Exploring MicroRNA Biomarkers for Parkinson’s Disease from mRNA Expression Profiles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Gene Expression
2.2. Principal Component Analysis Based Unsupervised Feature Extraction
2.3. Validation of Obtained mRNAs
3. Results
4. Discussion
More Brain Synapse-Related Biological Terms Are Enriched
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- DeMaagd, G.; Philip, A. Parkinson’s disease and its management: Part 1: Disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis. Pharm. Ther. 2015, 40, 504. [Google Scholar]
- Drui, G.; Carnicella, S.; Carcenac, C.; Favier, M.; Bertrand, A.; Boulet, S.; Savasta, M. Loss of dopaminergic nigrostriatal neurons accounts for the motivational and affective deficits in Parkinson’s disease. Mol. Psychiatry 2014, 19, 358–367. [Google Scholar] [CrossRef] [PubMed]
- Neikrug, A.B.; Maglione, J.E.; Liu, L.; Natarajan, L.; Avanzino, J.A.; Corey-Bloom, J.; Palmer, B.W.; Loredo, J.S.; Ancoli-Israel, S. Effects of sleep disorders on the non-motor symptoms of Parkinson disease. J. Clin. Sleep Med. 2013, 9, 1119–1129. [Google Scholar] [CrossRef] [PubMed]
- Marsh, L. Depression and Parkinson’s disease: Current knowledge. Curr. Neurol. Neurosci. Rep. 2013, 13, 409. [Google Scholar] [CrossRef] [PubMed]
- Watson, G.S.; Leverenz, J.B. Profile of cognitive impairment in Parkinson’s disease. Brain Pathol. 2010, 20, 640–645. [Google Scholar] [CrossRef] [PubMed]
- Levine, C.B.; Fahrbach, K.R.; Siderowf, A.D.; Estok, R.P.; Ludensky, V.M.; Ross, S.D. Diagnosis and treatment of Parkinson’s disease: A systematic review of the literature. Evid. Rep. Technol. Assess. 2003, 57, 1–4. [Google Scholar]
- Tan, E.-K.; Jankovic, J. Genetic testing in Parkinson disease: Promises and pitfalls. Arch. Neurol. 2006, 63, 1232–1237. [Google Scholar] [CrossRef]
- Zimprich, A.; Biskup, S.; Leitner, P.; Lichtner, P.; Farrer, M.; Lincoln, S.; Kachergus, J.; Hulihan, M.; Uitti, R.J.; Calne, D.B.; et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 2004, 44, 601–607. [Google Scholar] [CrossRef]
- Gasser, T. Usefulness of genetic testing in PD and PD trials: A balanced review. J. Park. Dis. 2015, 5, 209–215. [Google Scholar] [CrossRef]
- Stefanis, L. α-Synuclein in Parkinson’s disease. Cold Spring Harbor Perspect. Med. 2012, 2, a009399. [Google Scholar] [CrossRef]
- Dawson, T.M.; Dawson, V.L. The role of parkin in familial and sporadic Parkinson’s disease. Mov. Disord. 2010, 25, S32–S39. [Google Scholar] [CrossRef] [PubMed]
- Tan, E.K.; Puong, K.Y.; Fook-Chong, S.; Chua, E.; Shen, H.; Yuen, Y.; Pavanni, R.; Wong, M.-C.; Puvan, K.; Zhao, Y. Case-control study of UCHL1 S18Y variant in Parkinson’s disease. Mov. Disord. 2010, 25, S32–S39. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.A.; Andruska, K.M.; Benitez, B.A.; Racette, B.A.; Perlmutter, J.S.; Cruchaga, C. Variants in GBA, SNCA, and MAPT influence Parkinson disease risk, age at onset, and progression. Neurobiol. Aging 2016, 37, 209. e1–209. e7. [Google Scholar] [CrossRef] [PubMed]
- Pinho, R.; Guedes, L.C.; Soreq, L.; Lobo, P.P.; Mestre, T.; Coelho, M.; Rosa, M.M.; Gonçalves, N.; Wales, P.; Mendes, T. Gene expression differences in peripheral blood of Parkinson’s disease patients with distinct progression profiles. PLoS ONE 2016, 11, e0157852. [Google Scholar] [CrossRef]
- Aguiar, P.M.C.; Severino, P. Biomarkers in Parkinson Disease: global gene expression analysis in peripheral blood from patients with and without mutations in PARK2 and PARK8. Einstein 2010, 8, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, Y.H.; Wang, H. Exploring microRNA Biomarker for Amyotrophic Lateral Sclerosis. Int. J. Mol. Sci. 2018, 19, 1318. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, Y.H.; Wang, H. Genetic association between amyotrophic lateral sclerosis and cancer. Genes 2017, 8, 243. [Google Scholar] [CrossRef]
- Kuleshov, M.V.; Jones, M.R.; Rouillard, A.D.; Fernandez, N.F.; Duan, Q.; Wang, Z.; Koplev, S.; Jenkins, S.L.; Jagodnik, K.M.; Lachmann, A.; et al. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016, 44, W90–W97. [Google Scholar] [CrossRef]
- Chen, E.Y.; Tan, C.M.; Kou, Y.; Duan, Q.; Wang, Z.; Meirelles, G.V.; Clark, N.R.; Ma’ayan, A. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinf. 2013, 14, 128. [Google Scholar] [CrossRef]
- Leggio, L.; Vivarelli, S.; L’Episcopo, F.; Tirolo, C.; Caniglia, S.; Testa, N.; Marchetti, B.; Iraci, N. microRNAs in Parkinson’s disease: From pathogenesis to novel diagnostic and therapeutic approaches. Int. J. Mol. Sci. 2017, 18, 2698. [Google Scholar] [CrossRef]
- Chatterjee, P.; Bhattacharyya, M.; Bandyopadhyay, S.; Roy, D. Studying the system-level involvement of microRNAs in Parkinson’s disease. PLoS ONE 2014, 9, e93751. [Google Scholar] [CrossRef] [PubMed]
- Hoss, A.G.; Labadorf, A.; Beach, T.G.; Latourelle, J.C.; Myers, R.H. microRNA profiles in Parkinson’s disease prefrontal cortex. Front. Aging Neurosci. 2016, 8, 36. [Google Scholar] [CrossRef] [PubMed]
- Hoss, A.G.; Kartha, V.K.; Dong, X.; Latourelle, J.C.; Dumitriu, A.; Hadzi, T.C.; Macdonald, M.E.; Gusella, J.F.; Akbarian, S.; Chen, J.F.; et al. MicroRNAs located in the Hox gene clusters are implicated in huntington’s disease pathogenesis. PLoS Genet. 2014, 10, e1004188. [Google Scholar] [CrossRef] [PubMed]
- Sibley, C.R.; Seow, Y.; Curtis, H.; Weinberg, M.S.; Wood, M.J. Silencing of Parkinson’s disease-associated genes with artificial mirtron mimics of miR-1224. Nucleic Acids Res. 2012, 40, 9863–9875. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yang, J.; Lu, J.; Cao, S.; Zhao, Q.; Yu, Z. Identification of aberrant circulating miRNAs in Parkinson’s disease plasma samples. Brain Behav. 2018, 8, e00941. [Google Scholar] [CrossRef]
- Heman-Ackah, S.M.; Hallegger, M.; Rao, M.S.; Wood, M.J. RISC in PD: The impact of microRNAs in Parkinson’s disease cellular and molecular pathogenesis. Front. Mol. Neurosci. 2013, 6, 40. [Google Scholar] [CrossRef]
- Prajapati, P.; Sripada, L.; Singh, K.; Bhatelia, K.; Singh, R.; Singh, R. TNF-α regulates miRNA targeting mitochondrial complex-I and induces cell death in dopaminergic cells. Biochim. Biophys. Acta Mol. Basis Dis. 2015, 1852, 451–461. [Google Scholar] [CrossRef]
- Vallelunga, A.; Ragusa, M.; Di Mauro, S.; Iannitti, T.; Pilleri, M.; Biundo, R.; Weis, L.; Di Pietro, C.; De Iuliis, A.; Nicoletti, A. Identification of circulating microRNAs for the differential diagnosis of Parkinson’s disease and Multiple System Atrophy. Front. Cell. Neurosci. 2014, 8, 156. [Google Scholar] [CrossRef]
- Khoo, S.K.; Petillo, D.; Kang, U.J.; Resau, J.H.; Berryhill, B.; Linder, J.; Forsgren, L.; Neuman, L.A.; Tan, A.C. Plasma-based circulating MicroRNA biomarkers for Parkinson’s disease. J. Park. Dis. 2012, 2, 321–331. [Google Scholar]
- Martin, I.; Kim, J.W.; Lee, B.D.; Kang, H.C.; Xu, J.C.; Jia, H.; Stankowski, J.; Kim, M.S.; Zhong, J.; Kumar, M.; et al. Ribosomal protein s15 phosphorylation mediates LRRK2 neurodegeneration in Parkinson’s disease. Cell 2014, 157, 472–485. [Google Scholar] [CrossRef]
- Härtlova, A.; Herbst, S.; Peltier, J.; Rodgers, A.; Bilkei-Gorzo, O.; Fearns, A.; Dill, B.D.; Lee, H.; Flynn, R.; Cowley, S.A. LRRK2 is a negative regulator of Mycobacterium tuberculosis phagosome maturation in macrophages. EMBO J. 2018, 37, e98694. [Google Scholar] [CrossRef] [PubMed]
- Esposito, G.; Clara, F.A.; Verstreken, P. Synaptic vesicle trafficking and Parkinson’s disease. Dev. Neurobiol. 2012, 72, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Siebert, M.; Westbroek, W.; Chen, Y.-C.; Moaven, N.; Li, Y.; Velayati, A.; Saraiva-Pereira, M.L.; Martin, S.E.; Sidransky, E. Identification of miRNAs that modulate glucocerebrosidase activity in Gaucher disease cells. RNA Biol. 2014, 11, 1291–1300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Control | PD | |
---|---|---|
Control | 24 | 8 |
PD | 3 | 22 |
Term | Overlap | p-Value | Adjusted p-Value |
---|---|---|---|
Parkinson’s disease DOID-14330 human GSE19587 sample 740 | 65/207 | 5.02 × | 4.18 × |
Parkinson’s disease DOID-14330 human GSE19587 sample 1080 | 56/167 | 5.88 × | 1.60 × |
Parkinson’s disease DOID-14330 human GSE19587 sample 496 | 73/361 | 3.90 × | 1.59 × |
Parkinson’s disease DOID-14330 human GSE7621 sample 940 | 67/365 | 2.96 × | 6.06 × |
Dystonia C0393593 human GSE3064 sample 329 | 62/317 | 1.06 × | 1.74 × |
Term | Overlap | p-Value | Adjusted p-value |
---|---|---|---|
Parkinson’s disease DOID-14330 human GSE19587 sample 741 | 33/158 | 5.14 × | 1.22 × |
Parkinson’s disease DOID-14330 human GSE7621 sample 940 | 35/235 | 1.05 × | 1.74 × |
Parkinson’s disease DOID-14330 human GSE7621 sample 941 | 38/342 | 1.55 × | 2.19 × |
Parkinson’s disease DOID-14330 human GSE19587 sample 1080 | 37/433 | 1.17 × | 8.78 × |
Parkinson’s disease DOID-14330 human GSE6613 sample 788 | 26/274 | 1.24 × | 5.50 × |
Parkinson’s disease DOID-14330 human GSE19587 sample 496 | 15/239 | 1.03 × | 2.15 × |
Term | Overlap | p-Value | Adjusted p-Value |
---|---|---|---|
Ribosome_Homo sapiens_hsa03010 | 28/137 | 1.68 × | 2.92 × |
Phagosome_Homo sapiens_hsa04145 | 16/154 | 1.72 × | 1.49 × |
Synaptic vesicle cycle_Homo sapiens_hsa04721 | 10/63 | 4.11 × | 2.38 × |
Pathogenic Escherichia coli infection_Homo sapiens_hsa05130 | 9/55 | 2.38 × | 1.04 × |
Gap junction_Homo sapiens_hsa04540 | 10/88 | 1.18 × | 4.11 × |
Mineral absorption_Homo sapiens_hsa04978 | 8/51 | 2.68 × | 7.76 × |
Oxidative phosphorylation_Homo sapiens_hsa00190 | 10/133 | 6.09 × | 1.51 × |
Parkinson’s disease_Homo sapiens_hsa05012 | 10/142 | 1.11 × | 2.42 × |
Vibrio cholerae infection_Homo sapiens_hsa05110 | 6/51 | 8.84 × | 1.71 × |
GABAergic synapse_Homo sapiens_hsa04727 | 7/88 | 2.15 × | 3.73 × |
Term | Overlap | p-Value | Adjusted p-Value | Reference |
---|---|---|---|---|
hsa-miR-92a-3p | 37/1404 | 1.41 × 10−8 | 2.71 × | [21] |
hsa-miR-16-5p | 37/1555 | 1.93 × 10−7 | 1.85 × | [22] |
hsa-miR-615-3p | 25/891 | 1.38 × 10−6 | 8.85 × | [23] |
hsa-miR-877-3p | 19/606 | 5.92 × 10−6 | 2.28 × | [24] |
hsa-miR-100-5p | 12/250 | 5.37× 10−6 | 2.28 × | [25] |
hsa-miR-320a | 18/584 | 1.33 × 10−5 | 4.25 × | [26] |
hsa-miR-877-5p | 11/235 | 1.68 × 10−5 | 4.63 × | [24] |
hsa-miR-23a-3p | 11/249 | 2.88 × 10−5 | 6.91 × | [25] |
hsa-miR-484 | 22/890 | 4.37 × 10−5 | 9.33 × | [25] |
hsa-miR-23b-3p | 12/322 | 6.55 × 10−5 | 1.26 × | [27] |
mmu-miR-15a-5p | 15/499 | 9.42 × 10−5 | 1.65 × | [25] |
hsa-miR-324-3p | 12/338 | 1.04 × 10−4 | 1.66 × | [28] |
mmu-miR-19b-3p | 11/310 | 2.03 × 10−4 | 3.00 × | [20] |
mmu-miR-7b-5p | 13/438 | 3.13 × 10−4 | 4.02 × | [20] |
hsa-miR-505-3p | 9/222 | 2.93 × 10−4 | 4.02 × | [29] |
Name | Overlap | p-Value | Adjusted p-Value |
---|---|---|---|
LRRK2 Gly2019Ser (G2019S) mutation knockin human GSE36321 sample 1688 | 21/335 | 1.03 × | 4.82 × |
LRRK2 mutant human GSE33298 sample 2039 | 16/309 | 4.94 × | 1.55 × |
LRRK2 dominant negative mutation-G2019S homozygous human GSE33298 sample 1743 | 12/280 | 1.68 × | 4.14 × |
LRRK2 dominant negative mutation-G2019S homozygous human GSE33298 sample 1741 | 12/337 | 1.01 × | 2.33 × |
Name | Overlap | p-Value | Adjusted p-Value |
---|---|---|---|
LRRK2 Gly2019Ser (G2019S) mutation knockin human GSE36321 sample 1688 | 24/265 | 8.38 × | 9.78 × |
LRRK2 dominant negative mutation-G2019S heterozygous human GSE33298 sample 1739 | 9/282 | 1.61 × | 3.56 × |
Term | Overlap | p-Value | Adjusted p-Value | |
---|---|---|---|---|
Oxcarbazepine-1600-mg/kg-in_CMC-Rat-Brain-3d-dn | 31/369 | 1.66 × | 1.31 × | |
Carbachol-15-mg/kg_in_Water-Rat-Brain-3d-up | 26/318 | 4.96 × | 7.82 × | |
Piracetam-2500_mg/kg_in_CMC-Rat-Brain-5d-up | 27/325 | 7.89 × | 2.56 × | |
Theophylline-225_mg/kg_in_Water-Rat-Brain-3d-dn | 25/314 | 3.87 × | 5.08 × | |
Tramadol-114_mg/kg_in_Water-Rat-Brain-5d-dn | 26/315 | 3.93 × | 7.75 × |
Term | Overlap | p-Value | Adjusted p-Value |
---|---|---|---|
GTEX-X585-0011-R2B-SM-46MVF_brain_male_50-59_years | 81/1895 | 1.63 × | 4.72 × |
GTEX-WHSE-0011-R2A-SM-3P5ZL_brain_male_20-29_years | 71/1660 | 7.67 × | 1.11 × |
GTEX-X261-0011-R8A-SM-4E3I5_brain_male_50-59_years | 70/1878 | 8.35 × | 8.08 × |
GTEX-N7MT-0011-R10A-SM-2I3E1_brain_female_60-69_years | 70/1918 | 2.88 × | 2.09 × |
GTEX-TSE9-0011-R8A-SM-3DB7R_brain_female_60-69_years | 62/1548 | 2.52 × | 1.47 × |
Term | Overlap | p-Value | Adjusted p-Value |
---|---|---|---|
GTEX-S4Q7-1226-SM-4AD5I_testis_male_20-29_years | 22/329 | 8.84 × | 2.36 × |
GTEX-U4B1-1526-SM-4DXSL_testis_male_40-49_years | 20/282 | 3.48 × | 3.09 × |
GTEX-UPK5-1426-SM-4JBHH_liver_male_40-49_years | 79/3879 | 2.06 × | 2.74 × |
GTEX-OHPM-2126-SM-3LK75_testis_male_50-59_years | 26/525 | 6.48 × | 4.07 × |
GTEX-S7PM-0626-SM-4AD4Q_testis_male_60-69_years | 34/911 | 7.63 × | 4.07 × |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taguchi, Y.-h.; Wang, H. Exploring MicroRNA Biomarkers for Parkinson’s Disease from mRNA Expression Profiles. Cells 2018, 7, 245. https://doi.org/10.3390/cells7120245
Taguchi Y-h, Wang H. Exploring MicroRNA Biomarkers for Parkinson’s Disease from mRNA Expression Profiles. Cells. 2018; 7(12):245. https://doi.org/10.3390/cells7120245
Chicago/Turabian StyleTaguchi, Y-h., and Hsiuying Wang. 2018. "Exploring MicroRNA Biomarkers for Parkinson’s Disease from mRNA Expression Profiles" Cells 7, no. 12: 245. https://doi.org/10.3390/cells7120245
APA StyleTaguchi, Y. -h., & Wang, H. (2018). Exploring MicroRNA Biomarkers for Parkinson’s Disease from mRNA Expression Profiles. Cells, 7(12), 245. https://doi.org/10.3390/cells7120245