The Role of Chemotactic Cytokines in Tick-Borne Encephalitis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. Material Acquisition and Handling
2.3. Basic Laboratory Examinations
2.4. Cytokine Concentrations
2.5. Flow Cytometry
2.6. Genotyping
2.7. Data Analysis
3. Results
3.1. Study Group
3.2. Cytokine Concentrations
3.3. Correlations with CSF Cellular Parameters
3.4. Correlations with the Clinical Presentation
3.5. Correlations with Genetic Background
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AM | aseptic meningitis |
BBB | blood–brain barrier |
CNS | central nervous system |
CSF | cerebrospinal fluid |
IL | interleukin |
JE | Japanese encephalitis |
JEV | Japanese encephalitis virus |
M | meningitis |
ME | meningoencephalitis |
MEM | meningoencephalomyelitis |
SNP | single nucleotide polymorphism |
TBE | tick-borne encephalitis |
TBEV | tick-borne encephalitis virus |
WNV | West Nile virus |
Appendix A
Appendix B
Cytokine | Concentration in CSF in the AM Group | CSF Concentration Gradient in the AM Group | ||||
---|---|---|---|---|---|---|
Absolute Value in pg/mL [Median (Min–Max)] | Fold Difference Compared to TBE (Median) | Statistical Significance | Absolute Value [Median] | Fold Difference Compared to TBE (Median) | Statistical Significance | |
IL-16 | 133.4 (37.0–1176.0) | 1.45 | p < 0.05 | 0.78 | 1.69 | p < 0.01 |
CXCL11 | 90.3 (0.3–3366.4) | 5.83 | p < 10−5 | 1.7 | 6.07 | p < 10−4 |
CCL7 | 105.7 (49.6–2204.8) | 2.70 | p < 0.001 | 2.53 | 2.55 | p < 0.05 |
CCL8 | 201.4 (30.2–2204.9) | 1.90 | p < 0.01 | 3.22 | 3.01 | p < 0.001 |
CCL13 | 5.8 (0.3–149.4) | 1.62 | p < 0.01 | 0.06 | 2.14 | p < 0.001 |
CX3CL1 | 1758.8 (1041.1–3613.0) | 1.23 | p < 0.05 | 0.50 | 1.10 | p < 0.05 |
Group | Median Pleocytosis (cells/μL) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Total | Neutrophils | Monocytes | Lymphocytes | ||||||
Total | CD3+CD4+ a | CD3+CD8+ a | DP a | B a | NK a | ||||
TBE (n = 103) | 90 | 14.4 (18%/72%) b | 16.2 (17%/9%) b | 53.9 (61%/17%) b | 45.0 (69%/39%) c | 9.8 (16%/23%) c | 2.5 (4%/1%) c | 0.5 (1%/15%) c | 3.2 (6%/14%) c |
M (n = 53) | 89 | 14.3 | 15.8 | 54.3 | 34.8 ^^ | 8.7 | 1.7 | 0.4 ^ | 3.2 ^^ |
ME (n = 45) | 86 | 14.1 | 16.5 | 47.2 | 51.3 ^ | 9.8 | 3.0 | 0.5 | 3.1 ^ |
MEM (n = 5) | 168 | 46.2 | 31.2 | 105.8 | 79.7 ^^ | 13.4 | 3.7 | 5.6 ^ | 8.1 ^^ |
AM (n = 18) | 183 ** | 8.1 | 35.6 ** | 121.3 *** | 121.8 *** | 21.0 * | 6.2 ** | 1.0 | 8.1 |
Appendix C
Parameter | Correlation with Age a | Statistical Significance |
---|---|---|
IL-16 concentration gradient b | −0.26 | p < 0.01 |
CXCL5 in CSF | 0.24 | p < 0.01 |
CXCL9 in CSF | 0.30 | p < 0.001 |
CXCL9 concentration gradient b | 0.21 | p < 0.05 |
CXCL10 in serum | 0.23 | p < 0.05 |
CXCL11 in serum | 0.19 | p < 0.05 |
CXCL11 in CSF | 0.19 | p < 0.05 |
CCL8 in serum | 0.18 | p < 0.05 |
CCL13 in serum | 0.22 | p < 0.05 |
CCL17 in CSF | 0.22 | p < 0.05 |
CCL17 concentration gradient b | 0.23 | p < 0.05 |
CCL19 in CSF | −0.23 | p < 0.05 |
CX3CL1 in serum | 0.27 | p < 0.01 |
CX3CL1 in CSF | 0.25 | p < 0.01 |
Appendix D
Gene | Polymorphism | Genotype Frequency Number of Patients (Fraction of the Group) a |
---|---|---|
CCR2 | rs1799864 | G/G—77 (76.2.5%) [44 (80.0%)] A/G—21 (20.8%) [11 (20.0%)] A/A—3 (3.0%) [0 (0.0%)] |
CCL5 | rs2107538 | C/C—66 (65.3%) [36 (65.5%)] C/T—29 (28.7%) [16 (29.1%)] T/T—6 (5.9%) [3 (5.5%)] |
rs2280788 | G/G—99 (98.0%) [54 (98.2%)] C/G—2 (2.0%) [1 (1.8%)] | |
CCR5 | rs1799987 | A/A—37 (36.6%) [17 (30.1%)] A/G—50 (49.5%) [28 (50.1%)] G/G—14 (13.9%) [10 (18.2%)] |
Δ32 | wt/wt—85 (84.2%) [48 (87.3%)] wt/δ32—15 (14.8%) [7 (12.7%)] δ32/δ32—1 (1.0%) [0 (0.0%)] | |
CXCR3 X | rs2280964 | M: C—50 (76.9%) [26 (72.2%)] T—16 (33.1%) [10 (27.8%)] F: C/C—25 (69.4%) [13 (68.4%)] C/T—7 (19.4%) [4 (21.1%)] T/T—3 (8.3%) [2 (10.5%)] |
rs34334103 | M: C—65 (100.0%) [36 (100.0%)] F: C/C—36 (100.0%) [19 (100%)] | |
CXCL10 | rs4508917 | A/A—43 (42.6%) [22 (40.0%)] A/G—43 (42.6%) [24 (43.6%)] G/G—15 (14.9%) [9 (16.4%)] |
CXCL11 | rs6817952 | G/G—76 (75.2%) [42 (76.4%)] G/C—24 (23.8%) [13 (23.6%)] C/C—1 (1.0%) [0 (0.0%)] |
CX3CR1 | rs3732379 | C/C 50—(49.5%) [33 (60.0%)] C/T 43—(42.6%) [19 (34.5%)] T/T 8—(7.9%) [3 (5.5%)] |
References
- Ransohoff, R.M.; Engelhardt, B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat. Rev. Immunol. 2012, 12, 623–635. [Google Scholar] [PubMed]
- Giunti, D.; Borsellino, G.; Benelli, R.; Marchese, M.; Capello, E.; Valle, M.T.; Pedemonte, E.; Noonan, D.; Albini, A.; Bernardi, G.; et al. Phenotypic and functional analysis of T cells homing into the CSF of subjects with inflammatory diseases of the CNS. J. Leukoc. Biol. 2003, 73, 584–590. [Google Scholar]
- Bréhin, A.C.; Mouriès, J.; Frenkiel, M.P.; Dadaglio, G.; Desprès, P.; Lafon, M.; Couderc, T. Dynamics of immune cell recruitment during West Nile encephalitis and identification of a new CD19+B220-BST2+ leukocyte population. J. Immunol. 2018, 180, 6760–6767. [Google Scholar]
- Maximova, O.A.; Faucette, L.J.; Ward, J.M.; Murphy, B.R.; Pletnev, A.G. Cellular inflammatory response to flaviviruses in the central nervous system of a primate host. J. Histochem. Cytochem. 2009, 57, 973–989. [Google Scholar] [CrossRef] [PubMed]
- van de Beek, D.; de Gans, J.; Tunkel, A.R.; Wijdicks, E.F.M. Community-acquired bacterial meningitis in adults. N. Engl. J. Med. 2007, 354, 44–53. [Google Scholar]
- Venkatesan, A.; Michael, B.D.; Probasco, J.C.; Geocadin, R.G.; Solomon, T. Acute encephalitis in immunocompetent adults. Lancet 2019, 393, 702–716. [Google Scholar]
- Stahl, J.-P.; Azouvi, P.; Bruneel, F.; De Broucker, T.; Duval, X.; Fantin, B.; Girard, N.; Herrmann, J.L.; Honnorat, J.; Lecuit, M.; et al. The reviewing group. Guidelines on the management of infectious encephalitis in adults. J. Med. Mal. 2017, 47, 179–194. [Google Scholar] [CrossRef]
- Reiber, H.; Peter, J.B. Cerebrospinal fluid analysis: Disease-related data patterns and evaluation programs. J. Neurol. Sci. 2001, 184, 101–122. [Google Scholar] [PubMed]
- Kaiser, R.; Holzmann, H. Laboratory findings in tick-borne encephalitis—Correlation with clinical outcome. Infection 2000, 28, 78–84. [Google Scholar]
- Lepej, S.Ž.; Mišić-Majerus, L.; Jeren, T.; Rode, O.D.; Remenar, A.; Šporec, V.; Vince, A. Chemokines CXCL10 and CXCL11 in the cerebrospinal fluid of patients with tick-borne encephalitis. Acta Neurol. Scand. 2007, 115, 109–114. [Google Scholar]
- Grygorczuk, S.; Osada, J.; Sulik, A.; Toczyłowski, K.; Dunaj-Małyszko, J.; Czupryna, P.; Adamczuk, J.; Moniuszko-Malinowska, A. Associations of the cerebrospinal fluid lymphocyte population with a clinical presentation of tick-borne encephalitis. Ticks Tick Borne Dis. 2023, 14, 102204. [Google Scholar] [CrossRef] [PubMed]
- Růžek, D.; Salát, J.; Palus, M.; Gritsun, T.S.; Gould, E.A.; Dyková, I.; Skallová, A.; Jelínek, J.; Kopecký, J.; Grubhoffer, L. CD8+ T-cells mediate immunopathology in tick-borne encephalitis. Virology 2009, 384, 1–6. [Google Scholar]
- Růžek, D.; Salát, J.; Singh, S.K.; Kopecký, J. Breakdown of the blood-brain barrier during tick-borne encephalitis in mice is not dependent on CD8+ T-cells. PLoS ONE 2011, 6, e20472. [Google Scholar]
- Gelpi, E.; Preusser, M.; Laggner, U.; Garzuly, F.; Holzmann, H.; Heinz, F.X.; Budka, H. Inflammatory response in human tick-borne encephalitis: Analysis of postmortem brain tissue. J. Neurovirol. 2006, 12, 322–327. [Google Scholar] [CrossRef]
- Bogovič, P.; Strle, P. Tick-borne encephalitis: A review of epidemiology, clinical characteristics and management. World J. Clin. Cases 2015, 3, 430–441. [Google Scholar] [PubMed]
- Bachelerie, F.; Ben-Baruch, A.S.; Burkhardt, A.M.; Combadiere, C.; Farber, J.M.; Graham, G.J.; Horuk, R.; Hovard Sparre-Ulrich, A.; Locati, M.; Luster, A.D.; et al. International Union of Pharmacology. LXXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol. Rev. 2014, 66, 1–79. [Google Scholar] [CrossRef] [PubMed]
- Michlmayr, D.; Lim, J.K. Chemokine receptors as important regulators of pathogenesis during arboviral encephalitis. Front. Cell Neurosci. 2014, 8, 264–277. [Google Scholar]
- Imhof, B.A.; Aurrand-Lions, M. Adhesion mechanisms regulating the migration of monocytes. Nat. Rev. Immunol. 2004, 4, 432–444. [Google Scholar]
- Michlmayr, D.; Bardina, S.V.; Rdriguez, C.A.; Pletnev, A.G.; Lim, J.K. Dual function of Ccr5 during Langat virus encephalitis—Reduction of neutrophil-mediated CNS inflammation and increase in T cell-mediated viral clearance. J. Immunol. 2016, 196, 4622–4631. [Google Scholar] [CrossRef]
- Acosta-Rodriguez, E.V.; Rivino, L.; Geginat, J.; Jarrossay, D.; Gattorno, M.; Lanzavecchia, A.; Sallusto, F.; Napolitano, G. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat. Immunol. 2007, 8, 639–646. [Google Scholar] [CrossRef]
- Campbell, D.J. Control of regulatory T cell migration, function and homeostasis. J. Immunol. 2015, 195, 2507–2513. [Google Scholar] [PubMed]
- Kitchen, S.G.; La Forge, S.; Patel, V.P.; Kitchen, C.M.; Miceli, M.C.; Zack, J.A. Activation of CD8 T cells induces expression of CD4, which functions as a chemotactic receptor. Blood 2002, 99, 207–212. [Google Scholar] [PubMed]
- Zhang, B.; Chan, Y.K.; Lu, B.; Diamond, M.S.; Klein, R.S. CXCR3 mediates region-specific antiviral T cell trafficking within the central nervous system during West Nile virus encephalitis. J. Immunol. 2008, 180, 2641–2649. [Google Scholar] [PubMed]
- Zhang, X.; Zheng, Z.; Liu, X.; Shu, B.; Mao, P.; Bai, B.; Hu, Q.; Luo, M.; Ma, X.; Cui, Z.; et al. Tick-borne encephalitis virus induces chemokine RANTES expression via activation of IRF-3 pathway. J. Neuroinf. 2016, 13, 209. [Google Scholar]
- Durrant, D.M.; Daniels, B.P.; Pasieka, T.; Dorsey, D.; Klein, R.S. CCR5 limits cortical viral loads during West Nile virus infection of the central nervous system. J. Neuroinf. 2015, 12, 233. [Google Scholar] [CrossRef]
- Palus, M.; Vojtíšková, J.; Salát, J.; Kopecký, J.; Grubhoffer, L.; Lipoldová, M.; Demant, P.; Růžek, D. Mice with different susceptibility to tick-borne encephalitis virus infection show selective neutralizing antibody response and inflammatory reaction in the central nervous system. J. Neuroinf. 2013, 10, 77–89. [Google Scholar]
- Glass, W.G.; McDermott, D.H.; Lim, J.K.; Lekhong, S.; Yu, S.F.; Frank, W.A.; Pape, J.; Cheshier, R.C.; Murphy, P.M. CCR5 deficiency increases risk of symptomatic West Nile virus infection. J. Exp. Med. 2006, 203, 35–40. [Google Scholar]
- Lim, J.K.; McDermott, H.; Lisco, A.; Foster, G.A.; Krysztof, D.; Follmann, D.; Stramer, S.L.; Murphy, P.M. CCR5 deficiency is a risk factor for early clinical manifestations of West Nile virus infection but not for viral transmission. J. Infect. Dis. 2010, 201, 178–185. [Google Scholar]
- Kindberg, E.; Mickienė, A.; Ax, C.; Åkerlind, B.; Vene, S.; Lindquist, L.; Günther, G.; Lindquist, L.; Svensson, L. A deletion in the chemokine receptor 5 (CCR5) gene is associated with tickborne encephalitis. J. Infect. Dis. 2008, 197, 266–269. [Google Scholar]
- Mickienė, A.; Pakalnienė, J.; Nordgren, J.; Carlsson, B.; Hagbom, M.; Svensson, L.; Lindquist, L. Polymorphisms in chemokine receptor 5 and Toll-like receptor 3 genes are risk factors for clinical tick-borne encephalitis in the Lithuanian population. PLoS ONE 2014, 16, e106798. [Google Scholar] [CrossRef]
- Grygorczuk, S.; Osada, J.; Toczyłowski, K.; Sulik, A.; Czupryna, P.; Moniuszko-Malinowska, A. The lymphocyte populations and their migration into the central nervous system in tick-borne encephalitis. Ticks Tick Borne Dis. 2020, 11, 101476. [Google Scholar]
- Grygorczuk, S.; Dunaj-Małyszko, J.; Sulik, A.; Toczyłowski, K.; Czupryna, P.; Żebrowska, A.; Parczewski, M. The Lack of the Association of the CCR5 Genotype with the Clinical Presentation and Frequency of Tick-Borne Encephalitis in the Polish Population. Pathogens 2022, 11, 318. [Google Scholar] [CrossRef]
- Bogovič, P.; Lusa, L.; Korva, M.; Pavletič, M.; Resman Rus, K.; Lotrič-Furman, S.; Avšič-Županc, T.; Strle, K.; Strle, F. Inflammatory immune responses in the pathogenesis of tick-borne encephalitis. J. Clin. Med. 2019, 8, 731. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Ishiguro, A.; Shimbo, T. Transient elevation of interleukin-16 levels at the initial stage of meningitis in children. Clin. Exp. Immunol. 2003, 131, 484–489. [Google Scholar] [PubMed]
- European Commission Implementing Decision (EU) 2018/945 of 22 June 2018 on the Communicable Diseases and Related Special Health Issues to Be Covered by Epidemiological Surveillance as Well as Relevant Case Definitions. 2018. Available online: https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX%3A32018D0945 (accessed on 16 February 2025).
- Bogovič, P.; Logar, M.; Avšič-Županc, T.; Strle, F.; Lotrič-Furlan, S. Quantitative evaluation of the severity of acute illness in adult patients with tick-borne encephalitis. BioMed Res. Int. 2014, 2014, 841027. [Google Scholar] [CrossRef]
- Kristiansen, T.B.; Knudsen, T.B.; Ohlendorff, S.; Eugen-Olsen, J. A new multiplex PCR strategy for the simultaneous determination of four genetic polymorphisms affecting HIV-1 disease progression. J. Immunol. Methods. 2001, 252, 147–151. [Google Scholar]
- Holme, P.A.; Müller, F.; Solum, N.O.; Brosstad, F.; Frøland, S.S.; Aukrust, P. Enhanced activation of platelets with abnormal release of RANTES in human immunodeficiency virus type 1 infection. FASEB J. 1998, 12, 79–90. [Google Scholar]
- Link, H.; Tibbling, G. Principles of albumin and IgG analyses in neurological disorders. III. Evaluation of IgG synthesis within the central nervous system in multiple sclerosis. Scand. J. Clin. Lab. Investig. 1977, 37, 397–401. [Google Scholar]
- Lepennetier, G.; Hracsko, Z.; Unger, M.; Van Griensven, M.; Grummel, V.; Krumholz, M.; Berthele, A.; Hemmer, B.; Kowarik, M.C. Cytokine and immune cell profiling in the cerebrospinal fluid of patients with neuroinflammatory diseases. J. Neuroinflammation 2019, 16, 219. [Google Scholar]
- Pietikäinen, A.; Maksimov, M.; Kauko, T.; Hurme, S.; Salmi, M.; Hytönen, J. Cerebrospinal fluid cytokines in Lyme neuroborreliosis. J. Neuroinflammation 2016, 13, 273–282. [Google Scholar]
- Grygorczuk, S.; Świerzbińska, R.; Kondrusik, M.; Dunaj, J.; Czupryna, P.; Moniuszko, A.; Siemieniako, A.; Pancewicz, S. The intrathecal expression and pathogenetic role of Th17 cytokines and CXCR2-binding chemokines in tick-borne encephalitis. J. Neuroinflammation 2018, 15, 115. [Google Scholar] [PubMed]
- Bardina, S.V.; Lim, J.K. The role of chemokines in the pathogenesis of neurotropic flaviviruses. Immunol. Res. 2012, 54, 121–132. [Google Scholar] [PubMed]
- Pokorna Formanova, P.; Palus, M.; Salat, J.; Hönig, V.; Stefanik, M.; Svoboda, P.; Rüžek, D. Changes in cytokine and chemokine profiles in mouse serum and brain, and in human neural cells, upon tick-borne encephalitis virus infection. J. Neuroinflammation 2019, 16, 205–219. [Google Scholar]
- Rupprecht, T.A.; Manz, K.M.; Fingerle, V.; Lechner, C.; Klein, M.; Pfirmann, M.; Koedel, U. Diagnostic value of cerebrospinal fluid CXCL13 for acute Lyme neuroborreliosis. A systematic review and meta-analysis. Clin. Microb. Inf. 2018, 24, 1234–1240. [Google Scholar]
- Grygorczuk, S.; Czupryna, P.; Pancewicz, S.; Świerzbińska, R.; Dunaj, J.; Siemieniako, A.; Moniuszko-Malinowska, A. The increased intrathecal expression of the monocyte-attracting chemokines CCL7 and CXCL12 in tick-borne encephalitis. J. Neurovirol. 2021, 27, 452–462. [Google Scholar]
- Bardina, S.V.; Michlmayr, D.; Hoffman, K.W.; Obara, C.J.; Sum, J.; Charo, I.F.; Lu, W.; Pletnev, A.G.; Lim, J.K. Differential roles of chemokines CCL2 and CCL7 in monocytosis and leukocyte migration during West Nile virus infection. J. Immunol. 2015, 195, 4306–4318. [Google Scholar]
- Lim, J.K.; Obara, C.J.; Rivollier, A.; Pletnev, A.G.; Kelsall, B.L.; Murphy, P.M. Chemokine receptor Ccr2 is critical for monocyte accumulation and survival in West Nile virus encephalitis. J. Immunol. 2011, 186, 471–478. [Google Scholar] [PubMed]
- Kothur, K.; Wienholt, L.; Tamtsis, E.M.; Earl, J.; Bandodkar, S.; Prelog, K.; Tea, F.; Ramanathan, S.; Brilot, F.; Dale, R.C. B cell, Th17, and neutrophil related cerebrospinal fluid cytokine/chemokines are elevated in MOG antibody associated demyelination. PLoS ONE 2016, 11, e0149411. [Google Scholar] [CrossRef]
- Cupovic, J.; Onder, L.; Gil-Cruz, C.; Weller, E.; Caviezel-Firner, S.; Perez-Shibayama, C.; Rülicke, T.; Bechmann, I.; Ludewig, B. Central nervous system stromal cells control local CD8+ T cell responses during virus-induced neuroinflammation. Immunity 2016, 44, 622–633. [Google Scholar]
- Lind, L.; Eriksson, K.; Grahn, A. Chemokines and matrix metalloproteinases in cerebrospinal fluid of patients with central nervous system complications caused by varicella-zoster virus. J. Neuroinflammation 2016, 16, 42. [Google Scholar] [CrossRef]
- Kastenbauer, S.; Koedel, U.; Wick, M.; Kieseier, B.C.; Hartung, H.-P.; Pfister, H.-W. CSF and serum levels of soluble fractalkine (CX3CL1) in inflammatory diseases of the nervous system. J. Neuroimmunol. 2003, 137, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Patil, A.M.; Choi, J.Y.; Kim, S.B.; Uyangaa, E.; Hossain, F.M.; Park, S.-Y.; Lee, J.H.; Kim, K.; Eo, S.K. CCL2, but not its receptor, is essential to restrict immune privileged central nervous system-invasion of Japanese encephalitis virus via regulating accumulation of CD11b(+) Ly-6C(hi) monocytes. Immunology 2016, 149, 186–203. [Google Scholar] [CrossRef] [PubMed]
- Mickienė, A.; Laiškonis, A.; Günther, G.; Vene, S.; Lundkvist, A.; Lindquist, L. Tick-borne encephalitis in an area of high endemicity in Lithuania: Disease severity and long-term prognosis. Clin. Infect. Dis. 2002, 35, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Günther, G.; Haglund, M.; Lindquist, L.; Sköldenberg, B.; Forsgren, M. Intrathecal IgM, IgA and IgG antibody response in tick-borne encephalitis. Long term follow-up related to clinical course and outcome. Clin. Diagn. Virol. 1997, 8, 17–29. [Google Scholar] [CrossRef]
- Grygorczuk, S.; Czupryna, P.; Pancewicz, S.; Świerzbińska, R.; Kondrusik, M.; Dunaj, J.; Zajkowska, J.; Moniuszko-Malinowska, A. Intrathecal expression of IL-5 and humoral response in patients with tick-borne encephalitis. Ticks Tick Borne Dis. 2018, 9, 896–911. [Google Scholar] [CrossRef]
- Czupryna, P.; Moniuszko-Malinowska, A.; Trojan, G.; Adamczuk, J.; Martonik, D.; Parfieniuk-Kowerda, A.; Kruszewska, E.; Giecko, M.; Grygorczuk, S. The assessment of usefulness of cytokines and other soluble mediators as the predictors of sequalae development in various forms of tick-borne encephalitis (TBE). Cytokine 2024, 184, 156767. [Google Scholar] [CrossRef]
Cytokine | Concentration in CSF | CSF Concentration Index a (Median) | CSF/Serum Concentration Gradient a (Median) | Fraction of Patients with a Concentration Gradient Towards CSF (>1) | |
---|---|---|---|---|---|
Median (Min–Max) (pg/mL) | Fold Increase Compared to Controls (Statistical Significance) | ||||
IL-16 | 91.8 (15.4–364.8) | 7.8 (p < 10−6) | 43.0 | 0.46 | 11% |
CXCL1 | 376.3 (39.8–8185.3) | 8.4 (p < 10−6) | 297.9 | 3.33 | 90% |
CXCL2 | 18.1 (0–114.9) | 1.0 (NS) | 2.3 | 0.02 | 0% |
CXCL5 | 40.1 (0–448.1) | 41.1 b (p < 10−6) | 3.0 | 0.03 | 0% |
CXCL6 | 42.3 (0–862.2) | NC (p < 10−6) | 7.8 | 0.08 | 5% |
IL-8 | 347.9 (33.5–5000) | 8.5 (p < 10−6) | 6213.2 | 74.3 | 100% |
CXCL9 | 384.0 (0–1376.9) | 37.2 b (p < 10−5) | 23.2 | 0.23 | 6% |
CXCL10 | 1963.1 (1032.4–3664.4) | 10.9 (p < 10−6) | 1927.4 | 21.7 | 100% |
CXCL11 | 15.5 (0–85.6) | 3.8 (p < 0.01) | 25.6 | 0.28 | 4% |
CXCL12 | 2180.3 (611.3–5275.9) | 1.44 (p < 0.01) | NA | NA | NA |
CXCL13 | 71.0 (21.3–638.3) | 2.8 (p < 10−6) | 43.0 | 0.46 | 17% |
CCL2 | 826.9 (274.6–2847.7) | 2.0 (p < 10−4) | 330.9 | 3.71 | 97% |
CCL3 | 22.1 (12.5–79.6) | 1.5 (p < 10−6) | 1556.2 | 16.66 | 97% |
CCL4 | 123.7 (70.0–305.3) | 1.9 (p < 10−6) | 91.2 | 0.90 | 39% |
CCL5 | 0 (0–3881.5) | 0.4 b (p < 0.05) | NA | NA | NA |
CCL7 | 55.9 (0–483.5) | 34.5 b(p < 10−6) | 101.9 | 0.99 | 50% |
CCL8 | 106.1 (10.0–1197.1) | 71.3 b (p < 10−6) | 102.3 | 1.07 | 55% |
CCL11 | 26.9 (1.2–60.0) | NC (p < 10−6) | 13.7 | 0.14 | 1% |
CCL13 | 3.6 (0–23.0) | 2.9 (p < 0.05) | 2.4 | 0.03 | 0% |
CCL17 | 49.1 (0–108.7) | 15.7 b (p < 10−4) | 12.9 | 0.11 | 0% |
CCL19 | 1003.1 (120.9–3730.7) | 8.1 (p < 10−6) | 1484.7 | 15.72 | 100% |
CCL20 | 15.7 (5.8–30.9) | 3.1 (p < 10−6) | 245.8 | 2.84 | 91% |
CCL21 | 58.2 (0–267.2) | 5.8 (p < 10−6) | 14.5 | 0.16 | 0% |
CX3CL1 | 1434.7 (533.2–4279.1) | 1.7 (p < 10−5) | 40.8 | 0.45 | 3% |
XCL1 | 14.5 (0–36.3) | 0.7 (p < 0.05) | 9.4 | 0.10 | 0% |
Cytokine | Pleocytosis | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Total | Neutrophils | Monocytes | Lymphocytes | |||||||
Total | CD3+ | NK | B | |||||||
Total | CD4+ | CD8+ | CD4+ CD8+ | |||||||
IL-16 | 0.79 (p < 10−10) | 0.24 (p < 0.05) | 0.40 (p < 10−4) | 0.72 (p < 10−10) | 0.72 (p < 10−9) | 0.73 (p < 10−9) | 0.70 (p < 10−8) | 0.41 (p < 0.01) | 0.55 (p < 10−4) | 0.61 (p < 10−6) |
CXCL1 | 0.34 (p < 0.001) | 0.48 (p < 10−6) | NS | NS | NS | NS | NS | NS | NS | NS |
CXCL5 | 0.29 (p < 0.01) | NS | 0.22 (p < 0.05) | 0.25 (p < 0.05) | NS | 0.34 (p < 0.05) | NS | NS | NS | NS |
CXCL6 | 0.41 (p < 10−4) | 0.33 (p < 0.001) | 0.31 (p < 0.01) | 0.28 (p < 0.01) | 0.31 (p < 0.05) | 0.38 (p < 0.01) | NS | NS | NS | NS |
IL-8 | 0.31 (p < 0.01) | 0.57 (p < 10−9) | 0.27 (p < 0.01) | NS | NS | NS | NS | NS | NS | NS |
CXCL9 | 0.30 (p < 0.01) | NS | NS | 0.26 (p < 0.01) | 0.33 (p < 0.05) | 0.39 (p < 0.01) | NS | NS | NS | NS |
CXCL10 | NS | NS | NS | 0.21 (p < 0.05) | NS | NS | NS | NS | NS | NS |
CXCL11 | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
CXCL12 | 0.23 (p < 0.05) | NS | NS | 0.21 (p < 0.05) | NS | NS | NS | NS | NS | NS |
CXCL13 | 0.21 (p < 0.05) | −0.24 (p < 0.05) | NS | 0.50 (p < 10−7) | 0.46 (p < 0.001) | 0.44 (p < 0.001) | 0.48 (p < 0.001) | 0.34 (p < 0.05) | 0.43 (p < 0.001) | 0.45 (p < 0.001) |
CCL2 | NS | 0.45 (p < 10−5) | NS | −0.29 (p < 0.01) | NS | NS | −0.32 (p < 0.05) | −0.29 (p < 0.05) | −0.34 (p < 0.05) | −0.30 (p < 0.05) |
CCL3 | 0.22 (p < 0.05) | NS | NS | NS | NS | 0.28 (p < 0.05) | NS | NS | NS | NS |
CCL4 | 0.36 (p < 0.001) | 0.49 (p < 10−5) | NS | NS | NS | NS | NS | NS | NS | |
CCL7 | 0.32 (p < 0.001) | 0.21 (p < 0.05) | NS | 0.22 (p < 0.05) | 0.29 (p < 0.05) | 0.37 (p < 0.01) | NS | NS | NS | NS |
CCL8 | 0.32 (p < 0.001) | 0.26 (p < 0.01) | NS | 0.23 (p < 0.05) | NS | 0.33 (p < 0.05) | NS | NS | NS | NS |
CCL11 | 0.27 (p < 0.01) | 0.36 (p < 0.001) | NS | NS | NS | NS | NS | NS | NS | |
CCL13 | 0.36 (p < 0.001) | 0.34 (p < 0.001) | 0.29 (p < 0.01) | 0.19 (p < 0.05) | NS | 0.28 (p < 0.05) | NS | NS | NS | NS |
CCL17 | NS | NS | NS | NS | NS | NS | NS | NS | NS | |
CCL19 | 0.38 (p < 0.001) | NS | NS | 0.36 (p < 0.001) | NS | 0.30 (p < 0.05) | NS | NS | NS | NS |
CCL20 | 0.41 (p < 10−4) | 0.45 (p < 10−5) | NS | 0.22 (p < 0.05) | NS | 0.31 (p < 0.05) | NS | NS | NS | NS |
CCL21 | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
CX3CL1 | NS | NS | 0.26 (p < 0.05) | 0.21 (p < 0.05) | NS | NS | NS | NS | NS | NS |
N = 98 | R = 0.92485485; R2 = 0.85535649; Corrected R2 = 0.83493623; F = 41.888; p < 0.0000; SE = 33.835 | ||||
---|---|---|---|---|---|
β | β * SD | b | b SD | p | |
Free parameter | 32.4124 | 17.8154 | 0.072 | ||
IL-16 concentration | 0.992662 | 0.056708 | 1.1541 | 0.0659 | <10−6 |
CCL4 concentration | 0.209468 | 0.082368 | 0.4428 | 0.1741 | <0.05 |
CXCL6 gradient | 0.201127 | 0.066534 | 44.1086 | 14.5913 | <0.01 |
CCL13 gradient | 0.175257 | 0.079667 | 400.1606 | 181.9024 | <0.05 |
CCL11 concentration | −0.141349 | 0.075702 | −1.0800 | 0.5784 | 0.065 |
CXCL13 concentration | −0.187228 | 0.054849 | −0.1547 | 0.0453 | <0.001 |
CCL8 concentration | −0.190527 | 0.077870 | −0.1038 | 0.0424 | <0.05 |
CX3CL1 concentration | −0.313393 | 0.061724 | −0.0411 | 0.0081 | <10−5 |
N = 90 | R = 0.90991647; R2 = 0.82794798; Corrected R2 = 0.79402223; F = 24.405; p < 0.0000; SE = 25.145 | ||||
---|---|---|---|---|---|
β | β * SD | b | b SD | p | |
Free parameter | 6.129 | 17.52460 | NS | ||
IL-16 concentration | 0.931665 | 0.071108 | 0.697 | 0.05317 | <10−6 |
CCL20 concentration | 0.157384 | 0.075028 | 1.656 | 0.78944 | <0.05 |
CCL19 concentration | 0.145336 | 0.076495 | 0.014 | 0.00757 | 0.062 |
CXCL1 gradient | 0.130906 | 0.060285 | 1.827 | 0.84149 | <0.05 |
CCL3 gradient | 0.129082 | 0.059048 | 0.273 | 0.12468 | <0.05 |
CXCL10 concentration | 0.104640 | 0.060787 | 0.010 | 0.00572 | 0.089 |
CXCL12 concentration | 0.094197 | 0.063804 | 0.006 | 0.00383 | 0.144 |
CX3CL1 concentration | −0.102323 | 0.079759 | −0.010 | 0.00793 | 0.204 |
CCL13 concentration | −0.131715 | 0.069826 | −2.264 | 1.20026 | <0.063 |
CCL2 concentration | −0.159985 | 0.059360 | −0.019 | 0.00692 | <0.01 |
CXCL2 gradient | −0.164208 | 0.054894 | −258.784 | 86.50934 | <0.01 |
CXCL11 concentration | −0.170261 | 0.075926 | −0.704 | 0.31380 | <0.05 |
IL-8 gradient | −0.249295 | 0.067334 | −0.193 | 0.05218 | <0.001 |
CCL21 concentration | −0.278474 | 0.066894 | −0.413 | 0.09916 | <10−4 |
N = 48 | R = 0.94170363; R2 = 0.88680572; Corrected R2 = 0.84799626; F = 22.850; p < 0.00000; SE = 17.615 | ||||
---|---|---|---|---|---|
β | β * SD | b | b SD | p | |
Free parameter | 11.912 | 12.97947 | NS | ||
IL-16 concentration | 0.635714 | 0.101137 | 0.442 | 0.07028 | <10−6 |
CCL4 concentration | 0.421289 | 0.124461 | 0.516 | 0.15250 | <0.01 |
CXCL6 concentration | 0.311816 | 0.106263 | 0.088 | 0.02990 | <0.01 |
CXCL9 gradient | 0.258454 | 0.083191 | 6.419 | 2.06620 | <0.01 |
CCL19 concentration | 0.237197 | 0.088684 | 0.018 | 0.00683 | <0.05 |
CXCL12 concentration | 0.172794 | 0.076303 | 0.009 | 0.00392 | <0.05 |
CXCL2 concentration | −0.217161 | 0.080685 | −0.377 | 0.14004 | <0.05 |
CX3CL1 concentration | −0.228741 | 0.112061 | −0.015 | 0.00756 | <0.05 |
CCL21 gradient | −0.249035 | 0.075813 | −137.665 | 41.90870 | <0.01 |
CCL2 concentration | −0.283288 | 0.084089 | −0.022 | 0.00646 | <0.01 |
IL-8 gradient | −0.296352 | 0.079352 | −0.125 | 0.03338 | <0.001 |
CXCL11 concentration | −0.406704 | 0.104557 | −1.047 | 0.26924 | <0.001 |
N = 50 | R = 0.93254379; R2 = 0.86963793; Corrected R2 = 0.83621175; F = 26.017 p < 0.00000; SE = 13.326 | ||||
---|---|---|---|---|---|
β | β * SD | b | b SD | p | |
Free parameter | 4.50770 | 8.053756 | NS | ||
IL-16 concentration | 0.667840 | 0.087971 | 0.34303 | 0.045186 | <10−6 |
CCL19 gradient | 0.356698 | 0.085453 | 2.06708 | 0.495203 | <0.001 |
CCL11 gradient | 0.347663 | 0.079106 | 37.30562 | 8.488352 | <10−4 |
CXCL9 concentration | 0.219668 | 0.111690 | 0.01887 | 0.009594 | 0.056 |
CXCL6 concentration | 0.177171 | 0.087272 | 0.03695 | 0.018199 | <0.05 |
CCL20 concentration | 0.155866 | 0.078334 | 0.29729 | 0.149407 | 0.054 |
CX3CL1 concentration | −0.153387 | 0.100032 | −0.00751 | 0.004898 | 0.133 |
CCL2 gradient | −0.221737 | 0.079749 | −1.83547 | 0.660140 | <0.01 |
IL-8 gradient | −0.377169 | 0.084266 | −0.11766 | 0.026288 | <10−4 |
CXCL11 concentration | −0.504231 | 0.138359 | −0.96561 | 0.264960 | <0.001 |
N = 48 | R = 0.87469696; R2 = 0.76509478; Corrected R2 = 0.70945933; F = 13.752; p < 0.00000; SE = 5.3875 | ||||
---|---|---|---|---|---|
β | β * SD | b | b SD | p | |
Free parameter | 1.47765 | 3.811226 | NS | ||
IL-16 concentration | 0.669276 | 0.121762 | 0.10289 | 0.018720 | <10−5 |
CCL19 concentration | 0.281524 | 0.096631 | 0.00483 | 0.001657 | <0.01 |
CXCL12 concentration | 0.267368 | 0.114724 | 0.00306 | 0.001313 | <0.05 |
CXCL13 concentration | 0.233792 | 0.139978 | 0.02214 | 0.013255 | 0.104 |
CCL4 concentration | 0.230491 | 0.168368 | 0.06151 | 0.044931 | 0.179 |
CXCL5 concentration | 0.196506 | 0.163790 | 0.02784 | 0.023206 | 0.238 |
CX3CL1 gradient | −0.158132 | 0.099245 | −4.95896 | 3.112283 | 0.119 |
CCL2 concentration | −0.400523 | 0.108066 | −0.00678 | 0.001830 | <0.001 |
CCL3 concentration | −0.759196 | 0.219224 | −0.65143 | 0.188106 | <0.01 |
N = 47 | R = 0.88595594; R2 = 0.78491793; Corrected R2 = 0.74631345; F = 20.332; p < 0.00000; SE = 0.57915 | ||||
---|---|---|---|---|---|
β | β * SD | b | b SD | p | |
Free parameter | 1.455959 | 0.337757 | <0.001 | ||
IL16 concentration | 0.744771 | 0.108984 | 0.013271 | 0.001942 | <10−6 |
CXCL13 concentration | 0.452551 | 0.115015 | 0.004901 | 0.001246 | <0.001 |
CXCL6 gradient | 0.449317 | 0.114498 | 1.189121 | 0.303020 | <0.001 |
CCL19 gradient | 0.296957 | 0.091561 | 0.019546 | 0.006027 | <0.01 |
CXCL12 concentration | −0.266704 | 0.088663 | −0.000358 | 0.000119 | <0.01 |
IL8 gradient | −0.405722 | 0.104101 | −0.004308 | 0.001105 | <0.001 |
CX3CL1 concentration | −0.701149 | 0.117725 | −0.001198 | 0.000201 | <10−5 |
Cytokine | Concentration (pg/mL) | CSF/Serum Concentration Gradient | Correlation of the Concentration with the Clinical Severity Score a | ||
---|---|---|---|---|---|
M (n = 53) | ME/MEM (n = 50) | M (n = 53) | ME/MEM (n = 50) | ||
IL-16 | 83.1 | 98.33 | 0.46 | 0.43 | NS |
CXCL1 | 300.9 ** | 444.56 ** | 2.96** | 3.92 ** | 0.33 (p < 0.001) |
CXCL2 | 18.6 | 18.11 | 0.02 | 0.02 | NS |
CXCL5 | 35.0 * | 48.85 * | 0.03 * | 0.04 * | NS |
CXCL6 | 36.4 ** | 50.00 ** | 0.07 ** | 0.11 ** | 0.26 (p < 0.01) |
IL-8 | 282.2 *** | 459.69 *** | 59.39 ** | 101.00 ** | 0.40 (p < 10−4) |
CXCL9 | 361.8 * | 460.58 * | 0.20 * | 0.27 * | 0.22 (p < 0.05) |
CXCL10 | 1836.4 ** | 2426.14 ** | 23.19 | 18.59 | 0.22 (p < 0.05) |
CXCL11 | 13.2 * | 18.88 * | 0.24 *** | 0.41 *** | NS |
CXCL12 | 2032.3 | 2338.77 | not calculated b | NS | |
CXCL13 | 75.1 | 64.27 | 0.46 | 0.47 | NS |
CCL2 | 645.0 ** | 1023.20 ** | 2.99 ** | 4.4 ** | 0.25 (p < 0.05) |
CCL3 | 21.2 | 24.18 | 34.28 | 8.02 | NS |
CCL4 | 114.9 ** | 135.92 ** | 0.85 * | 0.99 * | 0.23 (p < 0.05) |
CCL5 | 0.0 | 0.00 | not calculated b | NS | |
CCL7 | 51.5 | 69.75 | 0.91 | 1.16 | NS |
CCL8 | 99.8 | 113.97 | 0.97 | 1.19 | NS |
CCL11 | 23.7 ** | 29.74 ** | 0.12 | 0.16 | NS |
CCL13 | 2.8 | 3.66 | 0.02 * | 0.03 * | NS |
CCL17 | 46.9 | 54.79 | 0.11 | 0.12 | NS |
CCL19 | 995.0 | 1014.21 | 13.57 | 17.36 | NS |
CCL20 | 14.8 ** | 19.32 ** | 2.63 * | 3.16 * | 0.31 (p < 0.01) |
CCL21 | 54.6 | 60.82 | 0.16 | 0.16 | NS |
CX3CL1 | 1427.2 | 1434.74 | 0.43 | 0.47 | NS |
XCL1 | 14.5 | 14.53 | 0.10 | 0.10 | NS |
N = 90 | R = 0.84146836; R2 = 0.70806900; Corrected R2 = 0.67522676; F = 21.560; p < 0.00000; SE = 3.0387 | ||||
---|---|---|---|---|---|
β | β * SD | b | b SD | p | |
Free parameter | 12.69167 | 1.379226 | <10−6 | ||
CXCL1 concentration | 0.653704 | 0.077975 | 0.00309 | 0.000368 | <10−6 |
CCL20 concentration | 0.464941 | 0.093631 | 0.44239 | 0.089090 | <10−5 |
CXCL11 gradient | 0.426848 | 0.067876 | 4.34984 | 0.691695 | <10−6 |
CCL17 gradient | 0.159246 | 0.074923 | 6.01605 | 2.830468 | <0.05 |
CXCL12 concentration | −0.073457 | 0.069967 | −0.00042 | 0.000399 | 0.296929 |
CXCL13 concentration | −0.181374 | 0.066997 | −0.00931 | 0.003438 | <0.01 |
CXCL10 gradient | −0.241174 | 0.069927 | −0.08663 | 0.025117 | <0.001 |
CCL19 gradient | −0.253881 | 0.071612 | −0.09557 | 0.026958 | <0.001 |
CCL11 concentration | −0.498870 | 0.101186 | −0.24135 | 0.048953 | <10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grygorczuk, S.; Czupryna, P.; Martonik, D.; Parfieniuk-Kowerda, A.; Adamczuk, J.; Dunaj-Małyszko, J.; Giecko, M.; Osada, J.; Parczewski, M.; Flisiak, R.; et al. The Role of Chemotactic Cytokines in Tick-Borne Encephalitis. Cells 2025, 14, 490. https://doi.org/10.3390/cells14070490
Grygorczuk S, Czupryna P, Martonik D, Parfieniuk-Kowerda A, Adamczuk J, Dunaj-Małyszko J, Giecko M, Osada J, Parczewski M, Flisiak R, et al. The Role of Chemotactic Cytokines in Tick-Borne Encephalitis. Cells. 2025; 14(7):490. https://doi.org/10.3390/cells14070490
Chicago/Turabian StyleGrygorczuk, Sambor, Piotr Czupryna, Diana Martonik, Anna Parfieniuk-Kowerda, Justyna Adamczuk, Justyna Dunaj-Małyszko, Maciej Giecko, Joanna Osada, Miłosz Parczewski, Robert Flisiak, and et al. 2025. "The Role of Chemotactic Cytokines in Tick-Borne Encephalitis" Cells 14, no. 7: 490. https://doi.org/10.3390/cells14070490
APA StyleGrygorczuk, S., Czupryna, P., Martonik, D., Parfieniuk-Kowerda, A., Adamczuk, J., Dunaj-Małyszko, J., Giecko, M., Osada, J., Parczewski, M., Flisiak, R., & Moniuszko-Malinowska, A. (2025). The Role of Chemotactic Cytokines in Tick-Borne Encephalitis. Cells, 14(7), 490. https://doi.org/10.3390/cells14070490