Next Article in Journal
Molecular Targets of 20-Hydroxyecdysone in Mammals, Mechanism of Action: Is It a Calorie Restriction Mimetic and Anti-Aging Compound?
Next Article in Special Issue
β-Arrestin 2 as a Prognostic Indicator and Immunomodulatory Factor in Multiple Myeloma
Previous Article in Journal
Localization and Single Molecule Dynamics of Bacillus subtilis Penicillin-Binding Proteins Depend on Substrate Availability and Are Affected by Stress Conditions
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Selinexor’s Immunomodulatory Impact in Advancing Multiple Myeloma Treatment

Department of Medicine 5—Hematology and Oncology, University Hospital Erlangen, 91054 Erlangen, Germany
*
Author to whom correspondence should be addressed.
Cells 2025, 14(6), 430; https://doi.org/10.3390/cells14060430
Submission received: 30 January 2025 / Revised: 6 March 2025 / Accepted: 11 March 2025 / Published: 13 March 2025
(This article belongs to the Special Issue Novel Insights into Molecular Mechanisms and Therapy of Myeloma)

Abstract

:
Despite the major advancements in the repertoire for multiple myeloma (MM) treatment, this disease remains a chronically progressive plasma cell malignancy. Drug resistance and high relapse rates complicate the extended treatment strategies. However, the tumor microenvironment (TME) in MM is decisive for the success of a therapy or relapse. Aiming to improve the outcome of relapsed and refractory MM patients, Selinexor has entered the drug arsenal of myeloma therapy through the implementation of a novel therapeutic approach by selectively inhibiting the nuclear export receptor Exportin-1 (XPO1). Selinexor leads to the inactivation of cancer-related proteins and induces apoptosis by disrupting the nucleocytoplasmic flow in myeloma cells. While this drug is selectively cytotoxic to neoplastic cells, Selinexor’s immunomodulatory impact on the TME is currently being investigated. The aim of this review was to elucidate Selinexor’s capacity to influence the cell interaction network of the TME from an immunological perspective. Deciphering the complex interplay of highly plastic immune cells provides a contribution to the molecular–biological exploration of disease initiation and progression in MM. Unraveling the novel therapeutic targets of the immunological TME and evaluating the advanced immunotherapeutic regimens implementing Selinexor will shape the future directions of immune-oncotherapy in MM.

1. Introduction

Multiple myeloma (MM) belongs to the group of B-cell non-Hodgkin lymphoma and is a heterogenous and chronically progressive malignant plasma cell dyscrasia. A characteristic of this disease is abnormal monoclonal plasma cells in the bone marrow (BM)-producing monoclonal immunoglobulins, i.e., paraproteins, which can be quantified in blood and urine. The diagnosis of MM requires the evidence of ≥10% clonal plasma cells upon BM examination or a biopsy-proven plasmacytoma as well as the presence of at least one of the myeloma-defining events. The latter consists of established CRAB criteria (hypercalcemia, renal failure, anemia, or lytic bone lesions) and three specific biomarkers (clonal plasma cells in the BM ≥ 60%, serum free light chain (FLC) ratio ≥ 100 (provided involved FLC level ≥ 100 mg/L) and more than one focal lesion seen by magnetic resonance imaging) [1]. Monoclonal gammopathy of undetermined significance (MGUS) represents the preliminary stage of MM and is defined as serum monoclonal protein level < 30 g/L, clonal plasma cell population in the BM < 10%, and absence of CRAB criteria [2,3,4]. Smoldering MM (SMM) is the precursor of MM and is distinguished from MGUS regarding the serum level of monoclonal protein (≥30 g/L) and the proportion of clonal plasma cells in the BM (≥10%). In the majority of SMM cases, patients are managed by active surveillance; however, in high-risk SMM, specific treatment is also under investigation [5,6,7]. The dissemination of clonal plasma cells into the peripheral blood following previously diagnosed MM represents secondary plasma cell leukemia [8]. Molecular models of disease progression from myeloma precursor states to MM include, inter alia, influences from the tumor microenvironment (TME) and pathogenic triggers, such as genomic aspects [9,10] (Figure 1). The clinical presentation of MM is variable and ranges from asymptomatic states to hematopoietic insufficiency, renal injury, and osteolytic destruction [11]. Symptomatic patients suffer from bone pain and pathologic fractures, anemia, weight loss, hypercalcemia, and secondary immune deficiency, as well as light chain nephropathy [12,13,14,15,16,17]. Detailed conclusions have not yet been reached about the underlying pathogenic triggers, which are probably multifactorial in most patients. Genetic abnormalities and predisposition, epigenetic modification, and dysregulated cellular pathways, as well as clonal heterogeneity, play a remarkable role in the disease manifestation [18].
The therapeutic landscape of MM has significantly evolved in the last two decades. First-line treatment regimens of MM include monoclonal antibodies against cluster of differentiation (CD) 38 (daratumumab, isatuximab), immunomodulatory drugs (IMiDs) (thalidomide, lenalidomide, pomalidomide), proteasome inhibitors (PIs) (bortezomib, carfilzomib, ixazomib), and corticosteroids, in addition to high-dose chemotherapy and autologous stem cell transplantation depending on the patient’s fitness [19]. The treatment of refractory or relapsed cases can be extended by chimeric antigen receptor (CAR) T cell therapy (ciltacabtagene autoleucel, idecabtagene vicleucel) [20,21,22] as well as B-cell maturation antigen (BCMA)-directed (elranatamab, teclistamab) and G protein-coupled receptor class C group 5 member D (GPRC5D)-directed (talquetamab) bispecific antibodies [23,24,25]. Further advanced therapeutic options are offered by an immunostimulatory antibody against signaling lymphocyte activation molecule F7 (SLAMF7) (elotuzumab) [26], as well as Selinexor, the selective inhibitor of nuclear export (SINE) compound [27].
Due to therapeutic innovations, the 5-year overall survival has doubled over the past decade to approximately 54% [28]. However, the incidence of MM is undergoing a rising trend globally, with higher socio-economic status and an aging society being potential risk factors [29]. According to the Global Cancer Observatory, the age-standardized incidence rate of MM was 1.8 cases per 100,000 persons world-wide in 2022, while 201,903 new cases of MM are estimated world-wide from 2022 to 2025. The change of new cases from 2022 to 2025 represents an increase of 7.4% [30].
Regarding triple-class refractory disease stages (i.e., refractory to IMiDs, PIs, and anti-CD38 monoclonal antibodies), the median overall survival declines to approximately four to six months [31]. Complicated cases are represented by heavily pretreated patients with aggressive, relapsed, or refractory disease stages, who are often in frail, aged, and multimorbid general health conditions.
Despite previous considerable advances, the treatment of MM remains a challenge. Meanwhile, researchers have scrutinized the TME, aiming to improve the immunotherapeutic approaches and broaden the molecular–biological understanding. The TME features a complex network of distinct cellular (e.g., stromal cells, endothelial cells, stem cells, immune cells) and non-cellular elements (e.g., growth factors, cytokines, chemokines, extracellular matrix components), playing an integral part in cancer pathobiology and anti-cancer immune responses [32,33,34,35,36]. Therefore, targeting the TME would provide new approaches to disrupt the myeloma-supportive micromilieu. With regard to the growing research field of immune-oncology as well as the continuous development of cancer immunotherapy, the present review attempted to structure cancer cell biological concepts of the TME in MM from an immunological perspective. Several actors across the immune system are crucial for the TME in MM, contributing to the malignant evolution of the myeloma precursor stages and driving relapse as well as therapy resistance [37,38,39,40]. While the immunological TME is utilized by myeloma cells to realize immune escape and cancer progression, advanced oncotherapies with CAR T cells and therapeutic antibodies direct the patient’s own immune response against the myeloma cells [21,41,42,43,44,45]. Given the fact that these immunotherapeutic strategies have achieved promising results in the clinical setting, it is upon further fundamental research to explore the immunological power of novel cancer therapeutics in myeloma treatment and to investigate the underlying molecular–biological mechanisms of action.
Selinexor has expanded the treatment horizon in myeloma by selectively inhibiting the nuclear export receptor Exportin-1 (XPO1) and disrupting the nucleocytoplasmic flow, inducing cell cycle arrest and apoptosis in cancer cells [46]. While increasing evidence suggests that Selinexor also influences the TME in myeloma and other cancers on an immunological level [47,48], in depth investigations on Selinexor’s impact on anti-cancer immune responses are scarce in the current literature. Therefore, an aim of this review was to understand Selinexor’s potential to influence the immunological TME. Reflecting and expanding the scientific perspectives on this novel oncotherapy provides a basis for researchers to shape the future of myeloma treatment.

2. Immunological Channeling of the TME in Myeloma

The sophisticated networking of immune cells, ranging from the myeloid (e.g., monocytes, macrophages, myeloid-derived suppressor cells (MDSCs), dendritic cells (DCs)) to the lymphoid lineage (e.g., B-cells, natural killer (NK) cells, T cells) builds the immunological TME in myeloma [49].
Macrophages are characterized by a remarkable cellular plasticity and a versatile system of activity. They play significant roles in the physiologic homeostasis and tissue regeneration of the bone and BM. Moreover, macrophages form a heterogenic spectrum of phenotypes, where M1 (anti-tumoral phenotype) and M2 (pro-tumoral phenotype) are the most studied [50,51,52]. A growing body of research emphasizes the importance of macrophages regarding myeloma development and progression [53,54,55,56]. Macrophages were shown to promote the survival and dissemination of myeloma cells by secreting pro-inflammatory cytokines, such as S100 calcium-binding protein A9 (S100A9), interleukin (IL)-6, and tumor necrosis factor α (TNF-α) [57,58]. IL-6 exerts a suppressive effect on NK cells and stimulates tumor cell proliferation, survival, and metastasis in myeloma [59,60]. Different studies have further associated elevated levels of IL-6 and TNF-α with advanced disease stages in MM [61,62,63]. M2 polarized macrophages are also capable of promoting angiogenesis [64]. Tumor-associated macrophages (TAMs) specifically reside in the TME and are predominantly polarized toward the M2 phenotype, supporting the cancerous niche in MM [65,66]. Accumulating preclinical evidence has revealed a diverse impact of TAMs on the development and progression of MM. Inflammasome activation in TAMs and the subsequent secretion of IL-1β and IL-18 was found to promote tumor growth and osteolytic destruction in MM in vivo [67]. Furthermore, the cross-talk of TAMs with other immune cells of the TME was identified to potentially participate in myeloma cell immune escape [68]. In particular, the CD163+ subpopulation of TAMs has been recognized to infiltrate the BM niche, indicating poor prognosis in myeloma [69,70,71], while elevated levels of CD163+ macrophages were also detected in other hematologic and solid cancers [72,73,74,75]. It is noteworthy that macrophages increasingly express CD163, especially in response to inflammatory stimuli [76,77]. Activation of the signal transducer and activator of transcription 3 (STAT3)-related pathway further supports the immunosuppressive phenotype of CD163+ TAMs [78]. As myeloma patients suffer from prolonged and intensified therapy courses due to relapsed and refractory states, it is crucial to further investigate the immunological processes underlying treatment success or drug resistance. In this context, Mougiakakos et al. have demonstrated that the treatment with lenalidomide shifts the phenotype of TAMs, derived from myeloma patients, toward a pro-inflammatory and tumoricidal M1 direction through the IKAROS family zinc finger 1 (IKZF1)-interferon regulatory factor (IRF) 4/5 axis [79]. Several studies have further recognized TAMs to be involved in the development of drug resistance in MM and different other cancers [80,81,82,83,84]. Thus, in light of the immunological power to nurture the cancerous process, TAMs could display a promising target for therapeutic intervention in MM.
Another aspect is that myeloma cells dynamically interact with immune cells to shape the TME in a sustainable manner, thereby fostering their own survival. Beider et al. have demonstrated that myeloma cells and macrophages reciprocally promote the secretion of C-X-C motif chemokine ligand 13 (CXCL13) via transforming growth factor β (TGF-β) and Bruton’s tyrosine kinase signaling. This was shown to not only lead to CXCL13 driven myeloma growth but also to contribute to receptor activator of nuclear factor (NF) kΒ ligand (RANKL)-mediated osteoclastogenesis [85]. Myeloma cells can further promote the immunosuppressive polarization of TAMs via the secretion of IL-10 and extracellular vesicles [56,86]. Pucci and colleagues have found that myeloma-derived extracellular vesicles upregulate the expression of programmed death ligand 1 (PD-L1) and IL-6 in naive macrophages [87]. Moreover, macrophages have been shown to be activated by mitochondrial damage-associated molecular patterns (mtDAMP) originated from human myeloma cells, which promoted myeloma progression via the activation of the stimulator of interferon genes (STING) pathway in vivo [88]. STING expression has been shown to be downregulated in BM specimens of myeloma patients. Moreover, intracellular STING was reduced in neutrophils of MM patients. Interestingly, intracellular STING expression in the macrophages and NK cells was comparable to normal tissue [89].
MDSCs are suggested in a growing body of literature as being a critical component of the immune micromilieu. In this context, MDSCs have a reciprocal relationship with tumor cells of various cancers and are associated with relapse and therapy resistance [90,91,92,93,94]. Apart from that, myeloma cells are capable of inducting and homing MDSCs via paracrine mechanisms ensuring an immunosuppressive milieu, which interferes with anti-tumoral immune surveillance and adversely impacts prognosis [95,96,97,98,99]. The depletion of MDSCs has even been shown to enhance the sensitivity to immune checkpoint (IC) inhibition in vivo [100]. Another recent study found that MDSCs increasingly express calgranulin A and B, interfering with CAR T cell cytotoxicity [101].
DCs build a dynamic system of potent antigen-presenting cells in all tissues orchestrating both innate and adaptive immune responses [102]. The cross-presentation of antigens by DCs induces specific cellular responses by CD8+ T cells [103]. Suppression or reduction of the DC population in the TME potentially impairs anti-tumoral immune responses [104,105,106]. Myeloma cells might further promote pro-inflammatory responses via IL-1β secretion by DCs as well as the generation of tolerogenic DCs [107].
NK cells realize anti-cancer immunosurveillance through their cytotoxic and suppressive activity against malignant cells [108,109,110]. Different cytokines, such as IL-2, IL-15, IL-21, and type I and III interferons, promote NK cell proliferation and survival as well as trigger their cytotoxicity [111,112,113,114]. NK cells eliminate cancer cells by direct cell–cell contact leading either to exocytosis of perforins and granzymes or to caspase-dependent apoptosis via the activation of death receptors [115,116]. However, several studies have indicated quantitative and functional alterations of NK cell subsets in the course of myelomagenesis, potentially leading to NK cell exhaustion and impaired NK cell cytotoxicity as well as reduced NK cell effector functions in MM [117,118,119,120]. Alterations in NK cell distribution and functionality have also been associated with advanced disease stages and poor patient outcomes in MM [121,122,123].
T cells act in a bidirectional manner in the TME of various cancers. Cytotoxic T cells eradicate cancer cells, while regulatory T cells (Tregs) conduct an immunosuppressive quality and enable tumor immune escape [124,125,126]. In several studies, an elevated frequency of Tregs has been observed in myeloma patients [127,128,129,130,131]. In mice, interferons secreted by myeloma cells were found to promote the expansion of Tregs as well as their immunosuppressive capacity [132,133]. Increased levels of Tregs are further associated with impaired patient outcomes in MM [128,134]. In more recent studies, it has been indicated that Tregs navigate tumor antigen presentation and immunosuppressive signaling in MM by inducing the production of TGF-β1, downregulating the gene expression of members of the class I major histocompatibility complex (MHC) molecules, and increasing PD-L1 expression in myeloma cells [135]. Furthermore, the depletion of Tregs enabled CD8+ T cell and NK cell immune response against myeloma cells [136]. In fact, Takahashi et al. have described profound myeloma control after depleting Tregs from the mobilized stem cell graft of myeloma patients [137]. It was also found that the distribution of other T cell subsets, such as IL-17-producing CD4+ T cells, was relevantly altered in myeloma patients and potentially influences the disease course [138,139,140]. Additionally, in different studies, a varying functional composition was proposed of the CD8+ T cell in myeloma, especially with regard to their differentiation and effector functions, as well as activity and exhaustion states [141,142,143]. Interestingly, the regulatory and effector T cell profiles were identified to impact the immunotherapeutic response dimension in MM as well [144,145,146,147,148].

3. Selinexor’s Molecular–Biological Positioning in the Treatment of Myeloma

Transportation of macromolecules across the double-membraned eukaryotic nuclear envelope is established by specific nuclear transport receptors through the nuclear pore complex. The latter is a membrane-embedded transport protein channel, composed of nucleoporin copies. Nuclear pore complexes are responsible for the homeostatic transfer of molecular cargoes between the nucleus and the cytoplasm, overall regulating the genetic flow from transcription to translation. Import and export through the nuclear pore complex is promoted by the Ras-related nuclear protein (RAN) GTPase, providing a gradient across the nuclear membrane and energy for the subsequent transport [149,150,151]. XPO1, also known as chromosome region maintenance 1, is a member of the karyopherin-β family of proteins and the main soluble nuclear export receptor in eukaryotic cells, shuttling approximately 200 signal-transducing proteins through the nuclear pore complex. Leucin-rich nuclear export signals are recognized by XPO1 to traffic molecular cargoes from the nucleus to the cytoplasm, such as tumor suppressor proteins (TSPs), cell cycle regulators, and immune response regulators [152,153]. While the balanced nuclear export is inevitable for the physiologic function of healthy cells, various hematologic and solid cancers benefit from the overexpression of XPO1 [154,155]. Therefore, the inhibition of XPO1 has offered an innovative strategy to approach antineoplastic targeting.
First achieved with a natural low-molecular-weight metabolite named Leptomycin B, which was originated from Streptomyces, the inhibition of XPO1 was recognized to induce cell death [156,157]. Subsequently, researchers designed the new generation of small-molecule inhibitors, the SINE compounds, which specifically target XPO1 by covalently binding to the reactive site at cysteine 528 in the XPO1 cargo-binding pocket [158]. Selinexor (marketed as XPOVIO (USA) or NEXPOVIO; formerly labeled as KPT-330) has the chemical formula C17H11F6N7O and was developed by Karyopharm Therapeutics as the first-in-class orally bioavailable SINE compound. Demonstrating a broad preclinical cytotoxic and antineoplastic activity, Selinexor paved the way for renewing myeloma treatment [159,160].
In July 2019, the US Food and Drug Administration (FDA) granted Selinexor accelerated approval in combination with dexamethasone based on the efficacy and safety results from the STORM trial (NCT02336815). Since then, Selinexor has been indicated for adult patients with relapsed or refractory MM who had received at least four prior therapies and whose disease was refractory to at least two PIs, at least two immunomodulatory agents, and one anti-CD38 monoclonal antibody [161,162]. Since December 2020, Selinexor has been further FDA approved in combination with bortezomib and dexamethasone for the treatment of adult patients with MM who had received at least one prior therapy, according to the evaluated efficacy by the BOSTON trial (NCT03110562) [27,162]. In addition, clinical findings from the STOMP (NCT02343042) and the NCT02199665 trials have demonstrated the efficacy of Selinexor and dexamethasone in combination with bortezomib or carfilzomib in patients with MM refractory to PIs [163,164,165,166]. Regarding the actual state of research, Selinexor’s molecular–biological action involves several mechanisms focusing the nucleocytoplasmic flow of cancer-related cargoes, deoxyribonucleic acid (DNA) damage repair, glucocorticoid signaling, and osteo-metabolism (Figure 2).
Selinexor particularly retains TSPs (e.g., p53, retinoblastoma (Rb), p21, p27, adenomatous polyposis coli (APC), forkhead box O (FOXO)) in the nucleus leading to, inter alia, rapid cell cycle arrest and apoptosis of the cancer cells [167,168,169,170,171,172,173,174,175]. Other cancer-related XPO1 cargoes are related to cell cycle regulators (e.g., cyclin dependent kinase 1 (CDK1), cyclin B1/D1), cell survival proteins (e.g., survivin, cellular inhibitor of apoptosis protein 1 (cIAP1), myeloid cell leukemia 1 (MCL1), insulin-like growth factor binding protein 2 (IGFBP2), telomerase reverse transcriptase (TERT)), and autophagy-related proteins (e.g., beclin 1, centrin, yes-associated protein 1 (YAP1)). Different growth regulators (e.g., KIT, epidermal growth factor receptor (EGFR), FMS related receptor tyrosine kinase 3 (FLT3), B-Raf proto-oncogene, phosphatase and tensin homolog (PTEN), phosphatidylinositol 3-kinase (PI3K), protein kinase B/Akt, Ras protein specific guanine nucleotide releasing factor 1 (Ras-GRF1), and ABL proto-oncogene 1), members of the IRF family (IRF3, IRF5), cytosolic steroid receptors (peroxisome proliferator-activated receptor γ (PPAR-γ)), mediators of cell-signaling transduction pathways (NF-kB inhibitor α), epithelial-mesenchymal transition proteins (Snail), as well as key drug targets (Topoisomerase IIα) are also shuttled via XPO1 and display key roles in cancer pathogenesis [167,168,176,177,178,179,180,181]. The deregulation of cell biological signaling, notably the p53 and the NF-kB pathways, is a hallmark of myeloma development and progression [195,196,197,198]. While a large number of cancer-related cargoes of XPO1 are already recognized, detailed investigations on Selinexor interference with the specific signaling pathways are limited.
Selinexor also traps the messenger ribonucleic acid (mRNA) cap-binding protein eukaryotic translation initiation factor 4E (eIF4E) in the nucleus, which is responsible for the nuclear export of mRNAs encoding proto-oncogenes. In this way, Selinexor is capable of reducing the ribosomal translation of proto-oncogenes including the MYC oncogenic program, the apoptosis regulators B-cell lymphoma (BCL) 2 and 6, as well as the molecular chaperone heat shock protein 70 (HSp70) [182,183,184,185,186]. Moreover, Selinexor impacts the DNA damage repair of cancer cells, which is fundamental for the high cellular turnover during malignant progression. Interestingly, XPO1 overexpression in cancer cells increases the tolerance to genotoxic stress due to the enhanced nuclear export of eIF4E carrying DNA damage repair mRNAs [187]. In this context, Selinexor reduces the expression of DNA damage repair proteins on a transcriptional and translational level, potentially overcoming the resistance to DNA damage-inducing therapies [188,189]. These findings also suggest that Selinexor could interlink different antineoplastic approaches in myeloma treatment and possibly circumvent therapy resistance.
Dexamethasone is part of the first-line regimen of MM treatment and is also included in the therapy of advanced myeloma stages. Combining Selinexor with dexamethasone has improved the overall survival rates of intensively treated MM patients in quad- and penta-refractory stages [190]. It has been demonstrated that Selinexor induces the expression of the glucocorticoid receptor and increases the transcriptional activity of the glucocorticoid receptor in combination with dexamethasone. Selinexor was found to inhibit the mammalian target of rapamycin (mTOR) pathway in synergy with dexamethasone, thereby promoting cell death in myeloma cells. In fact, the nuclear accumulation of the glucocorticoid receptor was shown to enhance the expression of REDD1, which is significant for the inhibition of the mTOR complex 1 [191,192].
Myeloma-induced osteodestruction and consecutive pathologic fractures dramatically impair patient morbidity and mortality. In these cases, a multimodal and interdisciplinary management, including osteoprotective medication with bisphosphonates or the RANKL inhibitor denosumab, as well as local irradiation and orthopedic intervention, is required [12]. Therefore, patients would benefit from the integration of osteoprotective antineoplastic substances. While the literature contains hints on Selinexor’s influence on osteolysis, the detailed molecular–biological mechanisms underlying its mode of action are yet to be understood completely. In 2014, Tai and colleagues demonstrated that SINEs block the NF-kB activity in myeloma cells potentially by trapping the NF-kB inhibitor α in the nucleus. Moreover, SINEs were found to directly block the RANKL-induced NF-kB/p65 activity and the induction of NF of activated T cells cytoplasmic 1 (NFATc1) in osteoclast precursors [169]. Regarding other tumor entities, Selinexor was observed to impair the secretion of pro-osteolytic cytokines and reduce osteoclastogenesis in prostate cancer cells in vitro. Osteolytic lesions and serum levels of osteoclast markers were seen to be further reduced by Selinexor in the metastatic prostate carcinoma model in vivo [193]. Recently, Chen and co-workers showed that Selinexor inhibits RANKL-induced osteoclast formation from BM-derived macrophages in vitro [194]. In light of these findings, Selinexor displays the potential to impact and possibly shape key cellular pathways of the osteo-metabolism, which might provide additional benefit to the cancer treatment, especially with regard to bone tissue involvement due to primary cancer manifestation or metastasis.

4. Selinexor’s Impact on the Immunological TME

How Selinexor might influence immune cells of the TME is a question that researchers are seeking to answer. The preclinical data and clinical findings already contain several hints on Selinexor’s capacity to impact different immune cells of the myeloid and lymphoid lineage (Figure 3).
Macrophages are considered to be relevant actors in the immunological micromilieu of cancer and inflammation [215,216,217,218]. Therefore, it is all the more important to precisely evaluate novel immunotherapeutics regarding their impact on the TME. According to Jiménez et al., Selinexor-containing treatment is able to shift the polarization of TAMs toward a pro-inflammatory M1 polarized phenotype. Selinexor-containing treatment also decreased the expression of programmed death 1 (PD-1) and signal regulatory protein α (SIRPα) in the remaining M2 polarized TAMs in vivo [199]. In a recently published mouse model with subcutaneously injected B-cell lymphoma cells, Selinexor administration reduced the amount of M2 polarized macrophages in the tumor specimens [200]. Selinexor’s influence on TAMs might potentially redirect the TME toward a pro-inflammatory milieu, which could support anti-cancer immune responses and promote the effect of other immunotherapies.
Regarding MDSCs, the IL-6/STAT3 pathway was recently identified to upregulate the expression of XPO1, resulting in the activation of the extracellular-signal regulated kinases (ERKs)-mediated mitogen-activated protein kinase (MAPK) pathway. STAT3-mediated XPO1 expression potentially supports MDSC fitness and duration in the TME. The blocking of XPO1 led to the transformation of MDSCs into immunostimulatory neutrophil-like cells as ERK1/2 accumulated in the nucleus and decreased the transcriptional activity of MDSCs [201].
NK cells recognize and destroy cancer cells by receptor-mediated signaling. Selinexor was shown to downregulate the surface expression of human leukocyte antigen (HLA)-E on lymphoma cell lines and on primary chronic lymphocytic leukemia cells. As HLA-E is a ligand for the inhibitory surface receptor CD159a on NK cells, Selinexor was thus suggested to increase the anti-cancer immune response of NK cells in vitro [202,203]. In addition, Hu et al. analyzed the gene expression data of myeloma patients and identified that the expression of ABCC4 is positively correlated with NK cell infiltration and associated with the sensitivity to Selinexor treatment [219].
Modulating anti-cancer immune responses is crucial for modern immune-oncotherapy. As part of recent investigations, the impact of XPO1 inhibition by Selinexor has been discussed on T cell activity, functionality, and homeostasis, especially with regard to combating the phenomenon of T cell exhaustion. In this context, Tyler et al. described a dose-dependent effect of Selinexor on T cell development and function. They found that increased dose and application frequency of Selinexor transiently impaired murine CD8+ T cell activity in vitro. The authors further investigated CD8+ T cell fitness and effector functions in a syngeneic mouse model of melanoma. Treatment with clinically relevant doses and schedule intervals of Selinexor caused there to be enhanced CD8+ T cell fitness, reduced IC expression (PD-1, TIM1, CD44), and preserved T cell effector functions [204]. Farren et al. demonstrated that Selinexor induces the gene expression of PD-1 and CTLA4 in leucocytes and human melanoma cell lines in vitro. Moreover, the authors found that IC inhibitors combined with Selinexor significantly reduced melanoma tumor burden in vivo [220]. In the context of CAR T cell therapy, the pretreatment with SINE compounds improved the cytotoxic potential of CD19-directed CAR T cells against Burkitt’s lymphoma and acute lymphocytic leukemia cell lines in vitro [206]. In a mouse model of non-Hodgkin lymphoma, Stadel et al. observed that the administration of Selinexor prior to CAR T cells significantly reduced tumor burden compared to CAR T cell therapy in non-Selinexor-treated mice or Selinexor monotherapy. The results of this study suggest that Selinexor might sensitize cancer cells to CAR T cell mediated cytotoxicity [214], while the detailed underlying mechanisms still need to be elucidated. As part of another in vitro study on human T cells, it was shown that increasing doses of Selinexor inhibited proliferation, promoted apoptosis, and increased the differentiation into Tregs. However, cytokine secretion (IL-2, TNF-α, IF-γ, IL-4, IL-6, IL-10) and gene expression of exhaustion markers (PD-1, TIM3, LAG3) were not affected in the T cells by Selinexor [205].
As far as can be understood from existing clinical data, Selinexor might contribute to an immunomodulating effect regarding the response behavior to targeted immunotherapies. For example, the pretreatment with Selinexor improved the response of patients with triple-negative breast cancer to subsequent bispecific antibody therapy [207]. In myeloma, Selinexor-containing treatment displayed potency with durable responses and treatment tolerability in heavily pretreated patients, even those refractory to antibody drug conjugate anti-BCMA therapy [208]. In addition, Selinexor did not negatively impact the overall survival of MM patients, who received subsequent non-cellular anti-BCMA therapy [209]. In another work, promising data were shown on the combination of Selinexor with PD-1 blockade in advanced and refractory patients with NK/T cell lymphoma resistant to prior anti-PD-1 antibody treatment [210]. Moreover, Chari et al. have indicated that extensively pretreated patients, with rapidly progressing myeloma even after BCMA directed CAR T cell therapy, potentially benefit from the combination of Selinexor with low-dose dexamethasone, with or without PIs (bortezomib or carfilzomib) [211]. In another clinical investigation, it has been reported that Selinexor-containing salvage therapy improved the survival of patients who relapsed after BCMA-directed CAR T cell therapy [212]. Wang et al. presented preliminary data of two patients with extramedullary MM receiving Selinexor as a bridging therapy prior to CAR T cells. Both patients achieved stringent complete remission with survival over 13 and 10 months, respectively [213].

5. Conclusions

Selinexor, the first-in-class orally bioavailable SINE compound, is an innovative agent in the repertoire for MM treatment and displays the potential to influence the immunological TME in myeloma. The results of recent research efforts have offered insights into the complex interplay of immune cells during MM initiation, progression, and therapy resistance, as well as relapse. However, the current state of knowledge highlights the present need to explore the impact of the new generation of cancer therapeutics on the immune-oncological axis in depth. Novel understanding in this area would enable the evaluation of Selinexor’s immunomodulatory route and further provide fresh approaches to the expanding research field of immune-oncotherapy. Investigating target points of cancer-related signaling pathways, aberrant in myeloma and immune cells, could not only improve present antineoplastic strategies but also identify potential bypassing concepts to combat therapy resistance. Selinexor’s role in the advanced immunotherapeutic landscape, as provided by therapeutic antibodies and CAR T cells, is expected to shape the future directions of immune-oncotherapy in MM. Finally, further in vitro and in vivo experimental studies with primary human cells and randomized controlled clinical trials on Selinexor sequencing regimens are needed to expand the horizons of knowledge in this area.

Author Contributions

Conceptualization, K.T. and H.B.; resources, K.T. and H.B., writing—original draft preparation, K.T.; writing—review and editing, K.T. and H.B.; visualization, K.T. and H.B.; supervision, H.B.; project administration, K.T. and H.B.; funding acquisition, K.T. and H.B. All authors have read and agreed to the published version of the manuscript.

Funding

This work was funded by the Interdisciplinary Center for Clinical Research (IZKF) at the University Hospital of the University of Erlangen-Nuremberg (Laboratory Rotation).

Data Availability Statement

No new data were created or analyzed in this study.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Rajkumar, S.V.; Dimopoulos, M.A.; Palumbo, A.; Blade, J.; Merlini, G.; Mateos, M.-V.; Kumar, S.; Hillengass, J.; Kastritis, E.; Richardson, P. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014, 15, 538–548. [Google Scholar] [CrossRef] [PubMed]
  2. Hevroni, G.; Vattigunta, M.; Kazandjian, D.; Coffey, D.; Diamond, B.; Maura, F.; Hoffman, J.; Landgren, O. From MGUS to multiple myeloma: Unraveling the unknown of precursor states. Blood Rev. 2024, 68, 101242. [Google Scholar] [CrossRef] [PubMed]
  3. Bawek, S.; Joseph, J.; Hutson, A.; Parker, S.; Tario, J.; Hillengass, J. Prognostic factors for progression of MGUS including immune phenotype. J. Clin. Oncol. 2024, 42, 16. [Google Scholar] [CrossRef]
  4. Kyle, R.A.; Durie, B.G.M.; Rajkumar, S.V.; Landgren, O.; Blade, J.; Merlini, G.; Kröger, N.; Einsele, H.; Vesole, D.H.; Dimopoulos, M.; et al. Monoclonal gammopathy of undetermined significance (MGUS) and smoldering (asymptomatic) multiple myeloma: IMWG consensus perspectives risk factors for progression and guidelines for monitoring and management. Leukemia 2010, 24, 1121–1127. [Google Scholar] [CrossRef]
  5. Patel, R.; Hill, E.; Dhodapkar, M. Smoldering Multiple Myeloma: Integrating Biology and Risk into Management. Semin. Hematol. 2024, in press. [Google Scholar] [CrossRef]
  6. Abdallah, N.H.; Lakshman, A.; Kumar, S.K.; Cook, J.; Binder, M.; Kapoor, P.; Dispenzieri, A.; Gertz, M.A.; Lacy, M.Q.; Hayman, S.R. Mode of progression in smoldering multiple myeloma: A study of 406 patients. Blood Cancer J. 2024, 14, 9. [Google Scholar] [CrossRef]
  7. Rajkumar, S.V.; Kumar, S.; Lonial, S.; Mateos, M.V. Smoldering multiple myeloma current treatment algorithms. Blood Cancer J. 2022, 12, 129. [Google Scholar] [CrossRef]
  8. Fernández de Larrea, C.; Kyle, R.; Rosiñol, L.; Paiva, B.; Engelhardt, M.; Usmani, S.; Caers, J.; Gonsalves, W.; Schjesvold, F.; Merlini, G. Primary plasma cell leukemia: Consensus definition by the International Myeloma Working Group according to peripheral blood plasma cell percentage. Blood Cancer J. 2021, 11, 192. [Google Scholar] [CrossRef]
  9. Fernandez, N.; Perumal, D.; Rahman, A.; Kim-Schulze, S.; Yesil, J.; Auclair, D.; Adams, H., III; Parekh, S.; Gnjatic, S.; Cho, H.J. High dimensional immune profiling of smoldering multiple myeloma distinguishes distinct tumor microenvironments. Clin. Lymphoma Myeloma Leuk. 2022, 22, 853–862. [Google Scholar] [CrossRef]
  10. Maura, F.; Bolli, N.; Angelopoulos, N.; Dawson, K.J.; Leongamornlert, D.; Martincorena, I.; Mitchell, T.J.; Fullam, A.; Gonzalez, S.; Szalat, R. Genomic landscape and chronological reconstruction of driver events in multiple myeloma. Nat. Commun. 2019, 10, 3835. [Google Scholar] [CrossRef]
  11. Michels, T.C.; Petersen, K.E. Multiple myeloma: Diagnosis and treatment. Am. Fam. Physician 2017, 95, 373–383A. [Google Scholar] [PubMed]
  12. Terpos, E.; Zamagni, E.; Lentzsch, S.; Drake, M.T.; García-Sanz, R.; Abildgaard, N.; Ntanasis-Stathopoulos, I.; Schjesvold, F.; de la Rubia, J.; Kyriakou, C.; et al. Treatment of multiple myeloma-related bone disease: Recommendations from the Bone Working Group of the International Myeloma Working Group. Lancet Oncol. 2021, 22, 119–130. [Google Scholar] [CrossRef]
  13. Liu, L.; Yu, Z.; Cheng, H.; Mao, X.; Sui, W.; Deng, S.; Wei, X.; Lv, J.; Du, C.; Xu, J. Multiple myeloma hinders erythropoiesis and causes anaemia owing to high levels of CCL3 in the bone marrow microenvironment. Sci. Rep. 2020, 10, 20508. [Google Scholar] [CrossRef]
  14. Bridoux, F.; Leung, N.; Belmouaz, M.; Royal, V.; Ronco, P.; Nasr, S.H.; Fermand, J.P.; Kidney, I.; Group, M.G.R. Management of acute kidney injury in symptomatic multiple myeloma. Kidney Int. 2021, 99, 570–580. [Google Scholar] [CrossRef]
  15. Dong, M.; Zhang, J.; Han, X.; He, J.; Zheng, G.; Cai, Z. Baseline peripheral neuropathy was associated with age and a prognostic factor in newly diagnosed multiple myeloma patients. Sci. Rep. 2022, 12, 10061. [Google Scholar] [CrossRef]
  16. Raje, N.S.; Anaissie, E.; Kumar, S.K.; Lonial, S.; Martin, T.; Gertz, M.A.; Krishnan, A.; Hari, P.; Ludwig, H.; O’Donnell, E. Consensus guidelines and recommendations for infection prevention in multiple myeloma: A report from the International Myeloma Working Group. Lancet Haematol. 2022, 9, 143–161. [Google Scholar] [CrossRef]
  17. Allegra, A.; Tonacci, A.; Musolino, C.; Pioggia, G.; Gangemi, S. Secondary immunodeficiency in hematological malignancies: Focus on multiple myeloma and chronic lymphocytic leukemia. Front. Immunol. 2021, 12, 738915. [Google Scholar] [CrossRef]
  18. Rasche, L.; Kortüm, K.M.; Raab, M.S.; Weinhold, N. The impact of tumor heterogeneity on diagnostics and novel therapeutic strategies in multiple myeloma. Int. J. Mol. Sci. 2019, 20, 1248. [Google Scholar] [CrossRef]
  19. Rajkumar, S.V.; Kumar, S. Multiple myeloma current treatment algorithms. Blood Cancer J. 2020, 10, 94. [Google Scholar] [CrossRef]
  20. Hansen, D.K.; Sidana, S.; Peres, L.C.; Colin Leitzinger, C.; Shune, L.; Shrewsbury, A.; Gonzalez, R.; Sborov, D.W.; Wagner, C.; Dima, D. Idecabtagene vicleucel for relapsed/refractory multiple myeloma: Real-world experience from the myeloma CAR T consortium. J. Clin. Oncol. 2023, 41, 2087–2097. [Google Scholar] [CrossRef]
  21. Martin, T.G.; Madduri, D.; Pacaud, L.; Usmani, S.Z. Cilta-cel, a BCMA-targeting CAR-T therapy for heavily pretreated patients with relapsed/refractory multiple myeloma. Future Oncol. 2023, 19, 2297–2311. [Google Scholar] [CrossRef] [PubMed]
  22. Sidana, S.; Patel, K.K.; Peres, L.C.; Bansal, R.; Kocoglu, M.H.; Shune, L.; Atrash, S.; Smith, K.; Midha, S.; Ferreri, C. Safety and efficacy of standard-of-care ciltacabtagene autoleucel for relapsed/refractory multiple myeloma. Blood 2025, 145, 85–97. [Google Scholar] [CrossRef] [PubMed]
  23. Tomasson, M.H.; Iida, S.; Niesvizky, R.; Mohty, M.; Bahlis, N.J.; Martinez-Lopez, J.; Koehne, G.; Rodriguez-Otero, P.; Prince, H.M.; Viqueira, A. Long-term survival and safety of elranatamab in patients with relapsed or refractory multiple myeloma: Update from the MagnetisMM-3 study. HemaSphere 2024, 8, e136. [Google Scholar] [CrossRef]
  24. Baines, A.C.; Kanapuru, B.; Zhao, J.; Price, L.S.; Zheng, N.; Konicki, R.; Manning, M.L.; Gehrke, B.J.; Theoret, M.R.; Gormley, N.J. FDA Approval Summary: Teclistamab–A Bispecific CD3 T-Cell Engager for Patients with Relapsed or Refractory Multiple Myeloma. Clin. Cancer Res. 2024, 30, 5515–5520. [Google Scholar] [CrossRef]
  25. Einsele, H.; Moreau, P.; Bahlis, N.; Bhutani, M.; Vincent, L.; Karlin, L.; Perrot, A.; Goldschmidt, H.; van de Donk, N.W.; Ocio, E.M. Comparative Efficacy of Talquetamab vs. Current Treatments in the LocoMMotion and MoMMent Studies in Patients with Triple-Class-Exposed Relapsed/Refractory Multiple Myeloma. Adv. Ther. 2024, 41, 1576–1593. [Google Scholar] [CrossRef]
  26. Costa, B.A.; Costa, T.A.; Chagas, G.C.L.; Mouhieddine, T.H.; Richter, J.; Usmani, S.Z.; Mailankody, S.; Rajeeve, S.; Hashmi, H. Addition of elotuzumab to backbone treatment regimens for multiple myeloma: An updated meta-analysis of randomized clinical trials. Clin. Lymphoma Myeloma Leuk. 2024, 25, 32–44. [Google Scholar] [CrossRef]
  27. Grosicki, S.; Simonova, M.; Spicka, I.; Pour, L.; Kriachok, I.; Gavriatopoulou, M.; Pylypenko, H.; Auner, H.W.; Leleu, X.; Doronin, V. Once-per-week selinexor, bortezomib, and dexamethasone versus twice-per-week bortezomib and dexamethasone in patients with multiple myeloma (BOSTON): A randomised, open-label, phase 3 trial. Lancet 2020, 396, 1563–1573. [Google Scholar] [CrossRef]
  28. Padala, S.A.; Barsouk, A.; Barsouk, A.; Rawla, P.; Vakiti, A.; Kolhe, R.; Kota, V.; Ajebo, G.H. Epidemiology, staging, and management of multiple myeloma. Med. Sci. 2021, 9, 3. [Google Scholar] [CrossRef]
  29. Huang, J.; Chan, S.C.; Lok, V.; Zhang, L.; Lucero-Prisno, D.E., III; Xu, W.; Zheng, Z.-J.; Elcarte, E.; Withers, M.; Wong, M.C.S. The epidemiological landscape of multiple myeloma: A global cancer registry estimate of disease burden, risk factors, and temporal trends. Lancet Haematol. 2022, 9, 670–677. [Google Scholar] [CrossRef]
  30. IARC. Global Cancer Observatory. Available online: https://gco.iarc.who.int/en (accessed on 28 February 2025).
  31. Gandhi, U.H.; Cornell, R.F.; Lakshman, A.; Gahvari, Z.J.; McGehee, E.; Jagosky, M.H.; Gupta, R.; Varnado, W.; Fiala, M.A.; Chhabra, S.; et al. Outcomes of patients with multiple myeloma refractory to CD38-targeted monoclonal antibody therapy. Leukemia 2019, 33, 2266–2275. [Google Scholar] [CrossRef]
  32. Kengelbach-Weigand, A.; Tasbihi, K.; Strissel, P.L.; Schmid, R.; Marques, J.M.; Beier, J.P.; Beckmann, M.W.; Strick, R.; Horch, R.E.; Boos, A.M. Plasticity of patient-matched normal mammary epithelial cells is dependent on autologous adipose-derived stem cells. Sci. Rep. 2019, 9, 10722. [Google Scholar] [CrossRef] [PubMed]
  33. Lasry, A.; Nadorp, B.; Fornerod, M.; Nicolet, D.; Wu, H.; Walker, C.J.; Sun, Z.; Witkowski, M.T.; Tikhonova, A.N.; Guillamot-Ruano, M. An inflammatory state remodels the immune microenvironment and improves risk stratification in acute myeloid leukemia. Nat. Cancer 2023, 4, 27–42. [Google Scholar] [CrossRef] [PubMed]
  34. Battista, R.A.; Pini, G.M.; Finco, A.; Corso, F.; Galli, A.; Arrigoni, G.; Doglioni, C.; Callea, M.; Paccagnella, M.; Porcu, L. From Tumor Macroenvironment to Tumor Microenvironment: The Prognostic Role of the Immune System in Oral and Lung Squamous Cell Carcinoma. Cancers 2024, 16, 2759. [Google Scholar] [CrossRef] [PubMed]
  35. Bonato, A.; Chakraborty, S.; Bomben, R.; Canarutto, G.; Felician, G.; Martines, C.; Zucchetto, A.; Pozzo, F.; Vujovikj, M.; Polesel, J. NFKBIE mutations are selected by the tumor microenvironment and contribute to immune escape in chronic lymphocytic leukemia. Leukemia 2024, 38, 1511–1521. [Google Scholar] [CrossRef]
  36. Unal, B.; Kuzu, O.F.; Jin, Y.; Osorio, D.; Kildal, W.; Pradhan, M.; Kung, S.H.; Oo, H.Z.; Daugaard, M.; Vendelbo, M. Targeting IRE1α reprograms the tumor microenvironment and enhances anti-tumor immunity in prostate cancer. Nat. Commun. 2024, 15, 8895. [Google Scholar] [CrossRef]
  37. Lopes, R.; Caetano, J.; Ferreira, B.; Barahona, F.; Carneiro, E.A.; João, C. The Immune Microenvironment in Multiple Myeloma: Friend or Foe? Cancers 2021, 13, 625. [Google Scholar] [CrossRef]
  38. Wang, S.S.Y.; Chng, W.J.; Liu, H.; de Mel, S. Tumor-Associated Macrophages and Related Myelomonocytic Cells in the Tumor Microenvironment of Multiple Myeloma. Cancers 2022, 14, 5654. [Google Scholar] [CrossRef]
  39. Sadaf, H.; Hong, H.; Maqbool, M.; Emhoff, K.; Lin, J.; Yan, S.; Anwer, F.; Zhao, J. Multiple myeloma etiology and treatment. J. Transl. Genet. Genom. 2022, 6, 63–83. [Google Scholar] [CrossRef]
  40. Dhodapkar, M.V. The immune system in multiple myeloma and precursor states: Lessons and implications for immunotherapy and interception. Am. J. Hematol. 2023, 98, S4–S12. [Google Scholar] [CrossRef]
  41. Verheye, E.; Kancheva, D.; Satilmis, H.; Vandewalle, N.; Fan, R.; Bardet, P.M.; Clappaert, E.J.; Verstaen, K.; De Becker, A.; Vanderkerken, K. A single-cell transcriptomic map of the murine and human multiple myeloma immune microenvironment across disease stages. J. Hematol. Oncol. 2024, 17, 107. [Google Scholar] [CrossRef]
  42. Rasche, L.; Schinke, C.; Touzeau, C.; Minnema, M.C.; van de Donk, N.W.; Rodríguez-Otero, P.; Mateos, M.-V.; Ye, J.C.; Vishwamitra, D.; Singh, I. MM-492 long-term efficacy and safety results from the phase 1/2 MonumenTAL-1 study of Talquetamab, a GPRC5D× CD3 Bispecific antibody, in patients with relapsed/refractory multiple myeloma (RRMM). Clin. Lymphoma Myeloma Leuk. 2024, 24, S561–S562. [Google Scholar] [CrossRef]
  43. Rodriguez-Otero, P.; Ailawadhi, S.; Arnulf, B.; Patel, K.; Cavo, M.; Nooka, A.K.; Manier, S.; Callander, N.; Costa, L.J.; Vij, R. Ide-cel or standard regimens in relapsed and refractory multiple myeloma. N. Engl. J. Med. 2023, 388, 1002–1014. [Google Scholar] [CrossRef] [PubMed]
  44. Martin, T.G.; Mateos, M.V.; Nooka, A.; Banerjee, A.; Kobos, R.; Pei, L.; Qi, M.; Verona, R.; Doyle, M.; Smit, J. Detailed overview of incidence and management of cytokine release syndrome observed with teclistamab in the MajesTEC-1 study of patients with relapsed/refractory multiple myeloma. Cancer 2023, 129, 2035–2046. [Google Scholar] [CrossRef] [PubMed]
  45. Lesokhin, A.M.; Tomasson, M.H.; Arnulf, B.; Bahlis, N.J.; Miles Prince, H.; Niesvizky, R.; Rodrίguez-Otero, P.; Martinez-Lopez, J.; Koehne, G.; Touzeau, C. Elranatamab in relapsed or refractory multiple myeloma: Phase 2 MagnetisMM-3 trial results. Nat. Med. 2023, 29, 2259–2267. [Google Scholar] [CrossRef]
  46. Mo, C.C.; Yee, A.J.; Midha, S.; Hartley-Brown, M.A.; Nadeem, O.; O’Donnell, E.K.; Bianchi, G.; Sperling, A.S.; Laubach, J.P.; Richardson, P.G. Selinexor: Targeting a novel pathway in multiple myeloma. EJHaem 2023, 4, 792–810. [Google Scholar] [CrossRef]
  47. Binder, A.F.; Walker, C.J.; Mark, T.M.; Baljevic, M. Impacting T-cell fitness in multiple myeloma: Potential roles for selinexor and XPO1 inhibitors. Front. Immunol. 2023, 14, 1275329. [Google Scholar] [CrossRef]
  48. Camilli, S.; Lockey, R.; Kolliputi, N. Nuclear Export Inhibitors Selinexor (KPT-330) and Eltanexor (KPT-8602) Provide a Novel Therapy to Reduce Tumor Growth by Induction of PANoptosis. Cell Biochem. Biophys. 2023, 81, 421–426. [Google Scholar] [CrossRef]
  49. Cheng, Y.; Sun, F.; Alapat, D.V.; Wanchai, V.; Mery, D.; Siegel, E.R.; Xu, H.; Johnson, S.; Guo, W.; Bailey, C. Multi-omics reveal immune microenvironment alterations in multiple myeloma and its precursor stages. Blood Cancer J. 2024, 14, 194. [Google Scholar] [CrossRef]
  50. Italiani, P.; Boraschi, D. From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation. Front. Immunol. 2014, 5, 421–426. [Google Scholar] [CrossRef]
  51. Kaur, S.; Raggatt, L.J.; Batoon, L.; Hume, D.A.; Levesque, J.-P.; Pettit, A.R. Role of bone marrow macrophages in controlling homeostasis and repair in bone and bone marrow niches. Semin. Cell Dev. Biol. 2017, 61, 12–21. [Google Scholar] [CrossRef]
  52. Smith, T.D.; Tse, M.J.; Read, E.L.; Liu, W.F. Regulation of macrophage polarization and plasticity by complex activation signals. Integr. Biol. 2016, 8, 946–955. [Google Scholar] [CrossRef]
  53. De Beule, N.; De Veirman, K.; Maes, K.; De Bruyne, E.; Menu, E.; Breckpot, K.; De Raeve, H.; Van Rampelbergh, R.; Van Ginderachter, J.A.; Schots, R. Tumour-associated macrophage-mediated survival of myeloma cells through STAT3 activation. J. Pathol. 2017, 241, 534–546. [Google Scholar] [CrossRef] [PubMed]
  54. Liu, Y.; Yan, H.; Gu, H.; Zhang, E.; He, J.; Cao, W.; Qu, J.; Xu, R.; Cao, L.; He, D.; et al. Myeloma-derived IL-32γ induced PD-L1 expression in macrophages facilitates immune escape via the PFKFB3-JAK1 axis. Oncoimmunology 2022, 11, 2057837. [Google Scholar] [CrossRef] [PubMed]
  55. Zhang, R.; Zhang, D.; Luo, Y.; Sun, Y.; Duan, C.; Yang, J.; Wei, J.; Li, X.; Lu, Y.; Lai, X. miR-34a promotes the immunosuppressive function of multiple myeloma-associated macrophages by dampening the TLR-9 signaling. Cancer Med. 2024, 13, e7387. [Google Scholar] [CrossRef]
  56. Sun, J.; Corradini, S.; Azab, F.; Shokeen, M.; Muz, B.; Miari, K.E.; Maksimos, M.; Diedrich, C.; Asare, O.; Alhallak, K.; et al. IL-10R inhibition reprograms tumor-associated macrophages and reverses drug resistance in multiple myeloma. Leukemia 2024, 38, 2355–2365. [Google Scholar] [CrossRef] [PubMed]
  57. Meng, L.; Tang, Q.; Zhao, J.; Wang, Z.; Wei, L.; Wei, Q.; Yin, L.; Luo, S.; Song, J. S100A9 Derived from Myeloma Associated Myeloid Cells Promotes TNFSF13B/TNFRSF13B-Dependent Proliferation and Survival of Myeloma Cells. Front. Oncol. 2021, 11, 691705. [Google Scholar] [CrossRef]
  58. Akhmetzyanova, I.; Aaron, T.; Galbo, P.; Tikhonova, A.; Dolgalev, I.; Tanaka, M.; Aifantis, I.; Zheng, D.; Zang, X.; Fooksman, D. Tissue-resident macrophages promote early dissemination of multiple myeloma via IL-6 and TNFα. Blood Adv. 2021, 5, 3592–3608. [Google Scholar] [CrossRef]
  59. Konjević, G.M.; Vuletić, A.M.; Mirjačić Martinović, K.M.; Larsen, A.K.; Jurišić, V.B. The role of cytokines in the regulation of NK cells in the tumor environment. Cytokine 2019, 117, 30–40. [Google Scholar] [CrossRef]
  60. Cifaldi, L.; Prencipe, G.; Caiello, I.; Bracaglia, C.; Locatelli, F.; De Benedetti, F.; Strippoli, R. Inhibition of natural killer cell cytotoxicity by interleukin-6: Implications for the pathogenesis of macrophage activation syndrome. Arthritis Rheumatol. 2015, 67, 3037–3046. [Google Scholar] [CrossRef]
  61. Jurišić, V.; Čolović, M. Correlation of sera TNF-α with percentage of bone marrow plasma cells, LDH, β 2-microglobulin, and clinical stage in multiple myeloma. Med. Oncol. 2002, 19, 133–139. [Google Scholar] [CrossRef]
  62. Gu, J.; Huang, X.; Zhang, Y.; Bao, C.; Zhou, Z.; Jin, J. Cytokine profiles in patients with newly diagnosed multiple myeloma: Survival is associated with IL-6 and IL-17A levels. Cytokine 2021, 138, 155358. [Google Scholar] [CrossRef]
  63. Pop, V.S.; Iancu, M.; Țigu, A.B.; Adam, A.; Tomoaia, G.; Farcas, A.D.; Bojan, A.S.; Parvu, A. The Impact of Modern Bone Markers in Multiple Myeloma: Prospective Analyses Pre and Post-First Line Treatment. Curr. Issues Mol. Biol. 2024, 46, 9330–9341. [Google Scholar] [CrossRef] [PubMed]
  64. Tian, X.; Sun, M.; Wu, H.; Chen, C.; Li, H.; Qiu, S.; Wang, T.; Han, J.; Xiao, Q.; Chen, K. Exosome-derived miR-let-7c promotes angiogenesis in multiple myeloma by polarizing M2 macrophages in the bone marrow microenvironment. Leuk. Res. 2021, 105, 106566. [Google Scholar] [CrossRef] [PubMed]
  65. Sun, M.; Xiao, Q.; Wang, X.; Yang, C.; Chen, C.; Tian, X.; Wang, S.; Li, H.; Qiu, S.; Shu, J. Tumor-associated macrophages modulate angiogenesis and tumor growth in a xenograft mouse model of multiple myeloma. Leuk. Res. 2021, 110, 106709. [Google Scholar] [CrossRef] [PubMed]
  66. Zhang, D.; Huang, J.; Wang, F.; Ding, H.; Cui, Y.; Yang, Y.; Xu, J.; Luo, H.; Gao, Y.; Pan, L. BMI1 regulates multiple myeloma-associated macrophage’s pro-myeloma functions. Cell Death Dis. 2021, 12, 495. [Google Scholar] [CrossRef]
  67. Hofbauer, D.; Mougiakakos, D.; Broggini, L.; Zaiss, M.; Büttner-Herold, M.; Bach, C.; Spriewald, B.; Neumann, F.; Bisht, S.; Nolting, J. β2-microglobulin triggers NLRP3 inflammasome activation in tumor-associated macrophages to promote multiple myeloma progression. Immunity 2021, 54, 1772–1787. [Google Scholar] [CrossRef]
  68. Zhang, J.; Liu, Z.; Cao, P.; Wang, H.; Liu, H.; Hua, L.; Xue, H.; Fu, R. Tumor-associated macrophages regulate the function of cytotoxic T lymphocyte through PD-1/PD-L1 pathway in multiple myeloma. Cancer Med. 2022, 11, 4838–4848. [Google Scholar] [CrossRef]
  69. Chen, X.; Chen, J.; Zhang, W.; Sun, R.; Liu, T.; Zheng, Y.; Wu, Y. Prognostic value of diametrically polarized tumor-associated macrophages in multiple myeloma. Oncotarget 2017, 8, 112685–112696. [Google Scholar] [CrossRef]
  70. Wang, H.; Hu, W.M.; Xia, Z.J.; Liang, Y.; Lu, Y.; Lin, S.X.; Tang, H. High numbers of CD163+ tumor-associated macrophages correlate with poor prognosis in multiple myeloma patients receiving bortezomib-based regimens. J. Cancer 2019, 10, 3239–3245. [Google Scholar] [CrossRef]
  71. Niblock, A.; Rajendran, S.; Laverty, C.; Logue, P.; Alexander, H.D. Assessing the frequency of CD163+ tumor-associated macrophages and CD3+ T lymphocytes between MGUS and plasma cell myeloma. Exp. Hematol. 2023, 119–120, 3–7. [Google Scholar] [CrossRef]
  72. Katoh, H.; Okamoto, R.; Yokota, M.; Naito, K.; Kikuchi, M.; Tokito, T.; Sangai, T.; Yamashita, K. CD163(+) Tumor-Associated Macrophage Recruitment Predicts Papillary Thyroid Cancer Recurrence. J. Surg. Res. 2024, 303, 532–544. [Google Scholar] [CrossRef] [PubMed]
  73. Jääskeläinen, M.M.; Tumelius, R.; Hämäläinen, K.; Rilla, K.; Oikari, S.; Rönkä, A.; Selander, T.; Mannermaa, A.; Tiainen, S.; Auvinen, P. High Numbers of CD163+ Tumor-Associated Macrophages Predict Poor Prognosis in HER2+ Breast Cancer. Cancers 2024, 16, 634. [Google Scholar] [CrossRef] [PubMed]
  74. De Matos Rodrigues, J.; Lokhande, L.; Olsson, L.M.; Hassan, M.; Johansson, A.; Janská, A.; Kumar, D.; Schmidt, L.; Nikkarinen, A.; Hollander, P.; et al. CD163+ macrophages in mantle cell lymphoma induce activation of prosurvival pathways and immune suppression. Blood Adv. 2024, 8, 4370–4385. [Google Scholar] [CrossRef] [PubMed]
  75. Chen, Y.; Ouyang, D.; Wang, Y.; Pan, Q.; Zhao, J.; Chen, H.; Yang, X.; Tang, Y.; Wang, Q.; Li, Y.; et al. EBV promotes TCR-T-cell therapy resistance by inducing CD163+M2 macrophage polarization and MMP9 secretion. J. Immunother. Cancer 2024, 12, e008375. [Google Scholar] [CrossRef]
  76. Kristiansen, M.; Graversen, J.H.; Jacobsen, C.; Sonne, O.; Hoffman, H.J.; Law, S.K.; Moestrup, S.K. Identification of the haemoglobin scavenger receptor. Nature 2001, 409, 198–201. [Google Scholar] [CrossRef]
  77. Fabriek, B.O.; Dijkstra, C.D.; van den Berg, T.K. The macrophage scavenger receptor CD163. Immunobiology 2005, 210, 153–160. [Google Scholar] [CrossRef]
  78. Andersen, M.N.; Andersen, N.F.; Lauridsen, K.L.; Etzerodt, A.; Sorensen, B.S.; Abildgaard, N.; Plesner, T.; Hokland, M.; Møller, H.J. STAT3 is over-activated within CD163(pos) bone marrow macrophages in both Multiple Myeloma and the benign pre-condition MGUS. Cancer Immunol. Immunother. 2022, 71, 177–187. [Google Scholar] [CrossRef]
  79. Mougiakakos, D.; Bach, C.; Bottcher, M.; Beier, F.; Rohner, L.; Stoll, A.; Rehli, M.; Gebhard, C.; Lischer, C.; Eberhardt, M.; et al. The IKZF1-IRF4/IRF5 Axis Controls Polarization of Myeloma-Associated Macrophages. Cancer Immunol. Res. 2021, 9, 265–278. [Google Scholar] [CrossRef]
  80. Coulton, A.; Murai, J.; Qian, D.; Thakkar, K.; Lewis, C.E.; Litchfield, K. Using a pan-cancer atlas to investigate tumour associated macrophages as regulators of immunotherapy response. Nat. Commun. 2024, 15, 5665. [Google Scholar] [CrossRef]
  81. Yang, T.; Deng, Z.; Xu, L.; Li, X.; Yang, T.; Qian, Y.; Lu, Y.; Tian, L.; Yao, W.; Wang, J. Macrophages-aPKCɩ-CCL5 feedback loop modulates the progression and chemoresistance in cholangiocarcinoma. J. Exp. Clin. Cancer Res. 2022, 41, 23. [Google Scholar] [CrossRef]
  82. Guan, W.; Li, F.; Zhao, Z.; Zhang, Z.; Hu, J.; Zhang, Y. Tumor-associated macrophage promotes the survival of cancer cells upon docetaxel chemotherapy via the CSF1/CSF1R–CXCL12/CXCR4 axis in castration-resistant prostate cancer. Genes 2021, 12, 773. [Google Scholar] [CrossRef] [PubMed]
  83. Mehta, A.K.; Cheney, E.M.; Hartl, C.A.; Pantelidou, C.; Oliwa, M.; Castrillon, J.A.; Lin, J.-R.; Hurst, K.E.; de Oliveira Taveira, M.; Johnson, N.T. Targeting immunosuppressive macrophages overcomes PARP inhibitor resistance in BRCA1-associated triple-negative breast cancer. Nat. Cancer 2021, 2, 66–82. [Google Scholar] [CrossRef] [PubMed]
  84. He, Z.; Chen, D.; Wu, J.; Sui, C.; Deng, X.; Zhang, P.; Chen, Z.; Liu, D.; Yu, J.; Shi, J. Yes associated protein 1 promotes resistance to 5-fluorouracil in gastric cancer by regulating GLUT3-dependent glycometabolism reprogramming of tumor-associated macrophages. Arch. Biochem. Biophys. 2021, 702, 108838. [Google Scholar] [CrossRef]
  85. Beider, K.; Voevoda-Dimenshtein, V.; Zoabi, A.; Rosenberg, E.; Magen, H.; Ostrovsky, O.; Shimoni, A.; Weiss, L.; Abraham, M.; Peled, A. CXCL13 chemokine is a novel player in multiple myeloma osteolytic microenvironment, M2 macrophage polarization, and tumor progression. J. Hematol. Oncol. 2022, 15, 144. [Google Scholar] [CrossRef]
  86. Razi, B.; Soleimani, M.; Soufi-Zomorrod, M.; Adeli, A.; Davoudi, N. Multiple myeloma cell-derived exosomes promote favorable tumor functional performance by polarizing macrophages toward M2-like cells. Apmis 2023, 131, 381–393. [Google Scholar] [CrossRef]
  87. Pucci, M.; Raimondo, S.; Urzì, O.; Moschetti, M.; Di Bella, M.A.; Conigliaro, A.; Caccamo, N.; La Manna, M.P.; Fontana, S.; Alessandro, R. Tumor-Derived Small Extracellular Vesicles Induce Pro-Inflammatory Cytokine Expression and PD-L1 Regulation in M0 Macrophages via IL-6/STAT3 and TLR4 Signaling Pathways. Int. J. Mol. Sci. 2021, 22, 12118. [Google Scholar] [CrossRef]
  88. Jibril, A.; Hellmich, C.; Wojtowicz, E.E.; Hampton, K.; Maynard, R.; De Silva, R.; Fowler-Shorten, D.J.; Mistry, J.J.; Moore, J.A.; Bowles, K.M.; et al. Plasma cell-derived mtDAMPs activate the macrophage STING pathway, promoting myeloma progression. Blood 2023, 141, 3065–3077. [Google Scholar] [CrossRef]
  89. Liu, Y.; Zhao, Y.; Li, B.; Chen, X.; Xiong, H.; Huang, C. Decreased STING predicts adverse efficacy in bortezomib regimens and poor survival in multiple myeloma. Clin. Exp. Med. 2025, 25, 1–12. [Google Scholar] [CrossRef]
  90. Veglia, F.; Sanseviero, E.; Gabrilovich, D.I. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat. Rev. Immunol. 2021, 21, 485–498. [Google Scholar] [CrossRef]
  91. Giannotta, C.; Autino, F.; Massaia, M. The immune suppressive tumor microenvironment in multiple myeloma: The contribution of myeloid-derived suppressor cells. Front. Immunol. 2023, 13, 1102471. [Google Scholar] [CrossRef]
  92. Lasser, S.A.; Ozbay Kurt, F.G.; Arkhypov, I.; Utikal, J.; Umansky, V. Myeloid-derived suppressor cells in cancer and cancer therapy. Nat. Rev. Clin. Oncol. 2024, 21, 147–164. [Google Scholar] [CrossRef] [PubMed]
  93. Nepal, M.R.; Shah, S.; Kang, K.-T. Dual roles of myeloid-derived suppressor cells in various diseases: A review. Arch. Pharmacal Res. 2024, 47, 597–616. [Google Scholar] [CrossRef] [PubMed]
  94. Dhar, S.; Chakravarti, M.; Ganguly, N.; Saha, A.; Dasgupta, S.; Bera, S.; Sarkar, A.; Roy, K.; Das, J.; Bhuniya, A. High monocytic MDSC signature predicts multi-drug resistance and cancer relapse in non-Hodgkin lymphoma patients treated with R-CHOP. Front. Immunol. 2024, 14, 1303959. [Google Scholar] [CrossRef]
  95. Kuwahara-Ota, S.; Shimura, Y.; Steinebach, C.; Isa, R.; Yamaguchi, J.; Nishiyama, D.; Fujibayashi, Y.; Takimoto-Shimomura, T.; Mizuno, Y.; Matsumura-Kimoto, Y. Lenalidomide and pomalidomide potently interfere with induction of myeloid-derived suppressor cells in multiple myeloma. Br. J. Haematol. 2020, 191, 784–795. [Google Scholar] [CrossRef]
  96. Lim, J.-Y.; Kim, T.-W.; Ryu, D.-B.; Park, S.-S.; Lee, S.-E.; Kim, B.-S.; Min, C.-K. Myeloma-secreted galectin-1 potently interacts with CD304 on monocytic myeloid-derived suppressor cells. Cancer Immunol. Res. 2021, 9, 503–513. [Google Scholar] [CrossRef]
  97. Bae, M.-H.; Park, C.-J.; Suh, C. Increased monocytic myeloid-derived suppressor cells in whole blood predict poor prognosis in patients with plasma cell myeloma. J. Clin. Med. 2021, 10, 4717. [Google Scholar] [CrossRef]
  98. Perez, C.; Botta, C.; Zabaleta, A.; Puig, N.; Cedena, M.-T.; Goicoechea, I.; Alameda, D.; San José-Eneriz, E.; Merino, J.; Rodríguez-Otero, P. Immunogenomic identification and characterization of granulocytic myeloid-derived suppressor cells in multiple myeloma. Blood J. Am. Soc. Hematol. 2020, 136, 199–209. [Google Scholar] [CrossRef]
  99. Mizuhara, K.; Shimura, Y.; Tsukamoto, T.; Kanai, A.; Kuwahara-Ota, S.; Yamaguchi, J.; Muramatsu, A.; Okamoto, H.; Taminishi-Katsuragawa, Y.; Kawaji-Kanayama, Y.; et al. Tumour-derived exosomes promote the induction of monocytic myeloid-derived suppressor cells from peripheral blood mononuclear cells by delivering miR-106a-5p and miR-146a-5p in multiple myeloma. Br. J. Haematol. 2023, 203, 426–438. [Google Scholar] [CrossRef]
  100. Xiong, W.; Xiao, L.; Duan, R.; Wang, Q.; Xian, M.; Zhang, C.; Su, P.; Yabo, L.; Zhong, L.; Qian, J. Depletion of myeloid-derived suppressor cells sensitizes murine multiple myeloma to PD-1 checkpoint inhibitors. J. ImmunoTherapy Cancer 2025, 13, 008979. [Google Scholar] [CrossRef]
  101. Aleman, A.; Zhao, R.; Grossman, L.; Sanawar, R.; Aluri, S.; Mohindru, M.; Dutta, R.P.; Reci, S.; Vieira, J.; Melnekoff, D. BCMA CART Therapy Failure in Myeloma Is Associated with Immunosuppressive S100A8/9 Overexpression and Can be Ameliorated with Novel Monoclonal Antibodies. Blood 2024, 144, 589. [Google Scholar] [CrossRef]
  102. Lubin, R.; Patel, A.A.; Mackerodt, J.; Zhang, Y.; Gvili, R.; Mulder, K.; Dutertre, C.-A.; Jalali, P.; Glanville, J.R.W.; Hazan, I.; et al. The lifespan and kinetics of human dendritic cell subsets and their precursors in health and inflammation. J. Exp. Med. 2024, 221, e20220867. [Google Scholar] [CrossRef] [PubMed]
  103. Hoefsmit, E.P.; van Royen, P.T.; Rao, D.; Stunnenberg, J.A.; Dimitriadis, P.; Lieftink, C.; Morris, B.; Rozeman, E.A.; Reijers, I.L.; Lacroix, R. Inhibitor of apoptosis proteins antagonist induces T-cell proliferation after cross-presentation by dendritic cells. Cancer Immunol. Res. 2023, 11, 450–465. [Google Scholar] [CrossRef] [PubMed]
  104. Tominaga, M.; Uto, T.; Fukaya, T.; Mitoma, S.; Riethmacher, D.; Umekita, K.; Yamashita, Y.; Sato, K. Crucial role of dendritic cells in the generation of anti-tumor T-cell responses and immunogenic tumor microenvironment to suppress tumor development. Front. Immunol. 2024, 15, 1200461. [Google Scholar] [CrossRef] [PubMed]
  105. Suzuki, S.; Komiya, K.; Tsuda, S.; Yoshino, M.; Kaisho, T.; Bergsagel, P.L.; Kawamura, K.; Fukuda, T.; Tokoyoda, K. Type I-conventional dendritic cells support the progression of multiple myeloma in the bone marrow. Front. Immunol. 2024, 15, 1444821. [Google Scholar] [CrossRef]
  106. Knight, A.; Rihova, L.; Kralova, R.; Penka, M.; Adam, Z.; Pour, L.; Piskacek, M.; Hajek, R. Plasmacytoid Dendritic Cells in Patients with MGUS and Multiple Myeloma. J. Clin. Med. 2021, 10, 3717. [Google Scholar] [CrossRef]
  107. Ishibashi, M.; Sunakawa-Kii, M.; Imai, Y.; Yamaguchi, H.; Morita, R.; Tamura, H. Myeloma Cell-Derived Monoclonal Immunoglobulins Trigger IL-1β Secretion Via Inflammasome Activation in Tolerogenic Dendritic Cells. Blood 2024, 144, 1900. [Google Scholar] [CrossRef]
  108. Balasa, B.; Yun, R.; Belmar, N.A.; Fox, M.; Chao, D.T.; Robbins, M.D.; Starling, G.C.; Rice, A.G. Elotuzumab enhances natural killer cell activation and myeloma cell killing through interleukin-2 and TNF-α pathways. Cancer Immunol. Immunother. 2015, 64, 61–73. [Google Scholar] [CrossRef]
  109. Pahl, J.H.; Koch, J.; Götz, J.-J.; Arnold, A.; Reusch, U.; Gantke, T.; Rajkovic, E.; Treder, M.; Cerwenka, A. CD16A activation of NK cells promotes NK cell proliferation and memory-like cytotoxicity against cancer cells. Cancer Immunol. Res. 2018, 6, 517–527. [Google Scholar] [CrossRef]
  110. Muntasell, A.; Rojo, F.; Servitja, S.; Rubio-Perez, C.; Cabo, M.; Tamborero, D.; Costa-García, M.; Martínez-Garcia, M.; Menéndez, S.; Vazquez, I.; et al. NK Cell Infiltrates and HLA Class I Expression in Primary HER2+ Breast Cancer Predict and Uncouple Pathological Response and Disease-free Survival. Clin. Cancer Res. 2019, 25, 1535–1545. [Google Scholar] [CrossRef]
  111. Konjević, G.; Jović, V.; Jurišić, V.; Radulović, S.; Jelić, S.; Spužić, I. IL-2-mediated augmentation of NK-cell activity and activation antigen expression on NK-and T-cell subsets in patients with metastatic melanoma treated with interferon-α and DTIC. Clin. Exp. Metastasis 2003, 20, 647–655. [Google Scholar] [CrossRef]
  112. Sönmez, C.; Wölfer, J.; Holling, M.; Brokinkel, B.; Stummer, W.; Wiendl, H.; Thomas, C.; Schulte-Mecklenbeck, A.; Grauer, O.M. Blockade of inhibitory killer cell immunoglobulin-like receptors and IL-2 triggering reverses the functional hypoactivity of tumor-derived NK-cells in glioblastomas. Sci. Rep. 2022, 12, 6769. [Google Scholar] [CrossRef] [PubMed]
  113. Skak, K.; Frederiksen, K.S.; Lundsgaard, D. Interleukin-21 activates human natural killer cells and modulates their surface receptor expression. Immunology 2008, 123, 575–583. [Google Scholar] [CrossRef] [PubMed]
  114. Souza-Fonseca-Guimaraes, F.; Young, A.; Mittal, D.; Martinet, L.; Bruedigam, C.; Takeda, K.; Andoniou, C.E.; Degli-Esposti, M.A.; Hill, G.R.; Smyth, M.J. NK cells require IL-28R for optimal in vivo activity. Proc. Natl. Acad. Sci. USA 2015, 112, 2376–2384. [Google Scholar] [CrossRef]
  115. Prager, I.; Liesche, C.; Van Ooijen, H.; Urlaub, D.; Verron, Q.; Sandström, N.; Fasbender, F.; Claus, M.; Eils, R.; Beaudouin, J. NK cells switch from granzyme B to death receptor–mediated cytotoxicity during serial killing. J. Exp. Med. 2019, 216, 2113–2127. [Google Scholar] [CrossRef]
  116. Guan, X.; Guo, H.; Guo, Y.; Han, Q.; Li, Z.; Zhang, C. Perforin 1 in cancer: Mechanisms, therapy, and outlook. Biomolecules 2024, 14, 910. [Google Scholar] [CrossRef]
  117. Konjević, G.; Vuletić, A.; Martinović, K.M.; Colović, N.; Čolović, M.; Jurišić, V. Decreased CD161 activating and increased CD158a inhibitory receptor expression on NK cells underlies impaired NK cell cytotoxicity in patients with multiple myeloma. J. Clin. Pathol. 2016, 69, 1009–1016. [Google Scholar] [CrossRef]
  118. Pazina, T.; MacFarlane IV, A.W.; Bernabei, L.; Dulaimi, E.; Kotcher, R.; Yam, C.; Bezman, N.A.; Robbins, M.D.; Ross, E.A.; Campbell, K.S. Alterations of NK cell phenotype in the disease course of multiple myeloma. Cancers 2021, 13, 226. [Google Scholar] [CrossRef]
  119. D’Souza, C.; Keam, S.P.; Yeang, H.X.A.; Neeson, M.; Richardson, K.; Hsu, A.K.; Canfield, R.; Bezman, N.; Robbins, M.; Quach, H. Myeloma natural killer cells are exhausted and have impaired regulation of activation. Haematologica 2021, 106, 2522. [Google Scholar] [CrossRef]
  120. Seymour, F.; Cavenagh, J.D.; Mathews, J.; Gribben, J.G. NK cells CD56bright and CD56dim subset cytokine loss and exhaustion is associated with impaired survival in myeloma. Blood Adv. 2022, 6, 5152–5159. [Google Scholar] [CrossRef]
  121. Jurisic, V.; Srdic, T.; Konjevic, G.; Markovic, O.; Colovic, M. Clinical stage-depending decrease of NK cell activity in multiple myeloma patients. Med. Oncol. 2007, 24, 312–317. [Google Scholar] [CrossRef]
  122. Bernal, M.; Garrido, P.; Jiménez, P.; Carretero, R.; Almagro, M.; López, P.; Navarro, P.; Garrido, F.; Ruiz-Cabello, F. Changes in activatory and inhibitory natural killer (NK) receptors may induce progression to multiple myeloma: Implications for tumor evasion of T and NK cells. Hum. Immunol. 2009, 70, 854–857. [Google Scholar] [CrossRef] [PubMed]
  123. Blanquart, E.; Ekren, R.; Rigaud, B.; Joubert, M.-V.; Baylot, V.; Daunes, H.; Cuisinier, M.; Villard, M.; Carrié, N.; Mazzotti, C. NK cells with adhesion defects and reduced cytotoxic functions are associated with a poor prognosis in multiple myeloma. Blood 2024, 144, 1271–1283. [Google Scholar] [CrossRef] [PubMed]
  124. Wang, Y.; Bergman, D.R.; Trujillo, E.; Pearson, A.T.; Sweis, R.F.; Jackson, T.L. Mathematical model predicts tumor control patterns induced by fast and slow cytotoxic T lymphocyte killing mechanisms. Sci. Rep. 2023, 13, 22541. [Google Scholar] [CrossRef]
  125. Lei, X.; de Groot, D.C.; Welters, M.J.; de Wit, T.; Schrama, E.; van Eenennaam, H.; Santegoets, S.J.; Oosenbrug, T.; van der Veen, A.; Vos, J.L. CD4+ T cells produce IFN-I to license cDC1s for induction of cytotoxic T-cell activity in human tumors. Cell. Mol. Immunol. 2024, 21, 374–392. [Google Scholar] [CrossRef]
  126. Glasner, A.; Rose, S.A.; Sharma, R.; Gudjonson, H.; Chu, T.; Green, J.A.; Rampersaud, S.; Valdez, I.K.; Andretta, E.S.; Dhillon, B.S. Conserved transcriptional connectivity of regulatory T cells in the tumor microenvironment informs new combination cancer therapy strategies. Nat. Immunol. 2023, 24, 1020–1035. [Google Scholar] [CrossRef]
  127. Beyer, M.; Kochanek, M.; Giese, T.; Endl, E.; Weihrauch, M.R.; Knolle, P.A.; Classen, S.; Schultze, J.L. In vivo peripheral expansion of naive CD4+CD25high FoxP3+ regulatory T cells in patients with multiple myeloma. Blood 2006, 107, 3940–3949. [Google Scholar] [CrossRef]
  128. Giannopoulos, K.; Kaminska, W.; Hus, I.; Dmoszynska, A. The frequency of T regulatory cells modulates the survival of multiple myeloma patients: Detailed characterisation of immune status in multiple myeloma. Br. J. Cancer 2012, 106, 546–552. [Google Scholar] [CrossRef]
  129. Muthu Raja, K.R.; Kubiczkova, L.; Rihova, L.; Piskacek, M.; Vsianska, P.; Hezova, R.; Pour, L.; Hajek, R. Functionally Suppressive CD8 T Regulatory Cells Are Increased in Patients with Multiple Myeloma: A Cause for Immune Impairment. PLoS ONE 2012, 7, e49446. [Google Scholar] [CrossRef]
  130. Braga, W.M.T.; da Silva, B.R.; de Carvalho, A.C.; Maekawa, Y.H.; Bortoluzzo, A.B.; Rizzatti, E.G.; Atanackovic, D.; Colleoni, G.W.B. FOXP3 and CTLA4 overexpression in multiple myeloma bone marrow as a sign of accumulation of CD4+ T regulatory cells. Cancer Immunol. Immunother. 2014, 63, 1189–1197. [Google Scholar] [CrossRef]
  131. Hadjiaggelidou, C.; Mandala, E.; Terpos, E.; Yiannaki, E.; Markala, D.; Triantafyllou, T.; Papatheodorou, A.; Gkastari, V.; Verrou, E.; Papanikolaou, A.; et al. Evaluation of regulatory T cells (Tregs) alterations in patients with multiple myeloma treated with bortezomib or lenalidomide plus dexamethasone: Correlations with treatment outcome. Ann. Hematol. 2019, 98, 1457–1466. [Google Scholar] [CrossRef]
  132. Kawano, Y.; Zavidij, O.; Park, J.; Moschetta, M.; Kokubun, K.; Mouhieddine, T.H.; Manier, S.; Mishima, Y.; Murakami, N.; Bustoros, M. Blocking IFNAR1 inhibits multiple myeloma–driven Treg expansion and immunosuppression. J. Clin. Investig. 2018, 128, 2487–2499. [Google Scholar] [CrossRef] [PubMed]
  133. Eskandari, S.K.; Allos, H.; Safadi, J.M.; Sulkaj, I.; Sanders, J.S.F.; Cravedi, P.; Ghobrial, I.M.; Berger, S.P.; Azzi, J.R. Type I interferons augment regulatory T cell polarization in concert with ancillary cytokine signals. Front. Transpl. 2023, 2, 1149334. [Google Scholar] [CrossRef] [PubMed]
  134. Alrasheed, N.; Lee, L.; Ghorani, E.; Henry, J.Y.; Conde, L.; Chin, M.; Galas-Filipowicz, D.; Furness, A.J.; Chavda, S.J.; Richards, H. Marrow-infiltrating regulatory T cells correlate with the presence of dysfunctional CD4+ PD-1+ cells and inferior survival in patients with newly diagnosed multiple myeloma. Clin. Cancer Res. 2020, 26, 3443–3454. [Google Scholar] [CrossRef] [PubMed]
  135. Zhang, D.; Zhan, D.; Zhang, R.; Sun, Y.; Duan, C.; Yang, J.; Wei, J.; Li, X.; Lu, Y.; Lai, X. Treg-derived TGF-β1 dampens cGAS-STING signaling to downregulate the expression of class I MHC complex in multiple myeloma. Sci. Rep. 2024, 14, 11593. [Google Scholar] [CrossRef]
  136. Dahlhoff, J.; Manz, H.; Steinfatt, T.; Delgado-Tascon, J.; Seebacher, E.; Schneider, T.; Wilnit, A.; Mokhtari, Z.; Tabares, P.; Böckle, D. Transient regulatory T-cell targeting triggers immune control of multiple myeloma and prevents disease progression. Leukemia 2022, 36, 790–800. [Google Scholar] [CrossRef]
  137. Takahashi, S.; Minnie, S.A.; Ensbey, K.S.; Schmidt, C.R.; Sekiguchi, T.; Legg, S.R.; Zhang, P.; Koyama, M.; Olver, S.D.; Collinge, A.D. Regulatory T cells suppress myeloma-specific immunity during autologous stem cell mobilization and transplantation. Blood 2024, 143, 1656–1669. [Google Scholar] [CrossRef]
  138. Rossi, M.; Altomare, E.; Botta, C.; Gallo Cantafio, M.E.; Sarvide, S.; Caracciolo, D.; Riillo, C.; Gaspari, M.; Taverna, D.; Conforti, F. miR-21 antagonism abrogates Th17 tumor promoting functions in multiple myeloma. Leukemia 2021, 35, 823–834. [Google Scholar] [CrossRef]
  139. Zhang, L.; Zhong, H.; Fan, J.; Mao, J.; Li, Y. Clinical significance of T helper cell subsets in the peripheral blood and bone marrow of patients with multiple myeloma. Front. Immunol. 2024, 15, 1445530. [Google Scholar] [CrossRef]
  140. Zhang, R.; Chen, S.; Luo, T.; Guo, S.; Qu, J. Activated Tim-3/Galectin-9 participated in the development of multiple myeloma by negatively regulating Cd4 T cells. Hematology 2024, 29, 2288481. [Google Scholar] [CrossRef]
  141. Favaloro, J.; Bryant, C.E.; Abadir, E.; Gardiner, S.; Yang, S.; King, T.; Nassif, N.; Sedger, L.M.; Boyle, R.; Joshua, D.E.; et al. Single-cell analysis of the CD8(+) T-cell compartment in multiple myeloma reveals disease specific changes are chiefly restricted to a CD69(-) subset suggesting potent cytotoxic effectors exist within the tumor bed. Haematologica 2024, 109, 1220–1232. [Google Scholar] [CrossRef]
  142. Gardeney, H.; Narbeburu, E.; Barbarin, A.; Moya, N.; Bobin, A.; Levy, A.; Gruchet, C.; Leleu, X.; Herbelin, A.; Gombert, J.-M. NK Cells and KIR+/NKG2A+ Innate like CD8+ T Lymphocytes Features in the Bone Marrow of Multiple Myeloma Patients. Blood 2024, 144, 6865. [Google Scholar] [CrossRef]
  143. Larrayoz, M.; Garcia-Barchino, M.J.; Celay, J.; Etxebeste, A.; Jimenez, M.; Perez, C.; Ordoñez, R.; Cobaleda, C.; Botta, C.; Fresquet, V. Preclinical models for prediction of immunotherapy outcomes and immune evasion mechanisms in genetically heterogeneous multiple myeloma. Nat. Med. 2023, 29, 632–645. [Google Scholar] [CrossRef] [PubMed]
  144. Awwad, M.H.; Mahmoud, A.; Bruns, H.; Echchannaoui, H.; Kriegsmann, K.; Lutz, R.; Raab, M.S.; Bertsch, U.; Munder, M.; Jauch, A. Selective elimination of immunosuppressive T cells in patients with multiple myeloma. Leukemia 2021, 35, 2602–2615. [Google Scholar] [CrossRef]
  145. Vishwamitra, D.; Skerget, S.; Cortes, D.; Lau, O.; Davis, C.; Renaud, T.; Tolbert, J.; Hilder, B.W.; Masterson, T.J.; Campagna, M. Mechanisms of resistance and relapse with talquetamab in patients with relapsed/refractory multiple myeloma from the phase 1/2 monumenTAL-1 study. Blood 2023, 142, 1933. [Google Scholar] [CrossRef]
  146. Casey, M.; Lee, C.; Kwok, W.Y.; Law, S.C.; Corvino, D.; Gandhi, M.K.; Harrison, S.J.; Nakamura, K. Regulatory T cells hamper the efficacy of T-cell-engaging bispecific antibody therapy. Haematologica 2023, 109, 787. [Google Scholar] [CrossRef]
  147. Firestone, R.S.; McAvoy, D.; Shekarkhand, T.; Serrano, E.; Hamadeh, I.; Wang, A.; Zhu, M.; Qin, W.G.; Patel, D.; Tan, C.R. CD8 effector T cells enhance teclistamab response in BCMA-exposed and-naïve multiple myeloma. Blood Adv. 2024, 8, 1600–1611. [Google Scholar] [CrossRef]
  148. Kriegsmann, K.; Ton, G.N.H.Q.; Awwad, M.H.; Benner, A.; Bertsch, U.; Besemer, B.; Hänel, M.; Fenk, R.; Munder, M.; Dürig, J. CD8+ CD28− regulatory T cells after induction therapy predict progression-free survival in myeloma patients: Results from the GMMG-HD6 multicenter phase III study. Leukemia 2024, 38, 1621–1625. [Google Scholar] [CrossRef]
  149. Stawicki, S.P.; Steffen, J.M. The nuclear pore complex: A comprehensive review of structure and function. Int. J. Acad. Med. 2017, 3, 24–38. [Google Scholar] [CrossRef]
  150. Wing, C.E.; Fung, H.Y.J.; Chook, Y.M. Karyopherin-mediated nucleocytoplasmic transport. Nat. Rev. Mol. Cell Biol. 2022, 23, 307–328. [Google Scholar] [CrossRef]
  151. Ibarra, A.; Hetzer, M.W. Nuclear pore proteins and the control of genome functions. Genes Dev. 2015, 29, 337–349. [Google Scholar] [CrossRef]
  152. Nguyen, K.T.; Holloway, M.P.; Altura, R.A. The CRM1 nuclear export protein in normal development and disease. Int. J. Biochem. Mol. Biol. 2012, 3, 137–151. [Google Scholar] [PubMed]
  153. Fung, H.Y.; Fu, S.C.; Chook, Y.M. Nuclear export receptor CRM1 recognizes diverse conformations in nuclear export signals. eLife 2017, 6, e23961. [Google Scholar] [CrossRef] [PubMed]
  154. Tan, Y.; Chen, G.; He, R.-Q.; Huang, Z.-G.; Dang, Y.-W.; Luo, J.-Y.; Huang, W.-Y.; Huang, S.-N.; Liu, R.; Feng, Z.-B. Clinicopathological and prognostic significance of XPO1 in solid tumors: Meta-analysis and TCGA analysis. Expert Rev. Mol. Diagn. 2023, 23, 607–618. [Google Scholar] [CrossRef]
  155. Xu, Z.; Pan, B.; Miao, Y.; Li, Y.; Qin, S.; Liang, J.; Kong, Y.; Zhang, X.; Tang, J.; Xia, Y. Prognostic value and therapeutic targeting of XPO1 in chronic lymphocytic leukemia. Clin. Exp. Med. 2023, 23, 2651–2662. [Google Scholar] [CrossRef]
  156. Kudo, N.; Matsumori, N.; Taoka, H.; Fujiwara, D.; Schreiner, E.P.; Wolff, B.; Yoshida, M.; Horinouchi, S. Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region. Proc. Natl. Acad. Sci. USA 1999, 96, 9112–9117. [Google Scholar] [CrossRef]
  157. Wolff, B.; Sanglier, J.-J.; Wang, Y. Leptomycin B is an inhibitor of nuclear export: Inhibition of nucleo-cytoplasmic translocation of the human immunodeficiency virus type 1 (HIV-1) Rev protein and Rev-dependent mRNA. Chem. Biol. 1997, 4, 139–147. [Google Scholar] [CrossRef]
  158. Etchin, J.; Sun, Q.; Kentsis, A.; Farmer, A.; Zhang, Z.C.; Sanda, T.; Mansour, M.R.; Barcelo, C.; McCauley, D.; Kauffman, M.; et al. Antileukemic activity of nuclear export inhibitors that spare normal hematopoietic cells. Leukemia 2013, 27, 66–74. [Google Scholar] [CrossRef]
  159. Razak, A.R.A.; Mau-Soerensen, M.; Gabrail, N.Y.; Gerecitano, J.F.; Shields, A.F.; Unger, T.J.; Saint-Martin, J.R.; Carlson, R.; Landesman, Y.; McCauley, D.; et al. First-in-Class, First-in-Human Phase I Study of Selinexor, a Selective Inhibitor of Nuclear Export, in Patients with Advanced Solid Tumors. J. Clin. Oncol. 2016, 34, 4142–4150. [Google Scholar] [CrossRef]
  160. Karyopharm Therapeutics. Karyopharm and Menarini Group Receive Positive CHMP Opinion for NEXPOVIO® (selinexor) for the Treatment of Patients with Refractory Multiple Myeloma. Available online: https://investors.karyopharm.com/2022-05-20-Karyopharm-and-Menarini-Group-Receive-Positive-CHMP-Opinion-for-NEXPOVIO-R-selinexor-for-the-Treatment-of-Patients-with-Refractory-Multiple-Myeloma (accessed on 16 January 2025).
  161. Chari, A.; Vogl, D.T.; Gavriatopoulou, M.; Nooka, A.K.; Yee, A.J.; Huff, C.A.; Moreau, P.; Dingli, D.; Cole, C.; Lonial, S.; et al. Oral Selinexor–Dexamethasone for Triple-Class Refractory Multiple Myeloma. New Engl. J. Med. 2019, 381, 727–738. [Google Scholar] [CrossRef]
  162. FDA. Prescribing Information for XPOVIO. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/212306s005lbl.pdf (accessed on 16 January 2025).
  163. Bahlis, N.J.; Sutherland, H.; White, D.; Sebag, M.; Lentzsch, S.; Kotb, R.; Venner, C.P.; Gasparetto, C.; Del Col, A.; Neri, P. Selinexor plus low-dose bortezomib and dexamethasone for patients with relapsed or refractory multiple myeloma. Blood J. Am. Soc. Hematol. 2018, 132, 2546–2554. [Google Scholar] [CrossRef]
  164. Jakubowiak, A.J.; Jasielec, J.K.; Rosenbaum, C.A.; Cole, C.E.; Chari, A.; Mikhael, J.; Nam, J.; McIver, A.; Severson, E.; Stephens, L.A. Phase 1 study of selinexor plus carfilzomib and dexamethasone for the treatment of relapsed/refractory multiple myeloma. Br. J. Haematol. 2019, 186, 549–560. [Google Scholar] [CrossRef] [PubMed]
  165. Derman, B.A.; Chari, A.; Zonder, J.; Major, A.; Stefka, A.T.; Jiang, K.; Karrison, T.; Jasielec, J.; Jakubowiak, A. A phase I study of selinexor combined with weekly carfilzomib and dexamethasone in relapsed/refractory multiple myeloma. Eur. J. Haematol. 2023, 110, 564–570. [Google Scholar] [CrossRef] [PubMed]
  166. Baljevic, M.; Bahlis, N.J.; Kotb, R.; Schiller, G.J.; Lipe, B.; Madan, S.; Sutherland, H.J.; Lentzsch, S.; Callander, N.; Biran, N. Efficacy and Safety of Selinexor, Pomalidomide, and Dexamethasone (SPd) for Treatment of Patients with Relapsed or Refractory Multiple Myeloma (RRMM). Blood 2024, 144, 1996. [Google Scholar] [CrossRef]
  167. Fu, S.-C.; Huang, H.-C.; Horton, P.; Juan, H.F. ValidNESs: A database of validated leucine-rich nuclear export signals. Nucleic Acids Res. 2012, 41, D338–D343. [Google Scholar] [CrossRef]
  168. Turner, J.G.; Dawson, J.; Emmons, M.F.; Cubitt, C.L.; Kauffman, M.; Shacham, S.; Hazlehurst, L.A.; Sullivan, D.M. CRM1 Inhibition Sensitizes Drug Resistant Human Myeloma Cells to Topoisomerase II and Proteasome Inhibitors both In Vitro and Ex Vivo. J. Cancer 2013, 4, 614–625. [Google Scholar] [CrossRef]
  169. Tai, Y.T.; Landesman, Y.; Acharya, C.; Calle, Y.; Zhong, M.Y.; Cea, M.; Tannenbaum, D.; Cagnetta, A.; Reagan, M.; Munshi, A.A.; et al. CRM1 inhibition induces tumor cell cytotoxicity and impairs osteoclastogenesis in multiple myeloma: Molecular mechanisms and therapeutic implications. Leukemia 2014, 28, 155–165. [Google Scholar] [CrossRef]
  170. Fung, H.Y.J.; Chook, Y.M. Atomic basis of CRM1-cargo recognition, release and inhibition. Semin. Cancer Biol. 2014, 27, 52–61. [Google Scholar] [CrossRef]
  171. Herrero, A.B.; Rojas, E.A.; Misiewicz-Krzeminska, I.; Krzeminski, P.; Gutiérrez, N.C. Molecular Mechanisms of p53 Deregulation in Cancer: An Overview in Multiple Myeloma. Int. J. Mol. Sci. 2016, 17, 2003. [Google Scholar] [CrossRef]
  172. Crespo, M.; Carabia, J.; Jiménez, I.; Bobillo, S.; Abrisqueta, P.; Palacio, C.; Nieto, J.C.; Boix, J.; Carpio, C.; Castellvi, J. Xpo-1 inhibition synergizes with BCR inhibition, blocks tumor growth and tumor-associated macrophages infiltration and prolongs survival in a bioluminescent animal model of primary central nervous system lymphoma. Blood 2017, 130, 2808. [Google Scholar]
  173. Kalakonda, N.; Maerevoet, M.; Cavallo, F.; Follows, G.; Goy, A.; Vermaat, J.S.; Casasnovas, O.; Hamad, N.; Zijlstra, J.M.; Bakhshi, S. Selinexor in patients with relapsed or refractory diffuse large B-cell lymphoma (SADAL): A single-arm, multinational, multicentre, open-label, phase 2 trial. Lancet Haematol. 2020, 7, 511–ez522. [Google Scholar] [CrossRef]
  174. Boons, E.; Nogueira, T.C.; Dierckx, T.; Menezes, S.M.; Jacquemyn, M.; Tamir, S.; Landesman, Y.; Farré, L.; Bittencourt, A.; Kataoka, K. XPO1 inhibitors represent a novel therapeutic option in Adult T-cell Leukemia, triggering p53-mediated caspase-dependent apoptosis. Blood Cancer J. 2021, 11, 27. [Google Scholar] [CrossRef] [PubMed]
  175. Zhao, C.; Ma, B.; Yang, Z.Y.; Li, O.; Liu, S.L.; Pan, L.J.; Gong, W.; Dong, P.; Shu, Y.J. Inhibition of XPO1 impairs cholangiocarcinoma cell proliferation by triggering p53 intranuclear accumulation. Cancer Med. 2023, 12, 5751–5763. [Google Scholar] [CrossRef] [PubMed]
  176. Hardas, T.; Ra, H.-J.; Sheridan, J.; Kovalenko, M.; Tribouley, C. Quantification of cell surface HLA-A2 and intracellular Survivin protein levels for tumor blasts and non-blast immune cells in multiple myeloma bone marrow aspirates using a rapid sample preservation methodology followed by 10-color FACS assay. Cancer Res. 2021, 81, 408. [Google Scholar] [CrossRef]
  177. Galinski, B.; Luxemburg, M.; Landesman, Y.; Pawel, B.; Johnson, K.J.; Master, S.R.; Freeman, K.W.; Loeb, D.M.; Hébert, J.M.; Weiser, D.A. XPO1 inhibition with selinexor synergizes with proteasome inhibition in neuroblastoma by targeting nuclear export of IkB. Transl. Oncol. 2021, 14, 101114. [Google Scholar] [CrossRef]
  178. Wang, Q.; Bode, A.M.; Zhang, T. Targeting CDK1 in cancer: Mechanisms and implications. NPJ Precis. Oncol. 2023, 7, 58. [Google Scholar] [CrossRef]
  179. Zhai, M.; Miao, J.; Zhang, R.; Liu, R.; Li, F.; Shen, Y.; Wang, T.; Xu, X.; Gao, G.; Hu, J. KIF22 promotes multiple myeloma progression by regulating the CDC25C/CDK1/cyclinB1 pathway. J. Cancer Res. Clin. Oncol. 2024, 150, 239. [Google Scholar] [CrossRef]
  180. Chakravarti, N.; Boles, A.; Burzinski, R.; Sindaco, P.; Isabelle, C.; McConnell, K.; Mishra, A.; Porcu, P. XPO1 blockade with KPT-330 promotes apoptosis in cutaneous T-cell lymphoma by activating the p53–p21 and p27 pathways. Sci. Rep. 2024, 14, 9305. [Google Scholar] [CrossRef]
  181. Alimohammadi, M.; Rahimzadeh, P.; Khorrami, R.; Bonyadi, M.; Daneshi, S.; Nabavi, N.; Raesi, R.; Farani, M.R.; Dehkhoda, F.; Taheriazam, A.; et al. A comprehensive review of the PTEN/PI3K/Akt axis in multiple myeloma: From molecular interactions to potential therapeutic targets. Pathol. Res. Pract. 2024, 260, 155401. [Google Scholar] [CrossRef]
  182. Li, S.; Fu, J.; Lu, C.; Mapara, M.Y.; Raza, S.; Hengst, U.; Lentzsch, S. Elevated Translation Initiation Factor eIF4E Is an Attractive Therapeutic Target in Multiple Myeloma. Mol. Cancer Ther. 2016, 15, 711–719. [Google Scholar] [CrossRef] [PubMed]
  183. Culjkovic, B.; Topisirovic, I.; Skrabanek, L.; Ruiz-Gutierrez, M.; Borden, K.L. eIF4E is a central node of an RNA regulon that governs cellular proliferation. J. Cell Biol. 2006, 175, 415–426. [Google Scholar] [CrossRef]
  184. Culjkovic-Kraljacic, B.; Baguet, A.; Volpon, L.; Amri, A.; Borden, K.L. The oncogene eIF4E reprograms the nuclear pore complex to promote mRNA export and oncogenic transformation. Cell Rep. 2012, 2, 207–215. [Google Scholar] [CrossRef]
  185. Volpon, L.; Culjkovic-Kraljacic, B.; Sohn, H.S.; Blanchet-Cohen, A.; Osborne, M.J.; Borden, K.L.B. A biochemical framework for eIF4E-dependent mRNA export and nuclear recycling of the export machinery. Rna 2017, 23, 927–937. [Google Scholar] [CrossRef]
  186. Zhu, Z.C.; Liu, J.W.; Yang, C.; Zhao, M.; Xiong, Z.Q. XPO1 inhibitor KPT-330 synergizes with Bcl-xL inhibitor to induce cancer cell apoptosis by perturbing rRNA processing and Mcl-1 protein synthesis. Cell Death Dis. 2019, 10, 395. [Google Scholar] [CrossRef]
  187. Marullo, R.; Rutherford, S.C.; Revuelta, M.V.; Zamponi, N.; Culjkovic-Kraljacic, B.; Kotlov, N.; Di Siervi, N.; Lara-Garcia, J.; Allan, J.N.; Ruan, J.; et al. XPO1 Enables Adaptive Regulation of mRNA Export Required for Genotoxic Stress Tolerance in Cancer Cells. Cancer Res. 2024, 84, 101–117. [Google Scholar] [CrossRef]
  188. Kashyap, T.; Crochiere, M.L.; Friedlander, S.; Klebanov, B.; Senapedis, W.; Baloglu, E.; del Alamo, D.; Tamir, S.; McCauley, D.; Rashal, T. Selective inhibitors of nuclear export (SINETM) block the expression of DNA damage repair proteins and sensitize cancer cells to DNA damage inducing therapeutic agents. In Proceedings of the 26th EORTC-NCI-AACR Symposium on Molecular Targets and Cancer Therapeutics, Barcelona, Spain, 18–21 November 2014; pp. 18–21. [Google Scholar]
  189. Kashyap, T.; Argueta, C.; Unger, T.; Klebanov, B.; Debler, S.; Senapedis, W.; Crochiere, M.L.; Lee, M.S.; Kauffman, M.; Shacham, S.; et al. Selinexor reduces the expression of DNA damage repair proteins and sensitizes cancer cells to DNA damaging agents. Oncotarget 2018, 9, 30773–30786. [Google Scholar] [CrossRef]
  190. Vogl, D.T.; Dingli, D.; Cornell, R.F.; Huff, C.A.; Jagannath, S.; Bhutani, D.; Zonder, J.; Baz, R.; Nooka, A.; Richter, J.; et al. Selective Inhibition of Nuclear Export with Oral Selinexor for Treatment of Relapsed or Refractory Multiple Myeloma. J. Clin. Oncol. 2018, 36, 859–866. [Google Scholar] [CrossRef]
  191. Argueta, C.; Kashyap, T.; Klebanov, B.; Unger, T.J.; Guo, C.; Harrington, S.; Baloglu, E.; Lee, M.; Senapedis, W.; Shacham, S.; et al. Selinexor synergizes with dexamethasone to repress mTORC1 signaling and induce multiple myeloma cell death. Oncotarget 2018, 9, 25529–25544. [Google Scholar] [CrossRef] [PubMed]
  192. Kim, J.-Y.; Kwon, Y.-G.; Kim, Y.-M. The stress-responsive protein REDD1 and its pathophysiological functions. Exp. Mol. Med. 2023, 55, 1933–1944. [Google Scholar] [CrossRef] [PubMed]
  193. Gravina, G.L.; Tortoreto, M.; Mancini, A.; Addis, A.; Di Cesare, E.; Lenzi, A.; Landesman, Y.; McCauley, D.; Kauffman, M.; Shacham, S.; et al. XPO1/CRM1-selective inhibitors of nuclear export (SINE) reduce tumor spreading and improve overall survival in preclinical models of prostate cancer (PCa). J. Hematol. Oncol. 2014, 7, 46. [Google Scholar] [CrossRef] [PubMed]
  194. Chen, J.; Song, D.; Xu, Y.; Wu, L.; Tang, L.; Su, Y.; Xie, X.; Zhao, J.; Xu, J.; Liu, Q. Anti-Osteoclast Effect of Exportin-1 Inhibitor Eltanexor on Osteoporosis Depends on Nuclear Accumulation of IκBα-NF-κB p65 Complex. Front. Pharmacol. 2022, 13, 896108. [Google Scholar] [CrossRef]
  195. Lv, J.-T.; Jiao, Y.-T.; Han, X.-L.; Cao, Y.-J.; Lv, X.-K.; Du, J.; Hou, J. Integrating p53-associated genes and infiltrating immune cell characterization as a prognostic biomarker in multiple myeloma. Heliyon 2024, 10, e30123. [Google Scholar] [CrossRef]
  196. Wen, Z.; Bissonnette, A.; Moat, L.F.; Wang, Y.; Katzenellenbogen, B.S.; Katzenellenbogen, J.A.; Kim, S.H.; Shour, A.; Onitilo, A.A. Nuclear Receptor NR2E3 Activates Both Wild-Type and Mutated p53 in Multiple Myeloma Cells. Blood 2024, 144, 6840. [Google Scholar] [CrossRef]
  197. Ang, D.A.; Carter, J.-M.; Deka, K.; Tan, J.H.; Zhou, J.; Chen, Q.; Chng, W.J.; Harmston, N.; Li, Y. Aberrant non-canonical NF-κB signalling reprograms the epigenome landscape to drive oncogenic transcriptomes in multiple myeloma. Nat. Commun. 2024, 15, 2513. [Google Scholar] [CrossRef] [PubMed]
  198. Jung, D.; Lee, H.; Chikhale, S.; Poorebrahim, M.; Ahn, S.; Benaoudia, S.; Leblay, N.; Maura, F.; Bahlis, N.J.; Neri, P. NF-Kb Pathway Activation Driven by TRAF3 Loss Mediates Resistance to Anti-BCMA T-Cell Based Therapies in Multiple Myeloma. Blood 2024, 144, 591. [Google Scholar] [CrossRef]
  199. Jiménez, I.; Carabia, J.; Bobillo, S.; Palacio, C.; Abrisqueta, P.; Pagès, C.; Nieto, J.C.; Castellví, J.; Martínez-Ricarte, F.; Escoda, L. Repolarization of tumor infiltrating macrophages and increased survival in mouse primary CNS lymphomas after XPO1 and BTK inhibition. J. Neuro Oncol. 2020, 149, 13–25. [Google Scholar] [CrossRef]
  200. Luo, W.; Xu, J.; Li, C.; Tang, L.; Li, Y.; Wang, X.; Zhuolin, W.; Zhang, Y.; Hu, Y.; Mei, H. Selinexor Reduces the Immunosuppressive Properties of Macrophages and Synergizes with CD19 CAR-T Cells Against B-Cell Lymphoma. Blood 2024, 144, 3420. [Google Scholar] [CrossRef]
  201. Daneshmandi, S.; Yan, Q.; Choi, J.E.; Katsuta, E.; MacDonald, C.R.; Goruganthu, M.; Roberts, N.; Repasky, E.A.; Singh, P.K.; Attwood, K. Exportin 1 governs the immunosuppressive functions of myeloid-derived suppressor cells in tumors through ERK1/2 nuclear export. Cell. Mol. Immunol. 2024, 21, 873–891. [Google Scholar] [CrossRef] [PubMed]
  202. Fisher, J.G.; Walker, C.J.; Doyle, A.D.; Johnson, P.W.; Forconi, F.; Cragg, M.S.; Landesman, Y.; Khakoo, S.I.; Blunt, M.D. Selinexor Enhances NK Cell Activation Against Malignant B Cells via Downregulation of HLA-E. Front. Oncol. 2021, 11, 785635. [Google Scholar] [CrossRef] [PubMed]
  203. Kaulfuss, M.; Mietz, J.; Fabri, A.; vom Berg, J.; Münz, C.; Chijioke, O. The NK cell checkpoint NKG2A maintains expansion capacity of human NK cells. Sci. Rep. 2023, 13, 10555. [Google Scholar] [CrossRef] [PubMed]
  204. Tyler, P.M.; Servos, M.M.; de Vries, R.C.; Klebanov, B.; Kashyap, T.; Sacham, S.; Landesman, Y.; Dougan, M.; Dougan, S.K. Clinical Dosing Regimen of Selinexor Maintains Normal Immune Homeostasis and T-cell Effector Function in Mice: Implications for Combination with Immunotherapy. Mol. Cancer Ther. 2017, 16, 428–439. [Google Scholar] [CrossRef]
  205. Tong, X.; Zhu, X.; Shuai, S.; Zhu, Y.; Xu, B.; Peng, Y.; Zhang, S.; Jie, J.; Mao, X.; Wei, J. Impact of Selinexor on AML Cell Lines and Healthy Donor T Cell Function: Enhanced Treg Cell Proportion. Blood 2024, 144, 5817. [Google Scholar] [CrossRef]
  206. Wang, S.; Sellner, L.; Wang, L.; Sauer, T.; Neuber, B.; Gong, W.; Stock, S.; Ni, M.; Yao, H.; Kleist, C.; et al. Combining selective inhibitors of nuclear export (SINEs) with chimeric antigen receptor (CAR) T cells for CD19-positive malignancies. Oncol. Rep. 2021, 46, 170. [Google Scholar] [CrossRef]
  207. Martini, S.; Figini, M.; Croce, A.; Frigerio, B.; Pennati, M.; Gianni, A.M.; De Marco, C.; Daidone, M.G.; Argueta, C.; Landesman, Y. Selinexor sensitizes TRAIL-R2-positive TNBC cells to the activity of TRAIL-R2xCD3 bispecific antibody. Cells 2020, 9, 2231. [Google Scholar] [CrossRef]
  208. Baljevic, M.; Gasparetto, C.; Schiller, G.J.; Tuchman, S.A.; Callander, N.S.; Lentzsch, S.; Monge, J.; Kotb, R.; Bahlis, N.J.; White, D. Selinexor-based regimens in patients with multiple myeloma after prior anti-B-cell maturation antigen treatment. EJHaem 2022, 3, 1270–1276. [Google Scholar] [CrossRef] [PubMed]
  209. Baljevic, M.; Moreau, P.; Tuchman, S.A.; Callander, N.S.; Lentzsch, S.; Van Domelen, D.R.; Bentur, O.S.; Monge, J.; Biran, N. Effectiveness of anti-B-cell maturation antigen (BCMA)-targeting therapy after selinexor treatment. J. Clin. Oncol. 2023, 41, 16. [Google Scholar] [CrossRef]
  210. Tao, R.; Liu, C.; Zhang, W.; Zhu, Y.; Ma, Y.; Hao, S. Selinexor with anti-PD-1 antibody as a potentially effective regimen for patients with natural killer/T-cell lymphoma failing prior L-asparaginase and PD-1 blockade. Oncologist 2024, 29, e90–e96. [Google Scholar] [CrossRef] [PubMed]
  211. Chari, A.; Vogl, D.T.; Jagannath, S.; Jasielec, J.K.; DeCastro, A.; Unger, T.J.; Shah, J.; Jakubowiak, A. Selinexor-Containing Regimens for the Treatment of Patients with Multiple Myeloma Refractory to Chimeric Antigen Receptor T-Cell (CAR-T) Therapy. Blood 2019, 134, 1854. [Google Scholar] [CrossRef]
  212. Van Oekelen, O.; Nath, K.; Mouhieddine, T.H.; Farzana, T.; Aleman, A.; Melnekoff, D.T.; Ghodke-Puranik, Y.; Shah, G.L.; Lesokhin, A.; Giralt, S. Interventions and outcomes of patients with multiple myeloma receiving salvage therapy after BCMA-directed CAR T therapy. Blood 2023, 141, 756–765. [Google Scholar] [CrossRef]
  213. Wang, D.; Fu, H.; Que, Y.; Ruan, H.; Xu, M.; Long, X.; Yu, Q.; Li, C.; Li, Z.; Cai, S.; et al. A novel two-step administration of XPO-1 inhibitor may enhance the effect of anti-BCMA CAR-T in relapsed/refractory extramedullary multiple myeloma. J. Transl. Med. 2023, 21, 812. [Google Scholar] [CrossRef]
  214. Stadel, R.; Liu, R.; Landesman, Y.; Wald, D.; Hosahalli Vasanna, S.; de Lima, M.J.G. Sequential Administration of Selinexor then CD19 CAR-T Cells Exhibits Enhanced Efficacy in a Mouse Model of Human Non-Hodgkin’s Lymphoma. Blood 2022, 140, 7413–7414. [Google Scholar] [CrossRef]
  215. Cruz, L.S.; Stevenson, D.; Robinson, M.; Mathew, S.; Amador, I.; Jordan, G.; House, C.D. Role of macrophages in the development of ovarian cancer stem-like cells during chemotherapy. Cancer Res. 2024, 84, 163. [Google Scholar] [CrossRef]
  216. Ntostoglou, K.; Theodorou, S.D.; Proctor, T.; Nikas, I.P.; Awounvo, S.; Sepsa, A.; Georgoulias, V.; Ryu, H.S.; Pateras, I.S.; Kittas, C. Distinct profiles of proliferating CD8+/TCF1+ T cells and CD163+/PD-L1+ macrophages predict risk of relapse differently among treatment-naïve breast cancer subtypes. Cancer Immunol. Immunother. 2024, 73, 46. [Google Scholar] [CrossRef]
  217. Kuan, C.-H.; Chang, L.; Ho, C.-Y.; Tsai, C.-H.; Liu, Y.-C.; Huang, W.-Y.; Wang, Y.-N.; Wang, W.-H.; Wang, T.-W. Immunomodulatory hydrogel orchestrates pro-regenerative response of macrophages and angiogenesis for chronic wound healing. Biomaterials 2025, 314, 122848. [Google Scholar] [CrossRef]
  218. Shi, Y.; Su, W.; Zhang, L.; Shi, C.; Zhou, J.; Wang, P.; Wang, H.; Shi, X.; Wei, S.; Wang, Q. TGR5 regulates macrophage inflammation in nonalcoholic steatohepatitis by modulating NLRP3 inflammasome activation. Front. Immunol. 2021, 11, 609060. [Google Scholar] [CrossRef]
  219. Hu, F.; Chen, X.Q.; Li, X.P.; Lu, Y.X.; Chen, S.L.; Wang, D.W.; Liang, Y.; Dai, Y.J. Drug resistance biomarker ABCC4 of selinexor and immune feature in multiple myeloma. Int. Immunopharmacol. 2022, 108, 108722. [Google Scholar] [CrossRef]
  220. Farren, M.R.; Hennessey, R.C.; Shakya, R.; Elnaggar, O.; Young, G.; Kendra, K.; Landesman, Y.; Elloul, S.; Crochiere, M.; Klebanov, B.; et al. The Exportin-1 Inhibitor Selinexor Exerts Superior Antitumor Activity when Combined with T-Cell Checkpoint Inhibitors. Mol. Cancer Ther. 2017, 16, 417–427. [Google Scholar] [CrossRef]
Figure 1. Schematic illustration of the development and diagnosis of malignant plasma cell dyscrasias. Monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM) represent the precursor states of multiple myeloma (MM). Secondary plasma cell leukemia (sPCL) displays the dissemination of clonal plasma cells into the blood following previously diagnosed MM. Disease progression is influenced by, inter alia, various pathogenic triggers as well as the tumor microenvironment in the bone marrow niche. The diagnostic criteria of MGUS, SMM, MM, and sPCL are summarized according to the International Myeloma Working Group updated criteria [1]. ECM, extracellular matrix; MDSCs, myeloid-derived suppressor cells; NK, natural killer; TAMs, tumor-associated macrophages; Tregs, regulatory T cells.
Figure 1. Schematic illustration of the development and diagnosis of malignant plasma cell dyscrasias. Monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM) represent the precursor states of multiple myeloma (MM). Secondary plasma cell leukemia (sPCL) displays the dissemination of clonal plasma cells into the blood following previously diagnosed MM. Disease progression is influenced by, inter alia, various pathogenic triggers as well as the tumor microenvironment in the bone marrow niche. The diagnostic criteria of MGUS, SMM, MM, and sPCL are summarized according to the International Myeloma Working Group updated criteria [1]. ECM, extracellular matrix; MDSCs, myeloid-derived suppressor cells; NK, natural killer; TAMs, tumor-associated macrophages; Tregs, regulatory T cells.
Cells 14 00430 g001
Figure 2. Schematic illustration of Selinexor’s mode of action in myeloma cells. Selinexor inhibits Exportin-1 (XPO1) and interrupts the nucleocytoplasmic flow through the nuclear pore complex (NPC). Cancer-related cargoes and other nuclear export signaling molecules are trapped in the nucleus [167,168,169,170,171,172,173,174,175,176,177,178,179,180,181], influencing deoxyribonucleic acid (DNA) damage repair [182,183,184,185,186,187,188,189], glucocorticoid signaling [190,191,192], and osteo-metabolism [169,193,194]. Red arrowheads indicate inhibition. Red upright flashes indicate upregulation. Red crosses indicate interruption. ABL1, ABL proto-oncogene 1; Akt, protein kinase B; APC, adenomatous polyposis coli; CDK1, cyclin dependent kinase 1; cIAP1, cellular inhibitor of apoptosis protein 1; EGFR, epidermal growth factor receptor; eIF4E, eukaryotic translation initiation factor 4E; FLT3, FMS related receptor tyrosine kinase 3; FOXO, forkhead box O; GR, glucocorticoid receptor; IGFBP2, insulin-like growth factor binding protein 2; MCL1, myeloid cell leukemia 1; mRNA, messenger ribonucleic acid; mTOR, mammalian target of rapamycin; NFATc1, nuclear factor of activated T cells cytoplasmic 1; NFkBIα, nuclear factor kB inhibitor α; PI3K, phosphatidylinositol 3-kinase; PPAR-γ, peroxisome proliferator-activated receptor γ; PTEN, phosphatase and tensin homolog; RANKL, receptor activator of nuclear factor kΒ ligand; Ras-GRF1, Ras protein specific guanine nucleotide releasing factor 1; Rb, retinoblastoma protein; REDD1, regulated in development and DNA damage responses 1; TERT, telomerase reverse transcriptase; TopoIIα, Topoisomerase IIα; TSP, tumor suppressor protein; YAP1, yes-associated protein 1.
Figure 2. Schematic illustration of Selinexor’s mode of action in myeloma cells. Selinexor inhibits Exportin-1 (XPO1) and interrupts the nucleocytoplasmic flow through the nuclear pore complex (NPC). Cancer-related cargoes and other nuclear export signaling molecules are trapped in the nucleus [167,168,169,170,171,172,173,174,175,176,177,178,179,180,181], influencing deoxyribonucleic acid (DNA) damage repair [182,183,184,185,186,187,188,189], glucocorticoid signaling [190,191,192], and osteo-metabolism [169,193,194]. Red arrowheads indicate inhibition. Red upright flashes indicate upregulation. Red crosses indicate interruption. ABL1, ABL proto-oncogene 1; Akt, protein kinase B; APC, adenomatous polyposis coli; CDK1, cyclin dependent kinase 1; cIAP1, cellular inhibitor of apoptosis protein 1; EGFR, epidermal growth factor receptor; eIF4E, eukaryotic translation initiation factor 4E; FLT3, FMS related receptor tyrosine kinase 3; FOXO, forkhead box O; GR, glucocorticoid receptor; IGFBP2, insulin-like growth factor binding protein 2; MCL1, myeloid cell leukemia 1; mRNA, messenger ribonucleic acid; mTOR, mammalian target of rapamycin; NFATc1, nuclear factor of activated T cells cytoplasmic 1; NFkBIα, nuclear factor kB inhibitor α; PI3K, phosphatidylinositol 3-kinase; PPAR-γ, peroxisome proliferator-activated receptor γ; PTEN, phosphatase and tensin homolog; RANKL, receptor activator of nuclear factor kΒ ligand; Ras-GRF1, Ras protein specific guanine nucleotide releasing factor 1; Rb, retinoblastoma protein; REDD1, regulated in development and DNA damage responses 1; TERT, telomerase reverse transcriptase; TopoIIα, Topoisomerase IIα; TSP, tumor suppressor protein; YAP1, yes-associated protein 1.
Cells 14 00430 g002
Figure 3. Schematic illustration of Selinexor’s influences on immune cells and immunotherapy. Selinexor is suggested to impact macrophages and tumor-associated macrophages (TAMs) [199,200], myeloid-derived suppressor cells (MDSCs) [201], natural killer (NK) cells [202,203], and T cells [204,205] in the tumor microenvironment. Selinexor potentially sensitizes cancer cells to chimeric antigen receptor (CAR) T cells and therapeutic antibodies [206,207,208,209,210,211,212,213,214]. CD8, cluster of differentiation 8; ERK1/2, extracellular-signal regulated kinases 1/2; IC, immune checkpoint; PD-1, programmed death 1; SIRPα, signal regulatory protein α; Tregs, regulatory T cells.
Figure 3. Schematic illustration of Selinexor’s influences on immune cells and immunotherapy. Selinexor is suggested to impact macrophages and tumor-associated macrophages (TAMs) [199,200], myeloid-derived suppressor cells (MDSCs) [201], natural killer (NK) cells [202,203], and T cells [204,205] in the tumor microenvironment. Selinexor potentially sensitizes cancer cells to chimeric antigen receptor (CAR) T cells and therapeutic antibodies [206,207,208,209,210,211,212,213,214]. CD8, cluster of differentiation 8; ERK1/2, extracellular-signal regulated kinases 1/2; IC, immune checkpoint; PD-1, programmed death 1; SIRPα, signal regulatory protein α; Tregs, regulatory T cells.
Cells 14 00430 g003
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Tasbihi, K.; Bruns, H. Selinexor’s Immunomodulatory Impact in Advancing Multiple Myeloma Treatment. Cells 2025, 14, 430. https://doi.org/10.3390/cells14060430

AMA Style

Tasbihi K, Bruns H. Selinexor’s Immunomodulatory Impact in Advancing Multiple Myeloma Treatment. Cells. 2025; 14(6):430. https://doi.org/10.3390/cells14060430

Chicago/Turabian Style

Tasbihi, Kereshmeh, and Heiko Bruns. 2025. "Selinexor’s Immunomodulatory Impact in Advancing Multiple Myeloma Treatment" Cells 14, no. 6: 430. https://doi.org/10.3390/cells14060430

APA Style

Tasbihi, K., & Bruns, H. (2025). Selinexor’s Immunomodulatory Impact in Advancing Multiple Myeloma Treatment. Cells, 14(6), 430. https://doi.org/10.3390/cells14060430

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop