Weighted Correlation Network Analysis Reveals CDK2 as a Regulator of a Ubiquitous Environmental Toxin-Induced Cell-Cycle Arrest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture and Treatment with OTA
2.2. RNA Isolation and Sequencing on Human Kidney Cells
2.3. Cell-Cycle Analysis with 5-Bromo-2-deoxyuridine (BrdU) Incorporation
2.4. CDKN1A/p21 Knockdown
2.5. CDK2 Overexpression
2.6. Detection of CDKN1A/p21, CDK2, and E2F
2.7. Measure of Energy-Related Parameters
2.8. RNA-Sequencing Data Analysis
2.9. Differential Expression Analysis
2.10. Weighted Correlation Network Analysis
2.11. Functional Analysis
2.12. Transcription Factor Binding Site Enrichment
2.13. Evaluation of Molecular Biology Parameter Measurements
2.14. Data Availability
3. Results
3.1. OTA Exposure Induces Wide Changes in Gene Expression in Human Kidney Cell Lines, Including for Genes Enriched in Cell Cycle-Related Pathways
3.2. OTA Leads to Cell-Cycle Arrest in Human Kidney Cell Lines
3.3. CDKN1A/p21 Is Not Responsible for the OTA-Induced Cell-Cycle Dysregulation
3.4. Weighted Correlation Network Analysis Was Used to Identify Putative Key Drivers of the OTA-Induced Phenotype
3.5. CDK2 Is Involved in the OTA-Induced Dysregulation of the Cell Cycle
3.6. E2F Is a Potential Master Regulator of the OTA Effect
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- European Commission. Assessment of Dietary Intake of Ochratoxin A by the Population of EU Member States; Reports on Tasks for Scientific Cooperation; European Commission: Brussels, Belgium, 2002; pp. 77–78. [Google Scholar]
- Palli, D.; Miraglia, M.; Saieva, C.; Masala, G.; Cava, E.; Colatosti, M.; Corsi, A.M.; Russo, A.; Brera, C. Serum levels of ochratoxin A in healthy adults in Tuscany: Correlation with individual characteristics and between repeat measurements. Cancer Epidemiol. Prev. Biomark. 1999, 8, 265–269. [Google Scholar]
- Scottt, P.M.; Kanhere, S.R.; Lau, B.Y.; Levvis, D.A.; Hayward, S.; Ryan, J.J.; Kuiper-Goodman, T. Survey of Canadian human blood plasma for ochratoxin A. Food Addit. Contam. 1998, 15, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Zaied, C.; Bouaziz, C.; Azizi, I.; Bensassi, F.; Chour, A.; Bacha, H.; Abid, S. Presence of ochratoxin A in Tunisian blood nephropathy patients. Exposure level to OTA. Exp. Toxicol. Pathol. 2011, 63, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Hossain, K.; Degen, G.H. Blood plasma biomarkers of citrinin and ochratoxin A exposure in young adults in Bangladesh. Mycotoxin Res. 2018, 34, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Reddy, L.; Bhoola, K. Ochratoxins-food contaminants: Impact on human health. Toxins 2010, 2, 771–779. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Wu, F. The need to revisit ochratoxin A risk in light of diabetes, obesity, and chronic kidney disease prevalence. Food Chem. Toxicol. 2017, 103, 79–85. [Google Scholar] [CrossRef]
- Krogh, P.; Elling, F.; Gyrd-Hansen, N.; Hald, B.; Larsen, A.E.; Liliehøj, E.B.; Madsen, A.; Mortensen, H.P.; Ravnskov, U. Experimental porcine nephropathy: Changes of renal function and structure perorally induced by crystalline ochratoxin A. Acta Pathol. Microbiol. Scand. A 1976, 84, 429–434. [Google Scholar] [CrossRef]
- Gekle, M.; Sauvant, C.; Schwerdt, G. Ochratoxin A at nanomolar concentrations: A signal modulator in renal cells. Mol. Nutr. Food Res. 2005, 49, 118–130. [Google Scholar] [CrossRef]
- Schwerdt, G.; Freudinger, R.; Mildenberger, S.; Silbernagl, S.; Gekle, M. The nephrotoxin ochratoxin A induces apoptosis in cultured human proximal tubule cells. Cell Biol. Toxicol. 1999, 15, 405–415. [Google Scholar] [CrossRef]
- Hennemeier, I.; Humpf, H.U.; Gekle, M.; Schwerdt, G. The food contaminant and nephrotoxin ochratoxin A enhances Wnt1 inducible signaling protein 1 and tumor necrosis factor-α expression in human primary proximal tubule cells. Mol. Nutr. Food Res. 2012, 56, 1375–1384. [Google Scholar] [CrossRef]
- Polovic, M.; Dittmar, S.; Hennemeier, I.; Humpf, H.U.; Seliger, B.; Fornara, P.; Theil, G.; Azinovic, P.; Nolze, A.; Köhn, M.; et al. Identification of a novel lncRNA induced by the nephrotoxin ochratoxin A and expressed in human renal tumor tissue. Cell Mol. Life Sci. 2018, 75, 2241–2256. [Google Scholar] [CrossRef] [PubMed]
- Gekle, M.; Schwerdt, G.; Freudinger, R.; Mildenberger, S.; Wilflingseder, D.; Pollack, V.; Dander, M.; Schramek, H. Ochratoxin A induces JNK activation and apoptosis in MDCK-C7 cells at nanomolar concentrations. J. Pharmacol. Exp. Ther. 2000, 293, 837–844. [Google Scholar] [PubMed]
- Sauvant, C.; Holzinger, H.; Gekle, M. The nephrotoxin ochratoxin A induces key parameters of chronic interstitial nephropathy in renal proximal tubular cells. Cell. Physiol. Biochem. 2005, 15, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Trapnell, C.; Pachter, L.; Salzberg, S.L. TopHat: Discovering splice junctions with RNA-Seq. Bioinformatics 2009, 25, 1105–1111. [Google Scholar] [CrossRef]
- Liao, Y.; Smyth, G.K.; Shi, W. FeatureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef] [Green Version]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Durinck, S.; Spellman, P.T.; Birney, E.; Huber, W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 2009, 4, 1184–1191. [Google Scholar] [CrossRef] [Green Version]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinf. 2008, 9, 559. [Google Scholar] [CrossRef] [Green Version]
- Jung, Y.S.; Qian, Y.; Chen, X. Examination of the expanding pathways for the regulation of p21 expression and activity. Cell. Signal. 2010, 22, 1003–1012. [Google Scholar] [CrossRef] [Green Version]
- Langfelder, P.; Horvath, S. Eigengene networks for studying the relationships between co-expression modules. BMC Syst. Biol. 2007, 1, 54. [Google Scholar] [CrossRef] [Green Version]
- Langfelder, P.; Mischel, P.S.; Horvath, S. When Is Hub Gene Selection Better than Standard Meta-Analysis? PLoS ONE 2013, 8, e61505. [Google Scholar] [CrossRef] [Green Version]
- Horvath, S.; Dong, J. Geometric Interpretation of Gene Coexpression Network Analysis. PLoS Comput. Biol. 2008, 4, e1000117. [Google Scholar] [CrossRef]
- Thurlings, I.; De Bruin, A. E2F Transcription Factors Control the Roller Coaster Ride of Cell Cycle Gene Expression. Methods Mol. Biol. 2016, 1342, 71–88. [Google Scholar] [CrossRef]
- Kent, L.N.; Leone, G. The broken cycle: E2F dysfunction in cancer. Nat. Rev. Cancer 2019, 19, 326–338. [Google Scholar] [CrossRef]
- Suárez-Vega, A.; Gutiérrez-Gil, B.; Klopp, C.; Robert-Granie, C.; Tosser-Klopp, G.; Arranz, J.J. Characterization and Comparative Analysis of the Milk Transcriptome in Two Dairy Sheep Breeds using RNA Sequencing. Sci. Rep. 2016, 5, 18399. [Google Scholar] [CrossRef] [Green Version]
- Jennings, P.; Weiland, C.; Limonciel, A.; Bloch, K.M.; Radford, R.; Aschauer, L.; McMorrow, T.; Wilmes, A.; Pfaller, W.; Ahr, H.J.; et al. Transcriptomic alterations induced by Ochratoxin A in rat and human renal proximal tubular in vitro models and comparison to a rat in vivo model. Arch. Toxicol. 2012, 86, 571–589. [Google Scholar] [CrossRef]
- Arbillaga, L.; Azqueta, A.; van Delft, J.H.; de Cerain, A.L. In vitro gene expression data supporting a DNA non-reactive genotoxic mechanism for ochratoxin A. Toxicol. Appl. Pharmacol. 2007, 220, 216–224. [Google Scholar] [CrossRef]
- Gong, L.; Zhu, H.; Li, T.; Ming, G.; Duan, X.; Wang, J.; Jiang, Y. Molecular signatures of cytotoxic effects in human embryonic kidney 293 cells treated with single and mixture of ochratoxin A and citrinin. Food Chem. Toxicol. 2019, 123, 374–384. [Google Scholar] [CrossRef]
- Limonciel, A.; van Breda, S.G.; Jiang, X.; Tredwell, G.D.; Wilmes, A.; Achauer, L.; Siskos, A.P.; Sachinidis, A.; Keun, H.C.; Kopp-Schneider, A.; et al. Persistence of Epigenomic Effects After Recovery From Repeated Treatment With Two Nephrocarcinogens. Front. Genet. 2018, 9, 558. [Google Scholar] [CrossRef] [Green Version]
- Czakai, K.; Müller, K.; Mosesso, P.; Pepe, G.; Schulze, M.; Gohla, A.; Patnaik, D.; Dekant, W.; Higgins, J.M.; Mally, A. Perturbation of Mitosis through Inhibition of Histone Acetyltransferases: The Key to Ochratoxin A Toxicity and Carcinogenicity? Toxicol. Sci. 2011, 122, 317–329. [Google Scholar] [CrossRef] [Green Version]
- Rached, E.; Pfeiffer, E.; Dekant, W.; Mally, A. Ochratoxin A: Apoptosis and Aberrant Exit from Mitosis due to Perturbation of Microtubule Dynamics? Toxicol. Sci. 2006, 92, 78–86. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; He, X.; Li, X.; Xu, W.; Luo, Y.; Yang, X.; Wang, Y.; Li, Y.; Huang, K. DNA damage and S phase arrest induced by Ochratoxin A in human embryonic kidney cells (HEK 293). Mutat. Res. Mol. Mech. Mutagen. 2014, 765, 22–31. [Google Scholar] [CrossRef]
- Ćmielová, J.; Řezáčová, M. Protein and its function based on a subcellular localization. J. Cell. Biochem. 2011, 112, 3502–3506. [Google Scholar] [CrossRef]
- Gartel, A.L. The conflicting roles of the cdk inhibitor p21(CIP1/WAF1) in apoptosis. Leuk Res. 2005, 29, 1237–1238. [Google Scholar] [CrossRef]
- Ortega, S.; Prieto, I.; Odajima, J.; Martín, A.; Dubus, P.; Sotillo, R.; Barbero, J.L.; Malumbres, M.; Barbacid, M. Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nat. Genet. 2003, 35, 25–31. [Google Scholar] [CrossRef]
- Aleem, E.; Kiyokawa, H.; Kaldis, P. Cdc2–cyclin E complexes regulate the G1/S phase transition. Nat. Cell Biol. 2005, 7, 831–836. [Google Scholar] [CrossRef]
- Santamaría, D.; Barrière, C.; Cerqueira, A.; Hunt, S.; Tardy, C.; Newton, K.; Cáceres, J.F.; Dubus, P.; Malumbres, M.; Barbacid, M. Cdk1 is sufficient to drive the mammalian cell cycle. Nature 2007, 448, 811–815. [Google Scholar] [CrossRef]
- Merrick, K.A.; Wohlbold, L.; Zhang, C.; Allen, J.J.; Horiuchi, D.; Huskey, N.E.; Goga, A.; Shokat, K.M.; Fisher, R.P. Switching Cdk2 on or off with small molecules to reveal requirements in human cell proliferation. Mol. Cell 2011, 42, 624–636. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Liu, S.; Huang, C.; Wang, H.; Luo, Y.; Xu, W.; Huang, K. Ochratoxin A induced premature senescence in human renal proximal tubular cells. Toxicology 2017, 382, 75–83. [Google Scholar] [CrossRef]
- Zalzali, H.; Nasr, B.; Harajly, M.; Basma, H.; Ghamloush, F.; Ghayad, S.; Ghanem, N.; Evan, G.I.; Saab, R. CDK2 Transcriptional Repression Is an Essential Effector in p53-Dependent Cellular Senescence—Implications for Therapeutic Intervention. Mol. Cancer Res. 2015, 13, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Sheppard, K.A.; Peng, C.Y.; Yee, A.S.; Piwnica-Worms, H. Cyclin A/CDK2 binds directly to E2F-1 and inhibits the DNA-binding activity of E2F-1/DP-1 by phosphorylation. Mol. Cell. Biol. 1994, 14, 8420–8431. [Google Scholar] [CrossRef] [Green Version]
- Morris, L.; Allen, K.E.; La Thangue, N.B. Regulation of E2F transcription by cyclin E–Cdk2 kinase mediated through p300/CBP co-activators. Nat. Cell Biol. 2000, 2, 232–239. [Google Scholar] [CrossRef]
- Dynlacht, B.D.; Flores, O.; Lees, J.A.; Harlow, E. Differential regulation of E2F transactivation by cyclin/cdk2 complexes. Genes Dev. 1994, 8, 1772–1786. [Google Scholar] [CrossRef] [Green Version]
- Garneau, H.; Paquin, M.C.; Carrier, J.C.; Rivard, N. E2F4 expression is required for cell cycle progression of normal intestinal crypt cells and colorectal cancer cells. J. Cell. Physiol. 2009, 221, 350–358. [Google Scholar] [CrossRef]
- Conboy, C.M.; Spyrou, C.; Thorne, N.P.; Wade, E.J.; Barbosa-Morais, N.L.; Wilson, M.D.; Bhattacharjee, A.; Young, R.A.; Tavaré, S.; Lees, J.A.; et al. Cell Cycle Genes Are the Evolutionarily Conserved Targets of the E2F4 Transcription Factor. PLoS ONE 2007, 2, e1061. [Google Scholar] [CrossRef]
- Fernandes, J.C.; Acuña, S.M.; Aoki, J.I.; Floeter-Winter, L.M.; Muxel, S.M. Long Non-Coding RNAs in the Regulation of Gene Expression: Physiology and Disease. Non-Coding RNA 2019, 5, 17. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhao, W.; Wang, M.; Zhou, X. The Role of Long Noncoding RNAs in Gene Expression Regulation. In Gene Expression Profiling in Cancer; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, O.; Baccarelli, A.A. Environmental Health and Long Non-coding RNAs. Curr. Environ. Health Rep. 2016, 3, 178–187. [Google Scholar] [CrossRef] [Green Version]
- Dempsey, J.L.; Cui, J.Y. Long Non-Coding RNAs: A Novel Paradigm for Toxicology. Toxicol. Sci. 2017, 155, 3–21. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Hu, W.; Zhu, W.; Zhang, F.; Lin-lin, L.; Liu, C.; Songyang, Y.Y.; Sun, C.C.; Li, D. Long non coding RNA XIST as a prognostic cancer marker—A meta-analysis. Clin. Chim. Acta 2018, 482, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.Y.; Wang, Y.F.; Ma, P.; Xu, T.P.; Shu, Y.Q. Taurine-upregulated gene 1: A vital long non-coding RNA associated with cancer in humans. Mol. Med. Rep. 2017, 16, 6467–6471. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zhao, X.; Zhou, J.; Cheng, X.; Ye, Z.; Ji, Z. LncRNA TP73-AS1 Promotes Cell Proliferation and Inhibits Cell Apoptosis in Clear Cell Renal Cell Carcinoma Through Repressing KISS1 Expression and Inactivation of PI3K/Akt/mTOR Signaling Pathway. Cell. Physiol. Biochem. 2018, 48, 371–384. [Google Scholar] [CrossRef]
- Krogh, P.; Hald, B.; Pleština, R.; Čeović, S. Balkan (endemic) nephropathy and foodborn ochratoxin A: Preliminary results of a survey of foodstuffs. Acta Pathol. Microbiol. Scand. B Microbiol. 1977, 85, 238–240. [Google Scholar] [CrossRef]
- Pfohl-Leszkowicz, A.; Tozlovanu, M.; Manderville, R.; Peraica, M.; Castegnaro, M.; Stefanovic, V. New molecular and field evidences for the implication of mycotoxins but not aristolochic acid in human nephropathy and urinary tract tumor. Mol. Nutr. Food Res. 2007, 51, 1131–1146. [Google Scholar] [CrossRef]
IPA© Canonical Pathways | −log (Adjusted p-Value) | Z-Score |
---|---|---|
Nucleotide excision repair (NER) pathway | 6.42 | −1.789 |
Role of checkpoint (CHK) proteins in cell-cycle checkpoint control | 2.49 | −0.378 |
Role of breast cancer type 1 susceptibility (BRCA1) in DNA damage response | 2.49 | −0.378 |
Cell-cycle control of chromosomal replication | 1.32 | – |
Hereditary breast cancer signaling | 1.32 | – |
Module | IPA© Molecular and Cellular Functions | p-Values Range | # Genes |
---|---|---|---|
Black | Cell death and survival | 2.86 × 10−2–2.05 × 10−6 | 145 |
RNA post-transcriptional modification | 7.18 × 10−3–8.81 × 10−6 | 31 | |
Cellular assembly and organization | 2.86 × 10−2–4.21 × 10−5 | 70 | |
Protein degradation | 7.06 × 10−3–1.35 × 10−4 | 33 | |
Protein synthesis | 2.28 × 10−2–1.35 × 10−4 | 52 | |
Brown | Cellular assembly and organization | 1.31 × 10−4–2.48 × 10−8 | 111 |
Cellular function and maintenance | 1.31 × 10−4–2.48 × 10−8 | 92 | |
RNA post-transcriptional modification | 1.86 × 10−5–2.59 × 10−7 | 47 | |
Cell cycle | 4.51 × 10−4–3.00 × 10−7 | 107 | |
Protein synthesis | 2.33 × 10−4–1.08 × 10−6 | 80 | |
Green-yellow | Cell cycle | 4.06 × 10−2–2.14 × 10−3 | 14 |
Post-translation modification | 4.06 × 10−2–2.14 × 10−3 | 9 | |
Gene expression | 3.06 × 10−2–3.33 × 10−3 | 39 | |
Cell morphology | 4.06 × 10−2–3.41 × 10−3 | 14 | |
Cellular movement | 4.06 × 10−2–3.41 × 10−3 | 12 | |
Pink | DNA replication, recombination and repair | 3.04 × 10−3–3.35 × 10−8 | 57 |
Cell cycle | 2.81 × 10−3–6.27 × 10−8 | 84 | |
Gene expression | 1.08 × 10−3–9.40 × 10−7 | 95 | |
Cellular assembly and organization | 2.03 × 10−3–1.72 × 10−5 | 80 | |
Cellular function and maintenance | 8.52 × 10−5–1.72 × 10−5 | 53 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubourg, V.; Nolze, A.; Kopf, M.; Gekle, M.; Schwerdt, G. Weighted Correlation Network Analysis Reveals CDK2 as a Regulator of a Ubiquitous Environmental Toxin-Induced Cell-Cycle Arrest. Cells 2020, 9, 143. https://doi.org/10.3390/cells9010143
Dubourg V, Nolze A, Kopf M, Gekle M, Schwerdt G. Weighted Correlation Network Analysis Reveals CDK2 as a Regulator of a Ubiquitous Environmental Toxin-Induced Cell-Cycle Arrest. Cells. 2020; 9(1):143. https://doi.org/10.3390/cells9010143
Chicago/Turabian StyleDubourg, Virginie, Alexander Nolze, Michael Kopf, Michael Gekle, and Gerald Schwerdt. 2020. "Weighted Correlation Network Analysis Reveals CDK2 as a Regulator of a Ubiquitous Environmental Toxin-Induced Cell-Cycle Arrest" Cells 9, no. 1: 143. https://doi.org/10.3390/cells9010143
APA StyleDubourg, V., Nolze, A., Kopf, M., Gekle, M., & Schwerdt, G. (2020). Weighted Correlation Network Analysis Reveals CDK2 as a Regulator of a Ubiquitous Environmental Toxin-Induced Cell-Cycle Arrest. Cells, 9(1), 143. https://doi.org/10.3390/cells9010143