1993, 150, 3002–3010. [Google Scholar] [CrossRef] [PubMed]
- Endow, R.I.; Sullivan, G.W.; Carper, H.T.; Mandell, G.L. Induction of Multinucleated Giant Cell Formation from In Vitro Culture of Human Monocytes with Interleukin-3 and Interferon-γ: Comparison with Other Stimulating Factors. Am. J. Respir. Cell Mol. Biol. 1992, 6, 57–62. [Google Scholar] [CrossRef]
- McNally, A.K.; Anderson, J.M. Interleukin-4 induces foreign body giant cells from human monocytes/macrophages. Differential lymphokine regulation of macrophage fusion leads to morphological variants of multinucleated giant cells. Am. J. Pathol. 1995, 147, 1487–1499. [Google Scholar] [PubMed]
- Ikedaa, T.; Ikedab, K.; Sasakia, K.; Kawakamia, K.; Hatakec, K.; Kajid, Y.; Norimatsud, H.; Haradab, M.; Takaharaa, J. IL-13 as Well as IL-4 Induces Monocytes/Macrophages and a Monoblastic Cell Line (UG3) to Differentiate into Multinucleated Giant Cells in the Presence of M-CSF. Biochem. Biophys. Res. Commun. 1998, 253, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Yuasa, K.; Avnet, S.; Salerno, M.; Mori, K.; Ishikawa, H.; Sudo, A.; Baldini, N.; Uchida, A.; Ito, Y. Spontaneous Formation of Multinucleated Giant Cells with Bone Resorbing Activity by Long Culture of Human Peripheral Blood CD14-Positive Monocytes In Vitro. Cell Commun. Adhes. 2010, 17, 13–22. [Google Scholar] [CrossRef]
- Gasser, A.; Möst, J. Generation of Multinucleated Giant Cells In Vitro by Culture of Human Monocytes with Mycobacterium bovis BCG in Combination with Cytokine-Containing Supernatants. Infect. Immun. 1999, 67, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Seitzer, U.; Scheel-Toellner, D.; Toellner, K.-M.; Reiling, N.; Haas, H.; Galle, J.; Flad, H.-D.; Gerdes, J. Properties of Multinucleated Giant Cells in a New in Vitro Model for Human Granuloma Formation. J. Pathol. 1997, 182, 99–105. [Google Scholar] [CrossRef]
- E Postlethwaite, A.; Jackson, B.K.; Beachey, E.H.; Kang, A.H. Formation of multinucleated giant cells from human monocyte precursors. Mediation by a soluble protein from antigen-and mitogen-stimulated lymphocytes. J. Exp. Med. 1982, 155, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Hassan, N.F.; Kamani, N.; Meszaros, M.M.; Douglas, S.D. Induction of multinucleated giant cell formation from human blood-derived monocytes by phorbol myristate acetate in in vitro culture. J. Immunol. 1989, 143, 2179–2184. [Google Scholar] [CrossRef]
- Scott-Taylor, T.H.; Whiting, K.; Pettengell, R.; Webster, D.A. Enhanced formation of giant cells in common variable immunodeficiency: Relation to granulomatous disease. Clin. Immunol. 2017, 175, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.X.; Redl, A.; Kleissl, L.; Pandey, R.V.; Mayerhofer, C.; El Jammal, T.; Mazic, M.; Gonzales, K.; Sukhbaatar, N.; Krausgruber, T.; et al. Aberrant Lipid Metabolism in Macrophages Is Associated with Granuloma Formation in Sarcoidosis. Am. J. Respir. Crit. Care Med. 2024, 209, 1152–1164. [Google Scholar] [CrossRef] [PubMed]
- Barron, L.; Wynn, T.A. Fibrosis is regulated by Th2 and Th17 responses and by dynamic interactions between fibroblasts and macrophages. Am. J. Physiol. Liver Physiol. 2011, 300, G723–G728. [Google Scholar] [CrossRef] [PubMed]
- Negi, M.; Takemura, T.; Guzman, J.; Uchida, K.; Furukawa, A.; Suzuki, Y.; Iida, T.; Ishige, I.; Minami, J.; Yamada, T.; et al. Localization of Propionibacterium acnes in granulomas supports a possible etiologic link between sarcoidosis and the bacterium. Mod. Pathol. 2012, 25, 1284–1297. [Google Scholar] [CrossRef] [PubMed]
- Aubin, G.G.; Da Silva, G.A.; Eishi, Y.; Jacqueline, C.; Altare, F.; Corvec, S.; Asehnoune, K. Immune discrepancies during in vitro granuloma formation in response to Cutibacterium (formerly Propionibacterium) acnes infection. Anaerobe 2017, 48, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, V.C.; Weston, P.; Yan, A.; Hurt, R.H.; Kane, A.B. A 3-dimensional in vitro model of epithelioid granulomas induced by high aspect ratio nanomaterials. Part. Fibre Toxicol. 2011, 8, 17. [Google Scholar] [CrossRef]
- Crouser, E.D.; Locke, L.W.; Julian, M.W.; Bicer, S.; Sadee, W.; White, P.; Schlesinger, L.S. Phagosome-regulated mTOR signalling during sarcoidosis granuloma biogenesis. Eur. Respir. J. 2020, 57, 2002695. [Google Scholar] [CrossRef] [PubMed]
- Offman, E.; Singh, N.; Julian, M.W.; Locke, L.W.; Bicer, S.; Mitchell, J.; Matthews, T.; Anderson, K.; Crouser, E.D. Leveraging in vitro and pharmacokinetic models to support bench to bedside investigation of XTMAB-16 as a novel pulmonary sarcoidosis treatment. Front. Pharmacol. 2023, 14, 1066454. [Google Scholar] [CrossRef] [PubMed]
- Berry, S.B.; Gower, M.S.; Su, X.; Seshadri, C.; Theberge, A.B. A Modular Microscale Granuloma Model for Immune-Microenvironment Signaling Studies in vitro. Front. Bioeng. Biotechnol. 2020, 8, 931. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Asif, H.; Holt, G.E.; Griswold, A.J.; Campos, M.; Bejarano, P.; Fregien, N.L.; Mirsaeidi, M. Mycobacterium abscessus—Bronchial Epithelial Cells Cross-Talk Through Type I Interferon Signaling. Front. Immunol. 2019, 10, 2888. [Google Scholar] [CrossRef]
- Singh, M.; Mukhopadhyay, K. Alpha-Melanocyte Stimulating Hormone: An Emerging Anti-Inflammatory Antimicrobial Peptide. BioMed Res. Int. 2014, 2014, 874610. [Google Scholar] [CrossRef]
- Shahraki, A.H.; Tian, R.; Zhang, C.; Fregien, N.L.; Bejarano, P.; Mirsaeidi, M. Anti-inflammatory Properties of the Alpha-Melanocyte-Stimulating Hormone in Models of Granulomatous Inflammation. Lung 2022, 200, 463–472. [Google Scholar] [CrossRef]
- van Oldruitenborgh-Oosterbaan, M.M.S.; Grinwis, G.C.M. Equine sarcoidosis: Clinical signs, diagnosis, treatment and outcome of 22 cases. Veter Dermatol. 2013, 24, 218-e48. [Google Scholar] [CrossRef]
- Mohammed, A.D.; Khan, A.W.; Chatzistamou, I.; Chamseddine, D.; Williams-Kang, K.; Perry, M.; Enos, R.; Murphy, A.; Gomez, G.; Aladhami, A.; et al. Gut Antibody Deficiency in a Mouse Model of CVID Results in Spontaneous Development of a Gluten-Sensitive Enteropathy. Front. Immunol. 2019, 10, 2484. [Google Scholar] [CrossRef]
- Amato, G.; Vita, F.; Quattrocchi, P.; Minciullo, P.L.; Pioggia, G.; Gangemi, S. Involvement of miR-142 and miR-155 in Non-Infectious Complications of CVID. Molecules 2020, 25, 4760. [Google Scholar] [CrossRef] [PubMed]
- Nishiwaki, T.; Yoneyama, H.; Eishi, Y.; Matsuo, N.; Tatsumi, K.; Kimura, H.; Kuriyama, T.; Matsushima, K. Indigenous Pulmonary Propionibacterium acnes Primes the Host in the Development of Sarcoid-Like Pulmonary Granulomatosis in Mice. Am. J. Pathol. 2004, 165, 631–639. [Google Scholar] [CrossRef]
- Minami, J.; Eishi, Y.; Ishige, Y.; Kobayashi, I.; Ishige, I.; Kobayashi, D.; Ando, N.; Uchida, K.; Ikeda, S.; Sorimachi, N.; et al. Pulmonary granulomas caused experimentally in mice by a recombinant trigger-factor protein of Propionibacterium acnes. J. Med. Dent. Sci. 2003, 50, 265–274. [Google Scholar]
- Werner, J.L.; Escolero, S.G.; Hewlett, J.T.; Mak, T.N.; Williams, B.P.; Eishi, Y.; Núñez, G. Induction of Pulmonary Granuloma Formation by Propionibacterium acnes Is Regulated by MyD88 and Nox2. Am. J. Respir. Cell. Mol. Biol. 2017, 56, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Zhao, M.; Li, Q.; Lu, L.; Zhou, Y.; Zhang, Y.; Chen, T.; Tang, D.; Zhou, N.; Yin, C.; et al. IL-17A Can Promote Propionibacterium acnes-Induced Sarcoidosis-Like Granulomatosis in Mice. Front. Immunol. 2019, 10, 1923. [Google Scholar] [CrossRef] [PubMed]
- Pagán, A.J.; Lee, L.J.; Edwards-Hicks, J.; Moens, C.B.; Tobin, D.M.; Busch-Nentwich, E.M.; Pearce, E.L.; Ramakrishnan, L. mTOR-regulated mitochondrial metabolism limits mycobacterium-induced cytotoxicity. Cell 2022, 185, 3720–3738.e13. [Google Scholar] [CrossRef] [PubMed]
- Huizar, I.; Malur, A.; Midgette, Y.A.; Kukoly, C.; Chen, P.; Ke, P.C.; Podila, R.; Rao, A.M.; Wingard, C.J.; Dobbs, L.; et al. Novel Murine Model of Chronic Granulomatous Lung Inflammation Elicited by Carbon Nanotubes. Am. J. Respir. Cell Mol. Biol. 2011, 45, 858–866. [Google Scholar] [CrossRef] [PubMed]
- Barna, B.P.; Huizar, I.; Malur, A.; McPeek, M.; Marshall, I.; Jacob, M.; Dobbs, L.; Kavuru, M.S.; Thomassen, M.J. Carbon Nanotube-Induced Pulmonary Granulomatous Disease: Twist1 and Alveolar Macrophage M1 Activation. Int. J. Mol. Sci. 2013, 14, 23858–23871. [Google Scholar] [CrossRef]
- Mohan, A.; Malur, A.; McPeek, M.; Barna, B.P.; Schnapp, L.M.; Thomassen, M.J.; Gharib, S.A. Transcriptional survey of alveolar macrophages in a murine model of chronic granulomatous inflammation reveals common themes with human sarcoidosis. Am. J. Physiol. Cell. Mol. Physiol. 2017, 314, L617–L625. [Google Scholar] [CrossRef]
- Soliman, E.; Bhalla, S.; Elhassanny, A.E.M.; Malur, A.; Ogburn, D.; Leffler, N.; Malur, A.G.; Thomassen, M.J. Myeloid ABCG1 Deficiency Enhances Apoptosis and Initiates Efferocytosis in Bronchoalveolar Lavage Cells of Murine Multi-Walled Carbon Nanotube-Induced Granuloma Model. Int. J. Mol. Sci. 2021, 23, 47. [Google Scholar] [CrossRef] [PubMed]
- Bueno-Beti, C.; Lim, C.X.; Protonotarios, A.; Szabo, P.L.; Westaby, J.; Mazic, M.; Sheppard, M.N.; Behr, E.; Hamza, O.; Kiss, A.; et al. An mTORC1-Dependent Mouse Model for Cardiac Sarcoidosis. J. Am. Hear. Assoc. 2023, 12, e030478. [Google Scholar] [CrossRef] [PubMed]
- Linkova, N.; Diatlova, A.; Zinchenko, Y.; Kornilova, A.; Snetkov, P.; Morozkina, S.; Medvedev, D.; Krasichkov, A.; Polyakova, V.; Yablonskiy, P. Pulmonary Sarcoidosis: Experimental Models and Perspectives of Molecular Diagnostics Using Quantum Dots. Int. J. Mol. Sci. 2023, 24, 11267. [Google Scholar] [CrossRef] [PubMed]
- Albergante, L.; Timmis, J.; Beattie, L.; Kaye, P.M. A Petri Net Model of Granulomatous Inflammation: Implications for IL-10 Mediated Control of Leishmania donovani Infection. PLoS Comput. Biol. 2013, 9, e1003334. [Google Scholar] [CrossRef] [PubMed]
- Hao, W.; Crouser, E.D.; Friedman, A. Mathematical model of sarcoidosis. Proc. Natl. Acad. Sci. USA 2014, 111, 16065–16070. [Google Scholar] [CrossRef] [PubMed]
- Zaharie, S.-D.; Franken, D.J.; van der Kuip, M.; van Elsland, S.; de Bakker, B.S.; Hagoort, J.; Roest, S.L.; van Dam, C.S.; Timmers, C.; Solomons, R.; et al. The immunological architecture of granulomatous inflammation in central nervous system tuberculosis. Tuberculosis 2020, 125, 102016. [Google Scholar] [CrossRef] [PubMed]
- Cilfone, N.A.; Perry, C.R.; Kirschner, D.E.; Linderman, J.J. Multi-Scale Modeling Predicts a Balance of Tumor Necrosis Factor-α and Interleukin-10 Controls the Granuloma Environment during Mycobacterium tuberculosis Infection. PLoS ONE 2013, 8, e68680. [Google Scholar] [CrossRef]
- Day, J.; Friedman, A.; Schlesinger, L.S. Modeling the immune rheostat of macrophages in the lung in response to infection. Proc. Natl. Acad. Sci. USA 2009, 106, 11246–11251. [Google Scholar] [CrossRef] [PubMed]
- Marino, S.; Myers, A.; Flynn, J.L.; Kirschner, D.E. TNF and IL-10 are major factors in modulation of the phagocytic cell environment in lung and lymph node in tuberculosis: A next-generation two-compartmental model. J. Theor. Biol. 2010, 265, 586–598. [Google Scholar] [CrossRef]
- Bell, J.A.; Davies, E.R.; Brereton, C.J.; Vukmirovic, M.; Roberts, J.J.; Lunn, K.; Wickens, L.; Conforti, F.; Ridley, R.A.; Ceccato, J.; et al. Spatial transcriptomic validation of a biomimetic model of fibrosis enables re-evaluation of a therapeutic antibody targeting LOXL2. Cell Rep. Med. 2024, 5, 101695. [Google Scholar] [CrossRef]
- Jones, M.G.; Andriotis, O.G.; Roberts, J.J.; Lunn, K.; Tear, V.J.; Cao, L.; Ask, K.; E Smart, D.; Bonfanti, A.; Johnson, P.; et al. Nanoscale dysregulation of collagen structure-function disrupts mechano-homeostasis and mediates pulmonary fibrosis. eLife 2018, 7, 36354. [Google Scholar] [CrossRef] [PubMed]
- Baughman, R.P.; Valeyre, D.; Korsten, P.; Mathioudakis, A.G.; Wuyts, W.A.; Wells, A.; Rottoli, P.; Nunes, H.; Lower, E.E.; Judson, M.A.; et al. ERS clinical practice guidelines on treatment of sarcoidosis. Eur. Respir. J. 2021, 58, 2004079. [Google Scholar] [CrossRef] [PubMed]
- Redl, A.; Doberer, K.; Unterluggauer, L.; Kleissl, L.; Krall, C.; Mayerhofer, C.; Reininger, B.; Stary, V.; Zila, N.; Weninger, W.; et al. Efficacy and safety of mTOR inhibition in cutaneous sarcoidosis: A single-centre trial. Lancet Rheumatol. 2024, 6, e81–e91. [Google Scholar] [CrossRef] [PubMed]
- Miedema, J.; Cinetto, F.; Smed-Sörensen, A.; Spagnolo, P. The immunopathogenesis of sarcoidosis. J. Autoimmun. 2024, 149, 103247. [Google Scholar] [CrossRef] [PubMed]
Setting | Induction | Specificity | Outcome | Contribution | |
---|---|---|---|---|---|
2D | PBMCs/monocytes [25] | Cytokine cocktails/pathogens or parasites/chemical treatments | No | 2D MGCs | Macrophages fusion capability and cytokine milieu evaluation |
Spheroids | THP-1 cell line in ultra-low attachment plates [26] | M. bovis BCG infection | No | 3D spheroids | Bacilli disposition in the 3D culture/anti-TB treatment screening |
Monocytes/macrophages [27] | Multi-walled carbon nanotubes | Lungs | 3D spheroids | Nanomaterial inhalation mimicking | |
PBMCs [28] | PPD-coated beads | No | 3D spheroids | Aggregation scheme defining/gene expression investigation and pre-clinical drug testing | |
ECM-Based | PBMCs [29] | Agarose beads | No | 3D aggregates | First phases of granuloma formation resembling |
Monocytes/macrophages and epithelial pulmonary cells [30] | M. tuberculosis infection and air exposure in a transwell system | Lungs | 3D granuloma-like structures | Lung environment reproduction | |
Monocytes/macrophages and ECM [31] | Bioelectrospray | No | Cells containing hydrogel droplets | Closed environment generation and physiological condition resembling | |
Fluidic and Animal | PBMCs [32] | M. abscessus-generated microparticles and fluidic device | Lungs | 3D granulomas in lung-on-chip device AI-controlled | Pulmonary sarcoidosis mimicking |
Mice [33] | mTORC1 overexpression through conditional myeloid Tsc2 deletion in a mouse model | Lungs, liver, lymph nodes, skin, heart | Autonomously rising granulomas | Autonomous granuloma formation through mTORC1 overexpression in macrophages; pre-clinical drug testing | |
MWCNT instillation in a ABCG1 knockout mouse model | Lungs | Exposure-triggered granulomas | From chronic granulomatous inflammation to fibrosis | ||
Zebrafish [34] | M. tuberculosis or M. marinum infection | No | Macrophage aggregation | Granuloma-like aggregation independent from T cells |
Cell Source | Stimuli | Outcome |
---|---|---|
Monocytes [35] | Concanavalin A-stimulated PBMC supernatant | Higher percentage of granuloma-type MGCs in comparison with controls |
RAW mouse cell line [36] | Lipopolysaccharide and concanavalin A combination | MGCs with a concomitant increased production of TNF-α |
Monocytes [37] | IFN- γ | MGCs with significantly increased production of H2O2 in response to PMA |
Monocytes [38,39] | Concanavalin A-stimulated PBMC supernatant or IFN- γ | MGCs in higher percentage when treated with supernatant in comparison with IFN- γ alone |
Monocytes [40] | IL-3 and IFN- γ combination | MGCs formed rapidly with 67 ± 6% fusion after 1 week of culture |
Monocytes [25,41] | GM-CSF followed by IL-4 | MGCs formed more efficiently on plasticware than untreated monocytes |
Monocytes [42,43] | M-CSF followed by IL-13 or IL-4 | Formation of osteoclast-like cells not properly resembling granuloma MGCs |
Monocytes [44] | M. bovis bacillus Calmette–Guérin in addition to cytokine-containing supernatants from herpesvirus saimiri-transformed human T cells | MGCs formed with fusion rate of 27% |
PBMCs [45] | Co-culture with Nippostrongylus brasieliensis larvae | Epithelioid cells and MGCs clustered in granulomatous-like structure |
Monocytes [46] | PHA or NaIO4 | MGCs with a morphology that was different from Langhans cells found at sites of delayed hypersensitivity reactions |
Monocytes [47] | PMA in addition to IFN-γ pre-treatment | MGC induction with fusion rate increasing from 30% to 80% and enhanced by IFN-γ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ceccato, J.; Gualtiero, G.; Piazza, M.; Carraro, S.; Buso, H.; Felice, C.; Rattazzi, M.; Scarpa, R.; Vianello, F.; Cinetto, F. Shaping Rare Granulomatous Diseases in the Lab: How New Models Are Changing the Game. Cells 2025, 14, 293. https://doi.org/10.3390/cells14040293
Ceccato J, Gualtiero G, Piazza M, Carraro S, Buso H, Felice C, Rattazzi M, Scarpa R, Vianello F, Cinetto F. Shaping Rare Granulomatous Diseases in the Lab: How New Models Are Changing the Game. Cells. 2025; 14(4):293. https://doi.org/10.3390/cells14040293
Chicago/Turabian StyleCeccato, Jessica, Giulia Gualtiero, Maria Piazza, Samuela Carraro, Helena Buso, Carla Felice, Marcello Rattazzi, Riccardo Scarpa, Fabrizio Vianello, and Francesco Cinetto. 2025. "Shaping Rare Granulomatous Diseases in the Lab: How New Models Are Changing the Game" Cells 14, no. 4: 293. https://doi.org/10.3390/cells14040293
APA StyleCeccato, J., Gualtiero, G., Piazza, M., Carraro, S., Buso, H., Felice, C., Rattazzi, M., Scarpa, R., Vianello, F., & Cinetto, F. (2025). Shaping Rare Granulomatous Diseases in the Lab: How New Models Are Changing the Game. Cells, 14(4), 293. https://doi.org/10.3390/cells14040293