The miR-146a Single Nucleotide Polymorphism rs2910164 Promotes Proliferation, Chemoresistance, Migration, Invasion, and Apoptosis Suppression in Breast Cancer Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Lines
2.2. Expression Vector Design
2.3. Cell Transfection
2.4. RT–qPCR Analysis of miR-146a-5p and miR-146a-3p Expression
2.5. Proliferation Assay
2.6. Cell Viability Assay
2.7. Apoptosis Analysis
2.8. Migration Assay
2.9. Invasion Assays
2.10. Statistical Analysis
3. Results
3.1. Pre-miR-146a-C (rs2910164:G>C) Upregulates miR-146a Expression
3.2. Pre-miR-146a-C Increases Proliferation of BC Cells
3.3. Pre-miR-146a-C Affects Cisplatin Resistance of BC Cells
3.4. Pre-miR-146a-C Expression Decreases Cisplatin-Induced Apoptosis of BC Cells
3.5. Pre-miR-146a-C Increases Migration and Invasion of BC Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Jemal, A.; Siegel, R.; Ward, E.; Hao, Y.; Xu, J.; Thun, M.J. Cancer Statistics, 2009. CA Cancer J. Clin. 2009, 59, 225–249. [Google Scholar] [CrossRef] [PubMed]
- Peralta, O.; Jorquera, A.; Recorent, C.; Castillo, C.D.; Solé, J.; Campodónico, Y. Cáncer de Mama: Resultado Del Programa de Pesquisa y Tratamiento Del Servicio de Salud Central. Rev. Chil. Obstet. Ginecol. 1995, 60, 417–427. [Google Scholar]
- International Agency for Research on Cancer Global Cancer Observatory. Cancer Today. 2022. Available online: https://gco.iarc.who.int/today (accessed on 30 May 2024).
- Anglian Breast Cancer Study Group. Prevalence and Penetrance of BRCA1 and BRCA2 Mutations in a Population-Based Series of Breast Cancer Cases. Br. J. Cancer 2000, 83, 1301–1308. [Google Scholar] [CrossRef]
- Lee, R.C.; Feinbaum, R.L.; Ambrost, V. The C. elegans Heterochronic Gene Lin-4 Encodes Small RNAs with Antisense Complementarity to Lin-14. Cell 1993, 75, 843–854. [Google Scholar] [CrossRef]
- He, L.; Hannon, G.J. MicroRNAs: Small RNAs with a Big Role in Gene Regulation. Nat. Rev. Genet. 2004, 5, 522–531. [Google Scholar] [CrossRef]
- Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. MiRBase: From MicroRNA Sequences to Function. Nucleic Acids Res. 2019, 47, D155–D162. [Google Scholar] [CrossRef]
- Erson, A.E.; Petty, E.M. MicroRNAs in Development and Disease. Clin. Genet. 2008, 74, 296–306. [Google Scholar] [CrossRef]
- Lu, J.; Getz, G.; Miska, E.A.; Alvarez-Saavedra, E.; Lamb, J.; Peck, D.; Sweet-Cordero, A.; Ebert, B.L.; Mak, R.H.; Ferrando, A.A.; et al. MicroRNA Expression Profiles Classify Human Cancers. Nature 2005, 435, 834–838. [Google Scholar] [CrossRef]
- Esquela-Kerscher, A.; Slack, F.J. Oncomirs—MicroRNAs with a Role in Cancer. Nat. Rev. Cancer 2006, 6, 259–269. [Google Scholar] [CrossRef]
- Croce, C.M. Causes and Consequences of MicroRNA Dysregulation in Cancer. Nat. Rev. Genet. 2009, 10, 704–714. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.H.; Wang, Q.B.; Zhang, B. Ethnicity Modifies the Association between Functional MicroRNA Polymorphisms and Breast Cancer Risk: A HuGE Meta-Analysis. Tumor Biol. 2014, 35, 529–543. [Google Scholar] [CrossRef] [PubMed]
- O’Day, E.; Lal, A. MicroRNAs and Their Target Gene Networks in Breast Cancer. Breast Cancer Res. 2010, 12, 201. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Tang, S.; Le, S.Y.; Lu, R.; Rader, J.S.; Meyers, C.; Zheng, Z.M. Aberrant Expression of Oncogenic and Tumor-Suppressive MicroRNAs in Cervical Cancer Is Required for Cancer Cell Growth. PLoS ONE 2008, 3, e2557. [Google Scholar] [CrossRef]
- He, H.; Jazdzewski, K.; Li, W.; Liyanarachchi, S.; Nagy, R.; Volinia, S.; Calin, G.A.; Liu, C.-G.; Franssila, K.; Suster, S.; et al. The Role of MicroRNA Genes in Papillary Thyroid Carcinoma. Proc. Natl. Acad. Sci. USA 2005, 102, 19075–19080. [Google Scholar] [CrossRef]
- Volinia, S.; Calin, G.A.; Liu, C.-G.; Ambs, S.; Cimmino, A.; Petrocca, F.; Visone, R.; Iorio, M.; Roldo, C.; Ferracin, M.; et al. A MicroRNA Expression Signature of Human Solid Tumors Defines Cancer Gene Targets. Proc. Natl. Acad. Sci. USA 2006, 103, 2257–2261. [Google Scholar] [CrossRef]
- Lin, S.L.; Chiang, A.; Chang, D.; Ying, S.Y. Loss of Mir-146a Function in Hormone-Refractory Prostate Cancer. RNA 2008, 14, 417–424. [Google Scholar] [CrossRef]
- Jazdzewski, K.; Murray, E.L.; Franssila, K.; Jarzab, B.; Schoenberg, D.R.; de la Chapelle, A. Common SNP in Pre-MiR-146a Decreases Mature MiR Expression and Predisposes to Papillary Thyroid Carcinoma. Proc. Natl. Acad. Sci. USA 2008, 105, 7269–7274. [Google Scholar] [CrossRef]
- Xiao, B.; Zhu, E.D.; Li, N.; Lu, D.S.; Li, W.; Li, B.S.; Zhao, Y.L.; Mao, X.H.; Guo, G.; Yu, P.W.; et al. Increased MiR-146a in Gastric Cancer Directly Targets SMAD4 and Is Involved in Modulating Cell Proliferation and Apoptosis. Oncol. Rep. 2012, 27, 559–566. [Google Scholar] [CrossRef]
- Lian, H.; Wang, L.; Zhang, J. Increased Risk of Breast Cancer Associated with CC Genotype of Has-MiR-146a Rs2910164 Polymorphism in Europeans. PLoS ONE 2012, 7, e31615. [Google Scholar] [CrossRef]
- Dai, Z.-J.; Shao, Y.-P.; Wang, X.-J.; Xu, D.; Kang, H.-F.; Ren, H.-T.; Min, W.-L.; Lin, S.; Wang, M.; Song, Z.-J. Five Common Functional Polymorphisms in MicroRNAs (Rs2910164, Rs2292832, Rs11614913, Rs3746444, Rs895819) and the Susceptibility to Breast Cancer: Evidence from 8361 Cancer Cases and 8504 Controls. Curr. Pharm. Des. 2015, 21, 1455–1463. [Google Scholar] [CrossRef] [PubMed]
- Minh, T.T.H.; Thanh, N.T.N.; Nguyen, T.H. Association between Selected MicroRNA SNPs and Breast Cancer Risk in a Vietnamese Population. Int. J. Hum. Genet. 2018, 18, 238–246. [Google Scholar] [CrossRef]
- Bansal, C.; Sharma, K.L.; Misra, S.; Srivastava, A.N.; Mittal, B.; Singh, U.S. Common Genetic Variants in Pre-MicroRNAs and Risk of Breast Cancer in the North Indian Population. Ecancer Med. Sci. 2014, 8, 473. [Google Scholar] [CrossRef]
- Gao, W.; Hua, J.; Jia, Z.; Ding, J.; Han, Z.; Dong, Y.; Lin, Q.; Yao, Y. Expression of MiR-146a-5p in Breast Cancer and Its Role in Proliferation of Breast Cancer Cells. Oncol. Lett. 2018, 15, 9884–9888. [Google Scholar] [CrossRef]
- Króliczewski, J.; Sobolewska, A.; Lejnowski, D.; Collawn, J.F.; Bartoszewski, R. MicroRNA Single Polynucleotide Polymorphism Influences on MicroRNA Biogenesis and MRNA Target Specificity. Gene 2018, 640, 66–72. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Shahriar, A.; Ghale-aziz Shiva, G.; Ghader, B.; Farhad, J.; Hosein, A.; Parsa, H. The Dual Role of Mir-146a in Metastasis and Disease Progression. Biomed. Pharmacother. 2020, 126, 110099. [Google Scholar] [CrossRef]
- Kookli, K.; Soleimani, K.T.; Amr, E.F.; Ehymayed, H.M.; Zabibah, R.S.; Daminova, S.B.; Saadh, M.J.; Alsaikhan, F.; Adil, M.; Ali, M.S.; et al. Role of MicroRNA-146a in Cancer Development by Regulating Apoptosis. Pathol. Res. Pract. 2024, 254, 155050. [Google Scholar] [CrossRef]
- Iacona, J.R.; Monteleone, N.J.; Lemenze, A.D.; Cornett, A.L.; Lutz, C.S. Transcriptomic Studies Provide Insights into the Tumor Suppressive Role of MiR-146a-5p in Non-Small Cell Lung Cancer (NSCLC) Cells. RNA Biol. 2019, 16, 1721–1732. [Google Scholar] [CrossRef]
- Li, Y.; VandenBoom, T.G.; Wang, Z.; Kong, D.; Ali, S.; Philip, P.A.; Sarkar, F.H. MiR-146a Suppresses Invasion of Pancreatic Cancer Cells. Cancer Res. 2010, 70, 1486–1495. [Google Scholar] [CrossRef]
- Hurst, D.R.; Edmonds, M.D.; Scott, G.K.; Benz, C.C.; Vaidya, K.S.; Welch, D.R. Breast Cancer Metastasis Suppressor 1 Up-Regulates MiR-146, Which Suppresses Breast Cancer Metastasis. Cancer Res. 2009, 69, 1279–1283. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Ambrosone, C.B.; Dicioccio, R.A.; Odunsi, K.; Lele, S.B.; Zhao, H. A Functional Polymorphism in the MiR-146a Gene and Age of Familial Breast/Ovarian Cancer Diagnosis. Carcinogenesis 2008, 29, 1963–1966. [Google Scholar] [CrossRef] [PubMed]
- Pastrello, C.; Polesel, J.; Puppa, L.D.; Viel, A.; Maestro, R. Association between Hsa-Mir-146a Genotype and Tumor Age-of-Onset in BRCA1/BRCA2-Negative Familial Breast and Ovarian Cancer Patients. Carcinogenesis 2010, 31, 2124–2126. [Google Scholar] [CrossRef] [PubMed]
- Venkitaraman, A.R. Functions of BRCA1 and BRCA2 in the Biological Response to DNA Damage. J. Cell Sci. 2001, 114, 3591–3598. [Google Scholar] [CrossRef]
- Jara, L.; Ampuero, S.; Santibáñez, E.; Seccia, L.; Rodríguez, J.; Bustamante, M.; Martínez, V.; Catenaccio, A.; Lay-Son, G.; Blanco, R.; et al. BRCA1 and BRCA2 Mutations in a South American Population. Cancer Genet. Cytogenet. 2006, 166, 36–45. [Google Scholar] [CrossRef]
- Nguyen, T.T.N.; Tran, M.T.H.; Nguyen, V.T.L.; Nguyen, U.D.P.; Nguyen, G.D.T.; Huynh, L.H.; Nguyen, H.T. Single Nucleotide Polymorphisms in MicroRNAs Action as Biomarkers for Breast Cancer. Turk. J. Biol. 2020, 44, 284–294. [Google Scholar] [CrossRef]
- Xiang, W.; Wu, X.; Huang, C.; Wang, M.; Zhao, X.; Luo, G.; Li, Y.; Jiang, G.; Xiao, X.; Zeng, F. PTTG1 Regulated by MiR-146a-3p Promotes Bladder Cancer Migration, Invasion, Metastasis and Growth. Oncotarget 2017, 8, 664–678. [Google Scholar] [CrossRef]
- Yang, Y.; Adebali, O.; Wu, G.; Selby, C.P.; Chiou, Y.Y.; Rashid, N.; Hu, J.; Hogenesch, J.B.; Sancar, A. Cisplatin-DNA Adduct Repair of Transcribed Genes Is Controlled by Two Circadian Programs in Mouse Tissues. Proc. Natl. Acad. Sci. USA 2018, 115, E4777–E4785. [Google Scholar] [CrossRef]
- Ho, G.Y.; Woodward, N.; Coward, J.I.G. Cisplatin versus Carboplatin: Comparative Review of Therapeutic Management in Solid Malignancies. Crit. Rev. Oncol. Hematol. 2016, 102, 37–46. [Google Scholar] [CrossRef]
- Dasari, S.; Bernard Tchounwou, P. Cisplatin in Cancer Therapy: Molecular Mechanisms of Action. Eur. J. Pharmacol. 2014, 740, 364–378. [Google Scholar] [CrossRef]
- Zhou, J.; Giannakakou, P. Targeting Microtubules for Cancer Chemotherapy. Anti-Cancer Agents 2005, 5, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Ohtsukasa, S.; Okabe, S.; Yamashita, H.; Iwai, T.; Sugihara, K. Increased Expression of CEA and MHC Class I in Colorectal Cancer Cell Lines Exposed to Chemotherapy Drugs. J. Cancer Res. Clin. Oncol. 2003, 129, 719–726. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Jia, W.; Wei, X.; Zhang, X.; Wang, C.; Li, B.; Song, T.; Yang, J.; Zhu, D.; Meng, Y. MicroRNA-146a Regulates Cisplatin-Resistance of Non-Small Cell Lung Cancer Cells by Targeting NF-ΚB Pathway. Int. J. Clin. Exp. Pathol. 2017, 10, 11545–11553. [Google Scholar]
- Yang, H.; Kong, W.; He, L.; Zhao, J.J.; O’Donnell, J.D.; Wang, J.; Wenham, R.M.; Coppola, D.; Kruk, P.A.; Nicosia, S.V.; et al. MicroRNA Expression Profiling in Human Ovarian Cancer: MiR-214 Induces Cell Survival and Cisplatin Resistance by Targeting PTEN. Cancer Res. 2008, 68, 425–433. [Google Scholar] [CrossRef]
- Hu, Q.; Song, J.; Ding, B.; Cui, Y.; Liang, J.; Han, S. MiR-146a Promotes Cervical Cancer Cell Viability via Targeting IRAK1 and TRAF6. Oncol. Rep. 2018, 39, 3015–3024. [Google Scholar] [CrossRef]
- Liu, X.; Liu, B.; Li, R.; Wang, F.; Wang, N.; Zhang, M.; Bai, Y.; Wu, J.; Liu, L.; Han, D.; et al. MiR-146a-5p Plays an Oncogenic Role in NSCLC via Suppression of TRAF6. Front. Cell Dev. Biol. 2020, 8, 847. [Google Scholar] [CrossRef]
- Li, T.; Li, M.; Xu, C.; Xu, X.; Ding, J.; Cheng, L.; Ou, R. MiR 146a Regulates the Function of Th17 Cell Differentiation to Modulate Cervical Cancer Cell Growth and Apoptosis through NF κB Signaling by Targeting TRAF6. Oncol. Rep. 2019, 41, 2897–2908. [Google Scholar] [CrossRef]
- Miyaki, M.; Kuroki, T. Role of Smad4 (DPC4) Inactivation in Human Cancer. Biochem. Biophys. Res. Commun. 2003, 306, 799–804. [Google Scholar] [CrossRef]
- Yang, G.; Yang, X. Smad4-Mediated TGF-β Signaling in Tumorigenesis. Int. J. Biol. Sci. 2010, 6, 1–8. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhu, J.; Shen, D.; Qin, H.; Lei, Z.; Li, W.; Liu, Z.; Huang, J.-A. MicroRNA-205 Targets SMAD4 in Non-Small Cell Lung Cancer and Promotes Lung Cancer Cell Growth In Vitro and In Vivo. Oncotarget 2017, 8, 30817–30829. [Google Scholar] [CrossRef]
- Yan, P.; Klingbiel, D.; Saridaki, Z.; Ceppa, P.; Curto, M.; McKee, T.A.; Roth, A.; Tejpar, S.; Delorenzi, M.; Bosman, F.T.; et al. Reduced Expression of SMAD4 Is Associated with Poor Survival in Colon Cancer. Clin. Cancer Res. 2016, 22, 3037–3047. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.H.; Kim, S.H.; Lee, J.H.; Choi, Y.L.; Kim, Y.C.; Park, T.S.; Hong, Y.C.; Wu, C.F.; Shin, Y.K. Inactivation of SMAD4 Tumor Suppressor Gene during Gastric Carcinoma Progression. Clin. Cancer Res. 2007, 13, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Stuelten, C.H.; Buck, M.B.; Dippon, J.; Roberts, A.B.; Fritz, P.; Knabbe, C. Smad4-Expression Is Decreased in Breast Cancer Tissues: A Retrospective Study. BMC Cancer 2006, 6, 25. [Google Scholar] [CrossRef]
- Van Zijl, F.; Krupitza, G.; Mikulits, W. Initial Steps of Metastasis: Cell Invasion and Endothelial Transmigration. Mutat. Res. Rev. Mutat. Res. 2011, 728, 23–34. [Google Scholar] [CrossRef]
- Zhang, X.; Cao, J.; Pei, Y.; Zang, J.; Wang, Q. Smad4 Inhibits Cell Migration via Suppression of JNK Activity in Human Pancreatic Carcinoma PANC-1 Cells. Oncol. Lett. 2016, 11, 3465–3470. [Google Scholar] [CrossRef]
- Lu, D.; Yao, Q.; Zhan, C.; Le-Meng, Z.; Liu, H.; Cai, Y.; Tu, C.; Li, X.; Zou, Y.; Zhang, S. MicroRNA-146a Promote Cell Migration and Invasion in Human Colorectal Cancer via Carboxypeptidase M/Src-FAK Pathway. Oncotarget 2017, 8, 22674–22684. [Google Scholar] [CrossRef]
- Wang, F.; Ye, L.J.; Wang, F.J.; Liu, H.F.; Wang, X.L. MiR-146a Promotes Proliferation, Invasion, and Epithelial-to-Mesenchymal Transition in Oral Squamous Carcinoma Cells. Environ. Toxicol. 2020, 35, 1050–1057. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, S.; Li, T.; Wang, L.; Lv, W.; Wang, S.; Ma, D.; Zang, Y.; Zhu, X.; Xu, Y.; et al. MicroRNA-146a Promotes Proliferation, Migration, and Invasion of HepG2 via Regulating FLAP. Cancer Cell Int. 2022, 22, 149. [Google Scholar] [CrossRef]
- Pu, W.; Shang, Y.; Shao, Q.; Yuan, X. MiR-146a Promotes Cell Migration and Invasion in Melanoma by Directly Targeting SMAD4. Oncol. Lett. 2018, 15, 7111–7117. [Google Scholar] [CrossRef]
- Hung, P.S.; Liu, C.J.; Chou, C.S.; Kao, S.Y.; Yang, C.C.; Chang, K.W.; Chiu, T.H.; Lin, S.C. MiR-146a Enhances the Oncogenicity of Oral Carcinoma by Concomitant Targeting of the IRAK1, TRAF6 and NUMB Genes. PLoS ONE 2013, 8, e79926. [Google Scholar] [CrossRef]
- Ma, W.; Zhao, X.; Liang, L.; Wang, G.; Li, Y.; Miao, X.; Zhao, Y. MiR-146a and MiR-146b Promote Proliferation, Migration and Invasion of Follicular Thyroid Carcinoma via Inhibition of ST8SIA4. Oncotarget 2017, 8, 28028–28041. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, Y.; Yan, Y.; Guo, X.; Fang, Y.; Su, Y.; Wang, L.; Pathak, J.L.; Ge, L. MiR-146a Overexpression in Oral Squamous Cell Carcinoma Potentiates Cancer Cell Migration and Invasion Possibly via Targeting HTT. Front. Oncol. 2020, 10, 585976. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales-González, S.; Calaf, G.M.; Acuña, M.; Tapia, J.C.; Jara, L. The miR-146a Single Nucleotide Polymorphism rs2910164 Promotes Proliferation, Chemoresistance, Migration, Invasion, and Apoptosis Suppression in Breast Cancer Cells. Cells 2025, 14, 612. https://doi.org/10.3390/cells14080612
Morales-González S, Calaf GM, Acuña M, Tapia JC, Jara L. The miR-146a Single Nucleotide Polymorphism rs2910164 Promotes Proliferation, Chemoresistance, Migration, Invasion, and Apoptosis Suppression in Breast Cancer Cells. Cells. 2025; 14(8):612. https://doi.org/10.3390/cells14080612
Chicago/Turabian StyleMorales-González, Sarai, Gloria M. Calaf, Mónica Acuña, Julio C. Tapia, and Lilian Jara. 2025. "The miR-146a Single Nucleotide Polymorphism rs2910164 Promotes Proliferation, Chemoresistance, Migration, Invasion, and Apoptosis Suppression in Breast Cancer Cells" Cells 14, no. 8: 612. https://doi.org/10.3390/cells14080612
APA StyleMorales-González, S., Calaf, G. M., Acuña, M., Tapia, J. C., & Jara, L. (2025). The miR-146a Single Nucleotide Polymorphism rs2910164 Promotes Proliferation, Chemoresistance, Migration, Invasion, and Apoptosis Suppression in Breast Cancer Cells. Cells, 14(8), 612. https://doi.org/10.3390/cells14080612