Decoding B Cells in Autoimmune Diseases Through ScRNA + BCR-Seq: Current Knowledge and Future Directions
Abstract
:1. Introduction
2. Introduction to scRNA + BCR-Seq Technology and Its Advantages
- scRNA-seq: scRNA-seq enables a comprehensive analysis of mRNA transcriptome characteristics at the single-cell level. Compared with traditional mRNA-Seq (Messenger RNA-sequencing) [3], which performs whole-transcriptome analysis on a population of cells, scRNA-seq offers a more refined perspective, comprehensively dissecting gene expression changes in cells across different differentiation states and microenvironments. With the capability to sequence more than 5,000 cells per sample in a single run, scRNA-seq reveals the temporal and spatial heterogeneity of multiple cell types within the study subject at a holistic level. It provides detailed information on the expression of transcription factors, cytokines, and cytokine receptors in each cell subset, allowing for comparative analysis of their functional characteristics, differentiation trajectories, and intercellular interactions [4,5]. The technical workflow of scRNA-seq includes the preparation of single-cell research samples; RNA (Ribonucleic Acid) reverse transcription; cDNA (Complementary Deoxyribonucleic acid) synthesis; construction of single-cell libraries; high-throughput sequencing; and data analysis [6]. With the rapid development and maturation of quality control techniques and analytical tools, as well as the decrease in sequencing costs, scRNA-seq has now been widely applied in biological and medical research.
- scBCR-seq: scBCR-seq is a technology focused on analyzing the sequence characteristics of B-cell receptors from individual B cells. Compared with traditional lineage analysis techniques for the CDR3 (Complementarity-Determining Region 3) region of BCRs and next-generation sequencing technology [7], scBCR-seq provides a comprehensive analysis of the pairing of heavy and light chains in each B cell within the research samples, enabling functional analysis of the antigen epitopes corresponding to the BCR CDR3. This has brought new breakthroughs in the study of the development, differentiation, maturation, response, and tolerance of adaptive B cells. The technical workflow of scBCR-seq is consistent with the standard process of scRNA-seq, except that primers targeting the C region of B-cell heavy and light chains are used for mRNA capture and library construction. Data analysis employs specialized CellRanger software (version 7.1.0) to analyze the sequence composition and pairing of V(D)J(C) regions.
- Prominent Advantages of scRNA + BCR-seq in Analyzing B Cells: The combination of scBCR + RNA-seq technology leverages the strengths of both sscRNA-seq and scBCR-seq, providing a novel technical approach for in-depth research on the effects and mechanisms of adaptive B-cell responses and clinical applications. It offers comprehensive information on the mRNA (Messenger Ribonucleic Acid) expression of regulatory and effector molecules during the differentiation, development, maturation, and response processes of various B-cell subsets at both temporal and spatial levels. Simultaneously, it provides characteristics of corresponding B-cell V(D)J(C) recombination and CDR3 repertoire, thereby enabling a comprehensive understanding of the BCR-antigen epitope correspondence features of various B-cell subsets at a large scale, assessing their antigen-binding capabilities, and dissecting the molecular mechanisms involved in regulation and effector functions (Figure 1).
3. Studying B Cells in Autoimmune Diseases with scRNA + scBCR-Seq: From “Separate Analysis” to “Dual-Omics Correlation Research”
4. ScRNA + scBCR-Seq and New Directions in B Cells in Autoimmune Diseases: Dual BCR B Cells and B/T Biphenotypic Cells
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pennisi, E. Single-cell sequencing tackles basic and biomedical questions. Science 2012, 336, 976–977. [Google Scholar] [CrossRef] [PubMed]
- LeBien, T.W.; Tedder, T.F. B lymphocytes: How they develop and function. Blood 2008, 112, 1570–1580. [Google Scholar] [CrossRef]
- Tang, F.; Barbacioru, C.; Wang, Y.; Nordman, E.; Lee, C.; Xu, N.; Wang, X.; Bodeau, J.; Tuch, B.B.; Siddiqui, A.; et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 2009, 6, 377–382. [Google Scholar] [CrossRef]
- Jovic, D.; Liang, X.; Zeng, H.; Lin, L.; Xu, F.; Luo, Y. Single-cell RNA sequencing technologies and applications: A brief overview. Clin. Transl. Med. 2022, 12, e694. [Google Scholar] [CrossRef]
- Wen, L.; Tang, F. Boosting the power of single-cell analysis. Nat. Biotechnol. 2018, 36, 408–409. [Google Scholar] [CrossRef] [PubMed]
- Slovin, S.; Carissimo, A.; Panariello, F.; Grimaldi, A.; Bouché, V.; Gambardella, G.; Cacchiarelli, D. Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview. Methods Mol. Biol. 2021, 2284, 343–365. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.-L.; Wang, L.; Ding, Y.-L.; Xie, Q.; Diao, H.-Y. Current status and recent advances of next generation sequencing techniques in immunological repertoire. Genes Immun. 2016, 17, 153–164. [Google Scholar] [CrossRef]
- See, P.; Lum, J.; Chen, J.; Ginhoux, F. A Single-Cell Sequencing Guide for Immunologists. Front. Immunol. 2018, 9, 2425. [Google Scholar] [CrossRef]
- Wang, X.; He, Y.; Zhang, Q.; Ren, X.; Zhang, Z. Direct Comparative Analyses of 10X Genomics Chromium and Smart-seq2. Genom. Proteom. Bioinform. 2021, 19, 253–266. [Google Scholar] [CrossRef]
- Sang, A.; Zheng, Y.-Y.; Morel, L. Contributions of B cells to lupus pathogenesis. Mol. Immunol. 2014, 62, 329–338. [Google Scholar] [CrossRef]
- Zheng, F.; Xu, H.; Zhang, C.; Hong, X.; Liu, D.; Tang, D.; Xiong, Z.; Dai, Y. Immune cell and TCR/BCR repertoire profiling in systemic lupus erythematosus patients by single-cell sequencing. Aging 2021, 13, 24432–24448. [Google Scholar] [CrossRef]
- Gao, M.; Liu, S.; Chatham, W.W.; Mountz, J.D.; Hsu, H.-C. IL-4-Induced Quiescence of Resting Naive B Cells Is Disrupted in Systemic Lupus Erythematosus. J. Immunol. 2022, 209, 1513–1522. [Google Scholar] [CrossRef]
- Wu, Y.; Weng, C.; Zhou, Y.; Zhu, Q.; Liu, Y.; Zheng, J.; Yang, B.; Cao, W.; Yuan, L.; Yang, M.; et al. A comprehensive exploration of the heterogeneity of immune cells in Han and Zang systemic lupus erythematosus patients via single-cell RNA sequencing. Genomics 2024, 116, 110770. [Google Scholar] [CrossRef] [PubMed]
- Ascherio, A.; Munger, K.L. EBV and Autoimmunity. Curr. Top. Microbiol. Immunol. 2015, 390, 365–385. [Google Scholar] [CrossRef]
- Hu, L.; Tu, J.; Gui, J.; Fang, M.; Sun, L. Landscape of immune cells in systematic lupus erythematosus patients with Epstein-Barr virus infection: Assessed by single-cell sequencing. Rheumatology 2024, 63, 2856–2864. [Google Scholar] [CrossRef] [PubMed]
- Saguil, A.; Fargo, M.; Grogan, S. Diagnosis and management of kawasaki disease. Am. Fam. Physician 2015, 91, 365–371. [Google Scholar] [PubMed]
- Wang, Z.; Xie, L.; Ding, G.; Song, S.; Chen, L.; Li, G.; Xia, M.; Han, D.; Zheng, Y.; Liu, J.; et al. Single-cell RNA sequencing of peripheral blood mononuclear cells from acute Kawasaki disease patients. Nat. Commun. 2021, 12, 5444. [Google Scholar] [CrossRef]
- Boehncke, W.-H.; Schön, M.P. Psoriasis. Lancet 2015, 386, 983–994. [Google Scholar] [CrossRef]
- Liu, X.; Wang, J.; Shen, L.; Wang, R.; Zhang, L.; Li, C. Single-cell atlas reveals a high selection of IgA1- or IgG1-expressing plasma cells in patients with psoriasis. Mol. Immunol. 2023, 153, 85–93. [Google Scholar] [CrossRef]
- Ronco, P.; Beck, L.; Debiec, H.; Fervenza, F.C.; Hou, F.F.; Jha, V.; Sethi, S.; Tong, A.; Vivarelli, M.; Wetzels, J. Membranous nephropathy. Nat. Rev. Dis. Primer 2021, 7, 69. [Google Scholar] [CrossRef]
- Feng, X.; Chen, Q.; Zhong, J.; Yu, S.; Wang, Y.; Jiang, Y.; Wan, J.; Li, L.; Jiang, H.; Peng, L.; et al. Molecular characteristics of circulating B cells and kidney cells at the single-cell level in special types of primary membranous nephropathy. Clin. Kidney J. 2023, 16, 2639–2651. [Google Scholar] [CrossRef] [PubMed]
- Lynch, D.R.; Rattelle, A.; Dong, Y.N.; Roslin, K.; Gleichman, A.J.; Panzer, J.A. Anti-NMDA Receptor Encephalitis: Clinical Features and Basic Mechanisms. Adv. Pharmacol. 2018, 82, 235–260. [Google Scholar] [CrossRef]
- Li, S.; Hu, X.; Wang, M.; Yu, L.; Zhang, Q.; Xiao, J.; Hong, Z.; Zhou, D.; Li, J. Single-cell RNA sequencing reveals diverse B cell phenotypes in patients with anti-NMDAR encephalitis. Psychiatry Clin. Neurosci. 2024, 78, 197–208. [Google Scholar] [CrossRef]
- Bystryn, J.-C.; Rudolph, J.L. Pemphigus. Lancet 2005, 366, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Duan, S.; Li, Q.; Wang, F.; Kuang, W.; Dong, Y.; Liu, D.; Wang, J.; Li, W.; Chen, Q.; Zeng, X.; et al. Single-Cell Transcriptomes and Immune Repertoires Reveal the Cell State and Molecular Changes in Pemphigus Vulgaris. J. Immunol. 2024, 212, 375–388. [Google Scholar] [CrossRef] [PubMed]
- Nickerson, K.M.; Smita, S.; Hoehn, K.B.; Marinov, A.D.; Thomas, K.B.; Kos, J.T.; Yang, Y.; Bastacky, S.I.; Watson, C.T.; Kleinstein, S.H.; et al. Age-associated B cells are heterogeneous and dynamic drivers of autoimmunity in mice. J. Exp. Med. 2023, 220, e20221346. [Google Scholar] [CrossRef]
- Akama-Garren, E.H.; Carroll, M.C. Lupus Susceptibility Loci Predispose Mice to Clonal Lymphocytic Responses and Myeloid Expansion. J. Immunol. 2022, 208, 2403–2424. [Google Scholar] [CrossRef]
- Pagani, K.; Lukac, D.; Bhukhan, A.; McGee, J.S. Cutaneous Manifestations of Inflammatory Bowel Disease: A Basic Overview. Am. J. Clin. Dermatol. 2022, 23, 481–497. [Google Scholar] [CrossRef]
- Boland, B.S.; He, Z.; Tsai, M.S.; Olvera, J.G.; Omilusik, K.D.; Duong, H.G.; Kim, E.S.; Limary, A.E.; Jin, W.; Milner, J.J.; et al. Heterogeneity and clonal relationships of adaptive immune cells in ulcerative colitis revealed by single-cell analyses. Sci. Immunol. 2020, 5, eabb4432. [Google Scholar] [CrossRef]
- Lee, D.M.; Weinblatt, M.E. Rheumatoid arthritis. Lancet 2001, 358, 903–911. [Google Scholar] [CrossRef]
- Dunlap, G.; Wagner, A.; Meednu, N.; Zhang, F.; Jonsson, A.H.; Wei, K.; Sakaue, S.; Nathan, A. Accelerating Medicines Partnership Program: Rheumatoid Arthritis and Systemic Lupus Erythematosus (AMP RA/SLE) Network; Bykerk, V.P.; et al. Clonal associations of lymphocyte subsets and functional states revealed by single cell antigen receptor profiling of T and B cells in rheumatoid arthritis synovium. bioRxiv 2023. bioRxiv:2023.03.18.533282. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, T.; Wang, H.; Zhu, L.; Ruan, Y.; Huang, Z.; Wang, J.; Zhu, H.; Huang, C.; Pan, M. Integrative single-cell analysis reveals distinct adaptive immune signatures in the cutaneous lesions of pemphigus. J. Autoimmun. 2024, 142, 103128. [Google Scholar] [CrossRef] [PubMed]
- Wingerchuk, D.M.; Lucchinetti, C.F. Neuromyelitis Optica Spectrum Disorder. N. Engl. J. Med. 2022, 387, 631–639. [Google Scholar] [CrossRef]
- Jiang, Y.; Dai, S.; Pang, R.; Qin, L.; Zhang, M.; Liu, H.; Wang, X.; Zhang, J.; Peng, G.; Wang, Y.; et al. Single-cell RNA sequencing reveals cell type-specific immune regulation associated with human neuromyelitis optica spectrum disorder. Front. Immunol. 2024, 15, 1322125. [Google Scholar] [CrossRef] [PubMed]
- Bjordal, O.; Norheim, K.B.; Rødahl, E.; Jonsson, R.; Omdal, R. Primary Sjögren’s syndrome and the eye. Surv. Ophthalmol. 2020, 65, 119–132. [Google Scholar] [CrossRef]
- Arvidsson, G.; Czarnewski, P.; Johansson, A.; Raine, A.; Imgenberg-Kreuz, J.; Nordlund, J.; Nordmark, G.; Syvänen, A.-C. Multimodal Single-Cell Sequencing of B Cells in Primary Sjögren’s Syndrome. Arthritis Rheumatol. 2024, 76, 255–267. [Google Scholar] [CrossRef]
- Neag, E.J.; Smith, T.J. 2021 update on thyroid-associated ophthalmopathy. J. Endocrinol. Investig. 2022, 45, 235–259. [Google Scholar] [CrossRef]
- Li, Q.; An, N.; Liu, C.; Ding, Y.; Yang, C.; Ma, X.; Yang, W.; Piao, J.; Zhu, J.; Liu, J. Single-cell BCR and transcriptome analysis reveals peripheral immune signatures in patients with thyroid-associated ophthalmopathy. Aging 2024, 16, 8217–8245. [Google Scholar] [CrossRef]
- Gilhus, N.E. Myasthenia Gravis. N. Engl. J. Med. 2016, 375, 2570–2581. [Google Scholar] [CrossRef]
- B Cell Lineage Reconstitution Underlies CAR-T Cell Therapeutic Efficacy in Patients with Refractory Myasthenia Gravis—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/38409527/ (accessed on 28 March 2025).
- Ye, Y.; Chen, Z.; Jiang, S.; Jia, F.; Li, T.; Lu, X.; Xue, J.; Lian, X.; Ma, J.; Hao, P.; et al. Single-cell profiling reveals distinct adaptive immune hallmarks in MDA5+ dermatomyositis with therapeutic implications. Nat. Commun. 2022, 13, 6458. [Google Scholar] [CrossRef]
- Makela, O.; Nossal, G.J. Study of antibody-producing capacity of single cells by bacterial adherence and immobilization. J. Immunol. 1961, 87, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Outters, P.; Jaeger, S.; Zaarour, N.; Ferrier, P. Long-Range Control of V(D)J Recombination & Allelic Exclusion: Modeling Views. Adv. Immunol. 2015, 128, 363–413. [Google Scholar] [CrossRef] [PubMed]
- Cedar, H.; Bergman, Y. Choreography of Ig allelic exclusion. Curr. Opin. Immunol. 2008, 20, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Vettermann, C.; Schlissel, M.S. Allelic exclusion of immunoglobulin genes: Models and mechanisms. Immunol. Rev. 2010, 237, 22–42. [Google Scholar] [CrossRef]
- Schlissel, M. Allelic exclusion of immunoglobulin gene rearrangement and expression: Why and how? Semin. Immunol. 2002, 14, 207–212; discussion 225–226. [Google Scholar] [CrossRef]
- Rezanka, L.J.; Kenny, J.J.; Longo, D.L. 2 BCR or NOT 2 BCR–receptor dilution: A unique mechanism for preventing the development of holes in the protective B cell repertoire. Immunobiology 2005, 210, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, T.; Ishizawa, K.; Kohata, K.; Yamamoto, J.; Yamada, M.F.; Kameoka, J.; Ichinohasama, R.; Harigae, H. Aggressive B-cell lymphoma with dual surface immunoglobulin light-chain expression. Intern. Med. Tokyo Jpn. 2007, 46, 1458–1461. [Google Scholar] [CrossRef]
- Pelanda, R. Dual immunoglobulin light chain B cells: Trojan horses of autoimmunity? Curr. Opin. Immunol. 2014, 27, 53–59. [Google Scholar] [CrossRef]
- Shi, Z.; Zhang, Q.; Yan, H.; Yang, Y.; Wang, P.; Zhang, Y.; Deng, Z.; Yu, M.; Zhou, W.; Wang, Q.; et al. More than one antibody of individual B cells revealed by single-cell immune profiling. Cell Discov. 2019, 5, 64. [Google Scholar] [CrossRef]
- scBCR-Seq Revealed a Special and Novel IG H&L V(D)J Allelic Inclusion Rearrangement and the High Proportion Dual BCR Expressing B Cells—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/37804328/ (accessed on 18 February 2025).
- Xu, Y.; Peng, Q.; Ma, Q.; Yao, X. scRNA + TCR-seq revealed the dual TCR pTh17 and Treg T cells involvement in autoimmune response in ankylosing spondylitis. Int. Immunopharmacol. 2024, 135, 112279. [Google Scholar] [CrossRef]
- Peng, Q.; Xu, Y.; Yao, X. scRNA+ TCR-seq revealed dual TCR T cells antitumor response in the TME of NSCLC. J. Immunother. Cancer 2024, 12, e009376. [Google Scholar] [CrossRef]
- Xu, Y.; Yuan, Y.; Mou, L.; Hui, L.; Zhang, X.; Yao, X.; Li, J. scRNA+TCR-seq reveals the pivotal role of dual receptor T lymphocytes in the pathogenesis of Kawasaki disease and during IVIG treatment. Front. Immunol. 2024, 15, 1457687. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, H.; Xu, Y.; Zhang, L.; Liu, R. scRNA+TCR+BCR-seq revealed the proportions and gene expression patterns of dual receptor T and B lymphocytes in NPC and NLH. Biochem. Biophys. Res. Commun. 2024, 709, 149820. [Google Scholar] [CrossRef] [PubMed]
- Fournier, E.M.; Velez, M.-G.; Leahy, K.; Swanson, C.L.; Rubtsov, A.V.; Torres, R.M.; Pelanda, R. Dual-reactive B cells are autoreactive and highly enriched in the plasmablast and memory B cell subsets of autoimmune mice. J. Exp. Med. 2012, 209, 1797–1812. [Google Scholar] [CrossRef] [PubMed]
- Fraser, L.D.; Zhao, Y.; Lutalo, P.M.K.; D’Cruz, D.P.; Cason, J.; Silva, J.S.; Dunn-Walters, D.K.; Nayar, S.; Cope, A.P.; Spencer, J. Immunoglobulin light chain allelic inclusion in systemic lupus erythematosus. Eur. J. Immunol. 2015, 45, 2409–2419. [Google Scholar] [CrossRef] [PubMed]
- Sang, A.; Danhorn, T.; Peterson, J.N.; Rankin, A.L.; O’Connor, B.P.; Leach, S.M.; Torres, R.M.; Pelanda, R. Innate and adaptive signals enhance differentiation and expansion of dual-antibody autoreactive B cells in lupus. Nat. Commun. 2018, 9, 3973. [Google Scholar] [CrossRef]
- Peterson, J.N.; Boackle, S.A.; Taitano, S.H.; Sang, A.; Lang, J.; Kelly, M.; Rahkola, J.T.; Miranda, A.M.; Sheridan, R.M.; Thurman, J.M.; et al. Elevated Detection of Dual Antibody B Cells Identifies Lupus Patients With B Cell-Reactive VH4-34 Autoantibodies. Front. Immunol. 2022, 13, 795209. [Google Scholar] [CrossRef]
- Landay, A.; Ohlsson-Wilhelm, B.; Giorgi, J.V. Application of flow cytometry to the study of HIV infection. AIDS 1990, 4, 479–497. [Google Scholar] [CrossRef]
- Quintanilla-Martinez, L.; Preffer, F.; Rubin, D.; Ferry, J.A.; Harris, N.L. CD20+ T-cell lymphoma. Neoplastic transformation of a normal T-cell subset. Am. J. Clin. Pathol. 1994, 102, 483–489. [Google Scholar] [CrossRef]
- Blakolmer, K.; Vesely, M.; Kummer, J.A.; Jurecka, W.; Mannhalter, C.; Chott, A. Immunoreactivity of B-cell markers (CD79a, L26) in rare cases of extranodal cytotoxic peripheral T- (NK/T-) cell lymphomas. Mod. Pathol. 2000, 13, 766–772. [Google Scholar] [CrossRef]
- Magro, C.M.; Seilstad, K.H.; Porcu, P.; Morrison, C.D. Primary CD20+CD10+CD8+ T-cell lymphoma of the skin with IgH and TCR beta gene rearrangement. Am. J. Clin. Pathol. 2006, 126, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Lazzi, S.; Bellan, C.; Onnis, A.; De Falco, G.; Sayed, S.; Kostopoulos, I.; Onorati, M.; D’Amuri, A.; Santopietro, R.; Vindigni, C.; et al. Rare lymphoid neoplasms coexpressing B- and T-cell antigens. The role of PAX-5 gene methylation in their pathogenesis. Hum. Pathol. 2009, 40, 1252–1261. [Google Scholar] [CrossRef]
- Eggleton, P.; Bremer, E.; Tarr, J.M.; de Bruyn, M.; Helfrich, W.; Kendall, A.; Haigh, R.C.; Viner, N.J.; Winyard, P.G. Frequency of Th17 CD20+ cells in the peripheral blood of rheumatoid arthritis patients is higher compared to healthy subjects. Arthritis Res. Ther. 2011, 13, R208. [Google Scholar] [CrossRef] [PubMed]
- Palanichamy, A.; Jahn, S.; Nickles, D.; Derstine, M.; Abounasr, A.; Hauser, S.L.; Baranzini, S.E.; Leppert, D.; von Büdingen, H.-C. Rituximab efficiently depletes increased CD20-expressing T cells in multiple sclerosis patients. J. Immunol. 2014, 193, 580–586. [Google Scholar] [CrossRef]
- Alunno, A.; Carubbi, F.; Bistoni, O.; Caterbi, S.; Bartoloni, E.; Di Benedetto, P.; Cipriani, P.; Giacomelli, R.; Gerli, R. Interleukin (IL)-17-producing pathogenic T lymphocytes co-express CD20 and are depleted by rituximab in primary Sjögren’s syndrome: A pilot study. Clin. Exp. Immunol. 2016, 184, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.; Zhai, Z.; Hao, F.; Zhang, Y.; Song, Z.; Zhong, H. Dissection of a circulating CD3+ CD20+ T cell subpopulation in patients with psoriasis. Clin. Exp. Immunol. 2018, 192, 206–212. [Google Scholar] [CrossRef]
- Ahmed, R.; Omidian, Z.; Giwa, A.; Cornwell, B.; Majety, N.; Bell, D.R.; Lee, S.; Zhang, H.; Michels, A.; Desiderio, S.; et al. A Public BCR Present in a Unique Dual-Receptor-Expressing Lymphocyte from Type 1 Diabetes Patients Encodes a Potent T Cell Autoantigen. Cell 2019, 177, 1583–1599.e16. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, C.; Zhou, Y.; Zhang, W.; Zhu, Z.; Wang, W.; Wan, Y. A biphenotypic lymphocyte subset displays both T- and B-cell functionalities. Commun. Biol. 2024, 7, 28. [Google Scholar] [CrossRef]
Disease | Reference | Sequencing Technology | Significance |
---|---|---|---|
Systemic lupus erythematosus (SLE) | Zheng et al. [11] | ScBCR-seq; scTCR-seq | Provide a new approach for diagnosis and treatment of SLE |
Systemic lupus erythematosus | Gao et al. [12] | ScRNA-seq; scBCR-seq | Reveal the changes in B-cell developmental characteristics in diseases. |
Systemic lupus erythematosus | Wu et al. [13] | ScRNA-seq; ScBCR-seq; scTCR-seq | Reveal the immune cell heterogeneity in Han and Tibetan SLE patients. |
Systemic lupus erythematosus | Hu et al. [15] | ScRNA-seq; scBCR-seq | Understand the immune response mechanisms to EBV infection in patients with SLE. |
Kawasaki disease | Wang et al. [17] | ScRNA-seq; scBCR-seq ScTCR-seq | To elucidate the immune response mechanisms of diseases. |
Psoriasis | Liu et al. [19] | ScRNA-seq; scBCR-seq | Reveal the immune response mechanisms of B cells in psoriasis patients. |
Primary membranous nephropathy | Feng et al. [21] | ScRNA-seq; scBCR-seq | Reveal the mechanism of immune response |
Anti-N-methyl-D-aspartate receptor encephalitis | Li et al. [23] | ScRNA-seq; scBCR-seq | Reveal the mechanism of immune response |
Pemphigus vulgaris | Duan et al. [25] | ScRNA-seq; scBCR-seq; ScTCR-seq | Reveal the immune response characteristics and potential autoreactivity of PV. |
Disease | Reference | Sequencing Technology | Significance |
---|---|---|---|
Systemic lupus erythematosus | Nickerson et al. [26] | ScRNA-seq; scBCR-seq | Reveal the direct role of age-associated B cells in the pathogenesis of SLE. |
Systemic lupus erythematosus | Akama-Garren et al. [27] | ScRNA-seq; scBCR-seq | Provide new insights into the pathogenesis of diseases. |
Ulcerative colitis | Boland BS et al. [29] | ScRNA-seq; scBCR-seq | Reveal the mechanism of immune response |
Rheumatoid arthritis | Dunlap et al. [31] | ScRNA-seq; scBCR-seq | Provide new insights into understanding the immunopathological mechanisms of RA. |
Pemphigus | Xu et al. [32] | ScRNA-seq; scBCR-seq ScTCR-seq | Elucidate the pathogenesis of pemphigus skin lesions. |
Neuromyelitis optica spectrum disorder | Jiang et al. [34] | ScRNA-seq; scBCR-seq | Reveal the mechanism of immune response |
Primary sjögren’s syndrome | Arvidsson et al. [36] | ScRNA-seq; scBCR-seq | Reveal the mechanism of immune response |
Thyroid-associated ophthalmopathy | Li et al. [38] | ScRNA-seq; scBCR-seq | Explore the pathogenesis and treatment of TAO. |
Myasthenia gravis | Tian et al. [40] | ScRNA-seq; scBCR-seq | Improve CAR T-cell immunotherapy in autoimmune diseases. |
Anti-melanoma differentiation-associated gene 5-positive dermatomyositis | Ye et al. [41] | ScRNA-seq; scBCR-seq | Reveal the key immunopathogenic characteristics of MDA5+ DM. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quan, K.; Wang, H.; Su, P.; Xu, Y.; Yao, X. Decoding B Cells in Autoimmune Diseases Through ScRNA + BCR-Seq: Current Knowledge and Future Directions. Cells 2025, 14, 539. https://doi.org/10.3390/cells14070539
Quan K, Wang H, Su P, Xu Y, Yao X. Decoding B Cells in Autoimmune Diseases Through ScRNA + BCR-Seq: Current Knowledge and Future Directions. Cells. 2025; 14(7):539. https://doi.org/10.3390/cells14070539
Chicago/Turabian StyleQuan, Kai, Huifang Wang, Peng Su, Yuanyuan Xu, and Xinsheng Yao. 2025. "Decoding B Cells in Autoimmune Diseases Through ScRNA + BCR-Seq: Current Knowledge and Future Directions" Cells 14, no. 7: 539. https://doi.org/10.3390/cells14070539
APA StyleQuan, K., Wang, H., Su, P., Xu, Y., & Yao, X. (2025). Decoding B Cells in Autoimmune Diseases Through ScRNA + BCR-Seq: Current Knowledge and Future Directions. Cells, 14(7), 539. https://doi.org/10.3390/cells14070539