Clinical Value of Tocilizumab in Reducing Mortality in Refractory Septic Shock in Children with Hematologic and Non-Hematologic Diseases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Study Design
2.3. Serum IL-6 Levels Measurement
2.4. Definition
3. Results
3.1. Patient Characteristics
3.2. Management and Outcome of Concomitant Tocilizumab Therapy
4. Discussion
5. Limitations of the Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weiss, S.L.; Fitzgerald, J.C.; Pappachan, J.; Wheeler, D.; Jaramillo-Bustamante, J.C.; Salloo, A.; Singhi, S.C.; Erickson, S.; Roy, J.A.; Bush, J.L.; et al. Global epidemiology of pediatric severe sepsis: The sepsis prevalence, outcomes, and therapies study. Am. J. Respir. Crit. Care Med. 2015, 191, 1147–1157. [Google Scholar] [CrossRef] [PubMed]
- Balamuth, F.; Weiss, S.L.; Neuman, M.I.; Scott, H.; Brady, P.W.; Paul, R.; Farris, R.W.; McClead, R.; Hayes, K.; Gaieski, D.; et al. Pediatric severe sepsis in U.S. children’s hospitals. Pediatr. Crit. Care Med. 2014, 15, 798–805. [Google Scholar] [CrossRef]
- Odetola, F.O.; Gebremariam, A.; Freed, G.L. Patient and hospital correlates of clinical outcomes and resource utilization in severe pediatric sepsis. Pediatrics 2007, 119, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Jawad, I.; Luksic, I.; Rafnsson, S.B. Assessing available information on the burden of sepsis: Global estimates of incidence, prevalence and mortality. J. Glob. Health 2012, 2, 010404. [Google Scholar] [CrossRef]
- Schlapbach, L.J.; MacLaren, G.; Festa, M.; Alexander, J.; Erickson, S.; Beca, J.; Slater, A.; Schibler, A.; Pilcher, D.; Millar, J.; et al. Prediction of pediatric sepsis mortality within 1 h of intensive care admission. Intensive Care Med. 2017, 43, 1085–1096. [Google Scholar] [CrossRef]
- Weiss, S.L.; Balamuth, F.; Hensley, J.; Fitzgerald, J.C.; Bush, J.; Nadkarni, V.M.; Thomas, N.J.; Hall, M.; Muszynski, J. The Epidemiology of Hospital Death Following Pediatric Severe Sepsis: When, Why, and How Children With Sepsis Die. Pediatr. Crit. Care Med. 2017, 18, 823–830. [Google Scholar] [CrossRef]
- Cvetkovic, M.; Lutman, D.; Ramnarayan, P.; Pathan, N.; Inwald, D.P.; Peters, M.J. Timing of death in children referred for intensive care with severe sepsis: Implications for interventional studies. Pediatr. Crit. Care Med. 2015, 16, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Matics, T.J.; Sanchez-Pinto, L.N. Adaptation and Validation of a Pediatric Sequential Organ Failure Assessment Score and Evaluation of the Sepsis-3 Definitions in Critically Ill Children. JAMA Pediatr. 2017, 171, e172352. [Google Scholar] [CrossRef]
- Leisman, D.E.; Ronner, L.; Pinotti, R.; Taylor, M.D.; Sinha, P.; Calfee, C.S.; Hirayama, A.V.; Mastroiani, F.; Turtle, C.J.; Harhay, M.O.; et al. Cytokine elevation in severe and critical COVID-19: A rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes. Lancet Respir. Med. 2020, 8, 1233–1244. [Google Scholar] [CrossRef]
- Laing, A.G.; Lorenc, A.; Del Molino Del Barrio, I.; Das, A.; Fish, M.; Monin, L.; Munoz-Ruiz, M.; McKenzie, D.R.; Hayday, T.S.; Francos-Quijorna, I.; et al. A dynamic COVID-19 immune signature includes associations with poor prognosis. Nat. Med. 2020, 26, 1623–1635. [Google Scholar] [CrossRef]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. Interleukin (IL-6) Immunotherapy. Cold Spring Harb. Perspect. Biol. 2018, 10, a028456. [Google Scholar] [CrossRef] [PubMed]
- Shankar-Hari, M.; Vale, C.L.; Godolphin, P.J.; Fisher, D.; Higgins, J.P.T.; Spiga, F.; Savovic, J.; Tierney, J.; Baron, G.; Benbenishty, J.S.; et al. Association Between Administration of IL-6 Antagonists and Mortality Among Patients Hospitalized for COVID-19: A Meta-analysis. JAMA 2021, 326, 499–518. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wang, Q.; Liang, Z.; Yin, Y.; Wang, L.; Wang, Q.; Li, Y.; Ou, J.; Ren, H.; Dong, Y. Tocilizumab, an IL6-receptor antibody, proved effective as adjuvant therapy for cytokine storm induced by severe infection in patients with hematologic malignancy. Ann. Hematol. 2023, 102, 961–966. [Google Scholar] [CrossRef]
- Weiss, S.L.; Peters, M.J.; Alhazzani, W.; Agus, M.S.D.; Flori, H.R.; Inwald, D.P.; Nadel, S.; Schlapbach, L.J.; Tasker, R.C.; Argent, A.C.; et al. Surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Intensive Care Med. 2020, 46, 10–67. [Google Scholar] [CrossRef]
- Gaies, M.G.; Gurney, J.G.; Yen, A.H.; Napoli, M.L.; Gajarski, R.J.; Ohye, R.G.; Charpie, J.R.; Hirsch, J.C. Vasoactive-inotropic score as a predictor of morbidity and mortality in infants after cardiopulmonary bypass. Pediatr. Crit. Care Med. 2010, 11, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Nakra, N.A.; Blumberg, D.A.; Herrera-Guerra, A.; Lakshminrusimha, S. Multi-System Inflammatory Syndrome in Children (MIS-C) Following SARS-CoV-2 Infection: Review of Clinical Presentation, Hypothetical Pathogenesis, and Proposed Management. Children 2020, 7, 69. [Google Scholar] [CrossRef]
- Gotts, J.E.; Matthay, M.A. Sepsis: Pathophysiology and clinical management. BMJ 2016, 353, i1585. [Google Scholar] [CrossRef]
- Song, J.; Park, D.W.; Moon, S.; Cho, H.J.; Park, J.H.; Seok, H.; Choi, W.S. Diagnostic and prognostic value of interleukin-6, pentraxin 3, and procalcitonin levels among sepsis and septic shock patients: A prospective controlled study according to the Sepsis-3 definitions. BMC Infect. Dis. 2019, 19, 968. [Google Scholar] [CrossRef]
- Chaudhry, H.; Zhou, J.; Zhong, Y.; Ali, M.M.; McGuire, F.; Nagarkatti, P.S.; Nagarkatti, M. Role of cytokines as a double-edged sword in sepsis. In Vivo 2013, 27, 669–684. [Google Scholar]
- Kumar, A.T.; Sudhir, U.; Punith, K.; Kumar, R.; Ravi Kumar, V.N.; Rao, M.Y. Cytokine profile in elderly patients with sepsis. Indian. J. Crit. Care Med. 2009, 13, 74–78. [Google Scholar] [CrossRef]
- Aljabari, S.; Balch, A.; Larsen, G.Y.; Fluchel, M.; Workman, J.K. Severe Sepsis-Associated Morbidity and Mortality among Critically Ill Children with Cancer. J. Pediatr. Intensive Care 2019, 8, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Kaur, A.; Kaur, G.; Dhir, S.K.; Rai, S.; Sethi, A.; Brar, A.; Singh, P. Pediatric Risk of Mortality III Score—Predictor of Mortality and Hospital Stay in Pediatric Intensive Care Unit. J. Emerg. Trauma Shock 2020, 13, 146–150. [Google Scholar] [CrossRef]
- Azevedo, R.T.; Araujo, O.R.; Petrilli, A.S.; Silva, D.C.B. Children with malignancies and septic shock—An attempt to understand the risk factors. J. Pediatr. 2023, 99, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Ranieri, V.M.; Suter, P.M.; Tortorella, C.; De Tullio, R.; Dayer, J.M.; Brienza, A.; Bruno, F.; Slutsky, A.S. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: A randomized controlled trial. JAMA 1999, 282, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Merola, R.; Vargas, M.; Sanfilippo, F.; Vergano, M.; Mistraletti, G.; Vetrugno, L.; De Pascale, G.; Bignami, E.G.; Servillo, G.; Battaglini, D. Tracheostomy Practice in the Italian Intensive Care Units: A Point-Prevalence Survey. Medicina 2025, 61, 87. [Google Scholar] [CrossRef]
- Merola, R.; Iacovazzo, C.; Troise, S.; Marra, A.; Formichella, A.; Servillo, G.; Vargas, M. Timing of Tracheostomy in ICU Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Life 2024, 14, 1165. [Google Scholar] [CrossRef]
Variables | Patients Treated Without Tocilizumab (n = 33) | Patients Treated with Tocilizumab (n = 21) | p-Value |
---|---|---|---|
Age (years) | 12.2 ± 4.3 | 13.6 ± 4.8 | 0.78 |
Sex (male), n (%) | 16 (48.5) | 9 (42.5) | 0.68 |
Weight (kg) | 35.6 ± 14.8 | 42 ± 15.2 | 0.65 |
Underlying, n (%) | 23 (63.6) | 17 (80) | 0.35 |
PRISM III score | 15.8 ± 4.3 | 13.8 ± 3.9 | 0.52 |
Site of infection, n (%) | 0.25 | ||
Central nervous system | 5 (15.1) | 2 (10.5) | |
Blood stream | 13 (39.4) | 11 (52.3) | |
Respiratory | 7 (21.2) | 4 (21) | |
Urologic | 1 (3) | 1 (5.2) | |
Abdominal | 1 (3) | 2 (10.5) | |
Others | 6 (18.2) | 1 (5.2) | |
Culture positive, n (%) | 24 (72.7) | 13 (68.4) | |
Pathogen, n (%) | 0.32 | ||
Gram-positive | 7 (21.2) | 7 (36.8) | |
Gram-negative | 13 (39.4) | 10 (50) | |
Fungus | 2 (6) | 0 | |
Virus | 2 (6) | 2 (10.5) | |
Unknown | 9 (27.3) | 2 (9.5) | |
Cardiac characteristics | |||
Vasoactive-inotropic scores | 44.6 ± 13.8 | 40.3 ± 11.2 | 0.71 |
Heart rate (beats/min) | 132.3 ± 28.9 | 112.5 ± 22.3 | 0.68 |
Mean arterial pressure (mm Hg) | 70 ± 20.5 | 68.3 ± 19.5 | 0.75 |
Outcomes | |||
ICU stay (days) | 17.6 ± 12.5 | 7.3 ± 3.2 | 0.02 * |
Mortality, n (%) | 18 (54.5) | 3 (14.2) | 0.03 * |
Variables | Patients Treated Without Tocilizumab (n = 20) | Patients Treated with Tocilizumab (n = 10) | p-Value |
---|---|---|---|
Age (years) | 10.8 ± 4.4 | 9.3 ± 6.8 | 0.49 |
Sex (male), n (%) | 11 (55) | 3 (30) | 0.19 |
Weight (kg) | 32.6 ± 13.8 | 30.1 ± 20.6 | 0.48 |
Underlying, n (%) | 10 (45) | 6 (60) | 0.54 |
PRISM III score | 13.6 ± 3.5 | 12.6 ± 2 | 0.11 |
Site of infection, n (%) | 0.83 | ||
Central nervous system | 5 (25) | 2 (20) | |
Blood stream | 6 (30) | 4 (40) | |
Respiratory | 5 (25) | 3 (30) | |
Urologic | 0 | 1 (10) | |
Abdominal | 0 | 2 (20) | |
Others | 4 (20) | 1 (10) | |
Culture positive, n (%) | 12 (60) | 8 (80) | |
Pathogen, n (%) | 0.12 | ||
Gram-positive | 4 (20) | 5 (50) | |
Gram-negative | 6 (30) | 1 (10) | |
Fungus | 0 | 0 | |
Virus | 2 (10) | 2 (20) | |
Unknown | 8 (40) | 2 (20) | |
Laboratory examination, median (IQR) | |||
WBC (u/L) | 13,800 (8700–17,200) | 12,300 (9400–16,500) | 0.52 |
Hemoglobin (g/dL) | 11.2 (9.5–13.5) | 12 (10.5–12.1) | 0.38 |
Platelet (∗103) | 175 (145–243) | 212 (165–263) | 0.46 |
Creatinine (mg/dL) | 0.54 (0.22–0.78) | 0.67 (0.27–0.83) | 0.39 |
GOT (U/L) | 45 (22–61) | 36 (25–51) | 0.42 |
GPT (U/L) | 35 (20–75) | 24 (17–63) | 0.44 |
Cardiac characteristics | |||
Vasoactive-inotropic scores | 43.3 ± 10.8 | 38.3 ± 9.2 | 0.43 |
Heart rate (beats/min) | 128.3 ± 25.9 | 109.5 ± 20.3 | 0.24 |
Mean arterial pressure (mm Hg) | 72 ± 18.3 | 72.3 ± 18.5 | 0.82 |
Outcomes | |||
ICU stay (days) | 15.7 ± 9.1 | 5.7 ± 4.1 | 0.004 * |
Mortality, n (%) | 10 (50) | 0 | 0.006 * |
Variables | Patients Treated Without Tocilizumab (n = 13) | Patients Treated With Tocilizumab (n = 11) | p-Value |
---|---|---|---|
Age (years) | 14.3 ± 3.3 | 15.5 ± 6.6 | 0.23 |
Sex (male), n (%) | 5 (38.4) | 6 (54.5) | 0.43 |
Weight (kg) | 40.4 ± 15.7 | 50.2 ± 24.3 | 0.25 |
Underlying, n (%) | |||
PRISM III score | 18.3 ± 3.1 | 16.2 ± 2.8 | 0.14 |
Site of infection, n (%) | 0.71 | ||
Blood stream | 7 (53.8) | 7 (63.6) | |
Respiratory | 2 (15.3) | 1 (9) | |
Urologic | 1 (7.6) | 0 | |
Abdominal | 1 (7.6) | 0 | |
Others | 2 (15.3) | 0 | |
Culture positive, n (%) | 12 (92.3) | 11 (100) | |
Pathogen, n (%) | 0.39 | ||
Gram-positive | 3 (23) | 2 (18.1) | |
Gram-negative | 7 (53.8) | 9 (81.8) | |
Fungus | 2 (15.3) | 0 | |
Unknown | 1 (7.6) | 0 | |
Laboratory examination, median (IQR) | |||
WBC (u/L) | 310 (120–870) | 200 (107–750) | 0.47 |
Hemoglobin (g/dL) | 10.8 (7.5–11.2) | 10.1 (8.6–10.4) | 0.45 |
Platelet (∗103) | 18 (9–32) | 11 (7–25) | 0.58 |
Creatinine (mg/dL) | 0.61 (0.47–1.24) | 0.57 (0.49–1.17) | 0.48 |
GOT (U/L) | 41 (24–71) | 34 (22–62) | 0.41 |
GPT (U/L) | 41 (16–131) | 45 (14–140) | 0.39 |
Cardiac characteristics | |||
Vasoactive-inotropic scores | 48.2 ± 15.3 | 44.3 ± 13.2 | 0.74 |
Heart rate (beats/min) | 136.3 ± 29.9 | 115.3 ± 24.3 | 0.64 |
Mean arterial pressure (mm Hg) | 66 ± 18.5 | 67.3 ± 17.5 | 0.71 |
Outcomes | |||
ICU stay (days) | 20.3 ± 17.2 | 8.7 ± 6.2 | 0.01 * |
Mortality, n (%) | 8 (61.5) | 3 (27.2) | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, E.-P.; Lin, J.-J.; Chen, S.-H.; Chan, O.-W.; Su, Y.-T.; Hsiao, M.-R.; Hsia, S.-H.; Wu, H.-P. Clinical Value of Tocilizumab in Reducing Mortality in Refractory Septic Shock in Children with Hematologic and Non-Hematologic Diseases. Cells 2025, 14, 441. https://doi.org/10.3390/cells14060441
Lee E-P, Lin J-J, Chen S-H, Chan O-W, Su Y-T, Hsiao M-R, Hsia S-H, Wu H-P. Clinical Value of Tocilizumab in Reducing Mortality in Refractory Septic Shock in Children with Hematologic and Non-Hematologic Diseases. Cells. 2025; 14(6):441. https://doi.org/10.3390/cells14060441
Chicago/Turabian StyleLee, En-Pei, Jainn-Jim Lin, Shih-Hsiang Chen, Oi-Wa Chan, Ya-Ting Su, Man-Ru Hsiao, Shao-Hsuan Hsia, and Han-Ping Wu. 2025. "Clinical Value of Tocilizumab in Reducing Mortality in Refractory Septic Shock in Children with Hematologic and Non-Hematologic Diseases" Cells 14, no. 6: 441. https://doi.org/10.3390/cells14060441
APA StyleLee, E.-P., Lin, J.-J., Chen, S.-H., Chan, O.-W., Su, Y.-T., Hsiao, M.-R., Hsia, S.-H., & Wu, H.-P. (2025). Clinical Value of Tocilizumab in Reducing Mortality in Refractory Septic Shock in Children with Hematologic and Non-Hematologic Diseases. Cells, 14(6), 441. https://doi.org/10.3390/cells14060441