Short Histone H2A Variants: Small in Stature but not in Function
Abstract
:1. Introduction
2. Short Histone H2A Variant Evolution
3. Features of Short Histone H2A Variant Proteins and Their Impact on Chromatin Structure
4. The Role of H2A.L.2 in the Exchange of Histones with Protamines
5. Role of H2A.B in Gene Activation and Splicing
6. Other Roles of H2A.B
7. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Luger, K.; Mäder, A.W.; Richmond, R.K.; Sargent, D.F.; Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 1997, 389, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Thatcher, T.H.; Gorovsky, M.A. Phylogenetic analysis of the core histones H2A, H2B, H3, and H4. Nucleic Acids Res. 1994, 22, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Probst, A.; Dunleavy, E.; Almouzni, G. Epigenetic inheritance during the cell cycle. Nat. Rev. Mol. Cell Boil. 2009, 10, 192–206. [Google Scholar] [CrossRef] [PubMed]
- Malik, H.S.; Henikoff, S. Phylogenomics of the nucleosome. Nat. Struct. Mol. Boil. 2003, 10, 882–891. [Google Scholar] [CrossRef] [PubMed]
- Molaro, A.; Young, J.M.; Malik, H.S. Evolutionary origins and diversification of testis-specific short histone H2A variants in mammals. Genome Res. 2018, 28, 460–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talbert, P.B.; Henikoff, S. Histone variants—Ancient wrap artists of the epigenome. Nat. Rev. Mol. Cell Boil. 2010, 11, 264–275. [Google Scholar] [CrossRef]
- Rangasamy, D.; Greaves, I.; Tremethick, D. RNA interference demonstrates a novel role for H2A.Z in chromosome segregation. Nat. Struct. Mol. Boil. 2004, 11, 650–655. [Google Scholar] [CrossRef]
- Sharma, U.; Stefanova, D.; Holmes, S.G. Histone Variant H2A.Z Functions in Sister Chromatid Cohesion in Saccharomyces cerevisiae. Mol. Cell. Boil. 2013, 33, 3473–3481. [Google Scholar] [CrossRef] [Green Version]
- Vernì, F.; Cenci, G. The Drosophila histone variant H2A.V works in concert with HP1 to promote kinetochore-driven microtubule formation. Cell Cycle 2015, 14, 577–588. [Google Scholar] [CrossRef] [Green Version]
- Greaves, I.; Rangasamy, D.; Ridgway, P.; Tremethick, D. H2A.Z contributes to the unique 3D structure of the centromere. Proc. Natl. Acad. Sci. USA 2006, 104, 525–530. [Google Scholar] [CrossRef] [Green Version]
- Kamakaka, R.T.; Biggins, S. Histone variants: Deviants? Genes Dev. 2005, 19, 295–316. [Google Scholar] [CrossRef] [Green Version]
- Contrepois, K.; Coudereau, C.; Benayoun, B.A.; Schüler, N.; Roux, P.-F.; Bischof, O.; Courbeyrette, R.; Carvalho, C.; Thuret, J.-Y.; Ma, Z.; et al. Histone variant H2A.J accumulates in senescent cells and promotes inflammatory gene expression. Nat. Commun. 2017, 8, 14995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaytan, A.; Landsman, D.; Panchenko, A.R. Nucleosome adaptability conferred by sequence and structural variations in histone H2A-H2B dimers. Curr. Opin. Struct. Boil. 2015, 32, 48–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soboleva, T.A.; Parker, B.J.; Nekrasov, M.; Hart-Smith, G.; Tay, Y.J.; Tng, W.-Q.; Wilkins, M.; Ryan, D.; Tremethick, D. A new link between transcriptional initiation and pre-mRNA splicing: The RNA binding histone variant H2A.B. PLoS Genet. 2017, 13, e1006633. [Google Scholar] [CrossRef] [PubMed]
- Luger, K.; Dechassa, M.L.; Tremethick, D. New insights into nucleosome and chromatin structure: An ordered state or a disordered affair? Nat. Rev. Mol. Cell Boil. 2012, 13, 436–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soboleva, T.A.; Nekrasov, M.; Ryan, D.; Tremethick, D. Histone variants at the transcription start-site. Trends Genet. 2014, 30, 199–209. [Google Scholar] [CrossRef]
- Chakravarthy, S.; Bao, Y.; Roberts, V.A.; Tremethick, D.; Luger, K. Structural characterization of histone H2A variants. Cold Spring Harb. Symp. Quant. Biol. 2004, 69, 227–234. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Fan, J.Y.; Rangasamy, D.; Tremethick, D. The nucleosome surface regulates chromatin compaction and couples it with transcriptional repression. Nat. Struct. Mol. Boil. 2007, 14, 1070–1076. [Google Scholar] [CrossRef]
- McGinty, R.K.; Tan, S. Recognition of the nucleosome by chromatin factors and enzymes. Curr. Opin. Struct. Boil. 2016, 37, 54–61. [Google Scholar] [CrossRef] [Green Version]
- Barral, S.; Morozumi, Y.; Tanaka, H.; Montellier, E.; Govin, J.; De Dieuleveult, M.; Charbonnier, G.; Couté, Y.; Puthier, D.; Buchou, T.; et al. Histone Variant H2A.L.2 Guides Transition Protein-Dependent Protamine Assembly in Male Germ Cells. Mol. Cell 2017, 66, 89–101.e8. [Google Scholar] [CrossRef] [Green Version]
- Chadwick, B.P.; Willard, H.F. A Novel Chromatin Protein, Distantly Related to Histone H2a, Is Largely Excluded from the Inactive X Chromosome. J. Cell Boil. 2001, 152, 375–384. [Google Scholar] [CrossRef] [Green Version]
- Soboleva, T.A.; Nekrasov, M.; Pahwa, A.; Williams, R.; A Huttley, G.; Tremethick, D. A unique H2A histone variant occupies the transcriptional start site of active genes. Nat. Struct. Mol. Boil. 2011, 19, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Govin, J.; Escoffier, E.; Rousseaux, S.; Kuhn, L.; Ferro, M.; Thévenon, J.; Catena, R.; Davidson, I.; Garin, J.; Khochbin, S.; et al. Pericentric heterochromatin reprogramming by new histone variants during mouse spermiogenesis. J. Cell Boil. 2007, 176, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Talbert, P.B.; Ahmad, K.; Almouzni, G.; Ausio, J.; Berger, F.; Bhalla, P.L.; Bonner, W.M.; Cande, W.Z.; Chadwick, B.P.; Chan, S.W.L.; et al. A unified phylogeny-based nomenclature for histone variants. Epigenetics Chromatin 2012, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Reynard, L.N.; Turner, J.M.A. Increased sex chromosome expression and epigenetic abnormalities in spermatids from male mice with Y chromosome deletions. J. Cell Sci. 2009, 122, 4239–4248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arimura, Y.; Kimura, H.; Oda, T.; Sato, K.; Osakabe, A.; Tachiwana, H.; Sato, Y.; Kinugasa, Y.; Ikura, T.; Sugiyama, M.; et al. Structural basis of a nucleosome containing histone H2A.B/H2A.Bbd that transiently associates with reorganized chromatin. Sci. Rep. 2013, 3, 3510. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Konesky, K.; Park, Y.-J.; Rosu, S.; Dyer, P.N.; Rangasamy, D.; Tremethick, D.J.; Laybourn, P.J.; Luger, K. Nucleosomes containing the histone variant H2A.Bbd organize only 118 base pairs of DNA. EMBO J. 2004, 23, 3314–3324. [Google Scholar] [CrossRef] [Green Version]
- Doyen, C.-M.; Montel, F.; Gautier, T.; Menoni, H.; Claudet, C.; Delacour-Larose, M.; Angelov, D.; Hamiche, A.; Bednár, J.; Faivre-Moskalenko, C.; et al. Dissection of the unusual structural and functional properties of the variant H2A.Bbd nucleosome. EMBO J. 2006, 25, 4234–4244. [Google Scholar] [CrossRef] [Green Version]
- Okuwaki, M.; Kato, K.; Shimahara, H.; Tate, S.-I.; Nagata, K. Assembly and Disassembly of Nucleosome Core Particles Containing Histone Variants by Human Nucleosome Assembly Protein I†. Mol. Cell. Boil. 2005, 25, 10639–10651. [Google Scholar] [CrossRef] [Green Version]
- Shukla, M.S.; Syed, S.H.; Goutte-Gattat, D.; Richard, J.L.C.; Montel, F.; Hamiche, A.; Travers, A.; Faivre-Moskalenko, C.; Bednár, J.; Hayes, J.J.; et al. The docking domain of histone H2A is required for H1 binding and RSC-mediated nucleosome remodeling. Nucleic Acids Res. 2010, 39, 2559–2570. [Google Scholar] [CrossRef] [Green Version]
- Tolstorukov, M.Y.; Goldman, J.A.; Gilbert, C.; Ogryzko, V.; Kingston, R.E.; Park, P.J. Histone variant H2A.Bbd is associated with active transcription and mRNA processing in human cells. Mol. Cell 2012, 47, 596–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bönisch, C.; Hake, S.B. Histone H2A variants in nucleosomes and chromatin: More or less stable? Nucleic Acids Res. 2012, 40, 10719–10741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugiyama, M.; Arimura, Y.; Shirayama, K.; Fujita, R.; Oba, Y.; Sato, N.; Inoue, R.; Oda, T.; Sato, M.; Heenan, R.K.; et al. Distinct Features of the Histone Core Structure in Nucleosomes Containing the Histone H2A.B Variant. Biophys. J. 2014, 106, 2206–2213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syed, S.H.; Boulard, M.; Shukla, M.S.; Gautier, T.; Travers, A.; Bednár, J.; Faivre-Moskalenko, C.; Dimitrov, S.; Angelov, D. The incorporation of the novel histone variant H2AL2 confers unusual structural and functional properties of the nucleosome. Nucleic Acids Res. 2009, 37, 4684–4695. [Google Scholar] [CrossRef] [Green Version]
- Bönisch, C.; Schneider, K.; Pünzeler, S.; Wiedemann, S.M.; Bielmeier, C.; Bocola, M.; Eberl, H.C.; Kuegel, W.; Neumann, J.; Kremmer, E.; et al. H2A.Z.2.2 is an alternatively spliced histone H2A.Z variant that causes severe nucleosome destabilization. Nucleic Acids Res. 2012, 40, 5951–5964. [Google Scholar] [CrossRef]
- Gautier, T.; Abbott, D.W.; Molla, A.; Verdel, A.; Ausio, J.; Dimitrov, S. Histone variant H2ABbd confers lower stability to the nucleosome. EMBO Rep. 2004, 5, 715–720. [Google Scholar] [CrossRef]
- Nekrasov, M.; Amrichová, J.; Parker, B.J.; Soboleva, T.A.; Jack, C.; Williams, R.; A Huttley, G.; Tremethick, D. Histone H2A.Z inheritance during the cell cycle and its impact on promoter organization and dynamics. Nat. Struct. Mol. Boil. 2012, 19, 1076–1083. [Google Scholar] [CrossRef]
- Dai, L.; Xie, X.; Zhou, Z. Crystal structure of the histone heterodimer containing histone variant H2A.Bbd. Biochem. Biophys. Res. Commun. 2018, 503, 1786–1791. [Google Scholar] [CrossRef]
- Dorigo, B.; Schalch, T.; Kulangara, A.; Duda, S.; Schroeder, R.R.; Richmond, T.J. Nucleosome Arrays Reveal the Two-Start Organization of the Chromatin Fiber. Science 2004, 306, 1571–1573. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.Y.; Rangasamy, D.; Luger, K.; Tremethick, D.J. H2A.Z Alters the Nucleosome Surface to Promote HP1α-Mediated Chromatin Fiber Folding. Mol. Cell 2004, 16, 655–661. [Google Scholar] [CrossRef]
- Angelov, D.; Verdel, A.; An, W.; Bondarenko, V.; Hans, F.; Doyen, C.-M.; Studitsky, V.M.; Hamiche, A.; Roeder, R.G.; Bouvet, P.; et al. SWI/SNF remodeling and p300-dependent transcription of histone variant H2ABbd nucleosomal arrays. EMBO J. 2004, 23, 3815–3824. [Google Scholar] [CrossRef] [Green Version]
- Castello, A.; Fischer, B.; Eichelbaum, K.; Horos, R.; Beckmann, B.M.; Strein, C.; Davey, N.; Humphreys, D.; Preiss, T.; Steinmetz, L.M.; et al. Insights into RNA Biology from an Atlas of Mammalian mRNA-Binding Proteins. Cell 2012, 149, 1393–1406. [Google Scholar] [CrossRef] [Green Version]
- Hoghoughi, N.; Barral, S.; Curtet, S.; Chuffart, F.; Charbonnier, G.; Puthier, D.; Buchou, T.; Rousseaux, S.; Khochbin, S. RNA-Guided Genomic Localization of H2A.L.2 Histone Variant. Cells 2020, 9, 474. [Google Scholar] [CrossRef] [Green Version]
- Rathke, C.; Baarends, W.M.; Awe, S.; Renkawitz-Pohl, R. Chromatin dynamics during spermiogenesis. Biochim. et Biophys. Acta (BBA) Bioenerg. 2014, 1839, 155–168. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Caron, C.; De Robertis, C.; Khochbin, S.; Rousseaux, S. Testis-specific histone variants H2AL1/2 rapidly disappear from paternal heterochromatin after fertilization. J. Reprod. Dev. 2008, 54, 413–417. [Google Scholar] [CrossRef] [Green Version]
- Gu, C.; Tong, Q.; Zheng, L.; Liang, Z.; Pu, J.; Mei, H.; Hu, T.; Du, Z.; Tian, F.; Zeng, F. TSEG-1, a novel member of histone H2A variants, participates in spermatogenesis via promoting apoptosis of spermatogenic cells. Genomics 2010, 95, 278–289. [Google Scholar] [CrossRef] [Green Version]
- Anuar, N.D.; Kurscheid, S.; Field, M.A.; Zhang, L.; Rebar, E.; Gregory, P.; Buchou, T.; Bowles, J.; Koopman, P.; Tremethick, D.; et al. Gene editing of the multi-copy H2A.B gene and its importance for fertility. Genome Boil. 2019, 20, 23. [Google Scholar] [CrossRef]
- Meikar, O.; Da Ros, M.; Korhonen, H.; Kotaja, N. Chromatoid body and small RNAs in male germ cells. Reproduction 2011, 142, 195–209. [Google Scholar] [CrossRef]
- Nekrasov, M.; Soboleva, T.A.; Jack, C.; Tremethick, D. Histone variant selectivity at the transcription start site: H2A.Z or H2A.Lap1. Nucleus 2013, 4, 431–438. [Google Scholar] [CrossRef] [Green Version]
- Kubik, S.; Bruzzone, M.J.; Shore, D. Establishing nucleosome architecture and stability at promoters: Roles of pioneer transcription factors and the RSC chromatin remodeler. BioEssays 2017, 39, 1600237. [Google Scholar] [CrossRef]
- Namekawa, S.H.; Park, P.J.; Zhang, L.-F.; Shima, J.E.; McCarrey, J.R.; Griswold, M.D.; Lee, J.T. Postmeiotic Sex Chromatin in the Male Germline of Mice. Curr. Boil. 2006, 16, 660–667. [Google Scholar] [CrossRef] [Green Version]
- Meikar, O.; Vagin, V.V.; Chalmel, F.; Sõstar, K.; Lardenois, A.; Hammell, M.G.; Jin, Y.; Da Ros, M.; Wasik, K.A.; Toppari, J.; et al. An atlas of chromatoid body components. RNA 2014, 20, 483–495. [Google Scholar] [CrossRef] [Green Version]
- Shaha, C.; Tripathi, R.; Mishra, D.P. Male germ cell apoptosis: Regulation and biology. Philos. Trans. R. Soc. B Boil. Sci. 2010, 365, 1501–1515. [Google Scholar] [CrossRef] [Green Version]
- Sansoni, V.; Casas-Delucchi, C.S.; Rajan, M.; Schmidt, A.; Bönisch, C.; Thomae, A.W.; Staege, M.S.; Hake, S.B.; Cardoso, M.C.; Imhof, A. The histone variant H2A.Bbd is enriched at sites of DNA synthesis. Nucleic Acids Res. 2014, 42, 6405–6420. [Google Scholar] [CrossRef]
- Goshima, T.; Shimada, M.; Sharif, J.; Matsuo, H.; Misaki, T.; Johmura, Y.; Murata, K.; Koseki, H.; Nakanishi, M. Mammal-specific H2A Variant, H2ABbd, Is Involved in Apoptotic Induction via Activation of NF-κB Signaling Pathway. J. Biol. Chem. 2014, 289, 11656–11666. [Google Scholar] [CrossRef] [Green Version]
- Rousseaux, S.; Khochbin, S. New hypotheses for large-scale epigenome alterations in somatic cancer cells: A role for male germ-cell-specific regulators. Epigenomics 2009, 1, 153–161. [Google Scholar] [CrossRef]
- Wang, J.; Emadali, A.; Le Bescont, A.; Callanan, M.; Rousseaux, S.; Khochbin, S. Induced malignant genome reprogramming in somatic cells by testis-specific factors. Biochim. et Biophys. Acta (BBA) Bioenerg. 2011, 1809, 221–225. [Google Scholar] [CrossRef]
- Winkler, C.; Steingrube, D.S.; Altermann, W.; Schlaf, G.; Max, D.; Kewitz, S.; Emmer, A.; Kornhuber, M.; Banning-Eichenseer, U.; Staege, M. Hodgkin’s lymphoma RNA-transfected dendritic cells induce cancer/testis antigen-specific immune responses. Cancer Immunol. Immunother. 2012, 61, 1769–1779. [Google Scholar] [CrossRef]
- Ioudinkova, E.S.; Barat, A.; Pichugin, A.; Markova, E.; Sklyar, I.; Pirozhkova, I.; Robin, C.; Lipinski, M.; Ogryzko, V.; Vassetzky, Y.; et al. Distinct Distribution of Ectopically Expressed Histone Variants H2A.Bbd and MacroH2A in Open and Closed Chromatin Domains. PLoS ONE 2012, 7, e47157. [Google Scholar] [CrossRef]
- Shaw, M.L.; Williams, E.J.; Hawes, S.; Saffery, R. Characterisation of histone variant distribution in human embryonic stem cells by transfection of in vitro transcribed mRNA. Mol. Reprod. Dev. 2009, 76, 1128–1142. [Google Scholar] [CrossRef]
- Bywater, M.J.; Poortinga, G.; Sanij, E.; Hein, N.; Peck, A.; Cullinane, C.; Wall, M.; Cluse, L.; Drygin, D.; Anderes, K.; et al. Inhibition of RNA polymerase I as a therapeutic strategy to promote cancer-specific activation of p53. Cancer Cell 2012, 22, 51–65. [Google Scholar] [CrossRef] [Green Version]
- Grosso, A.R.; Gomes, A.Q.; Barbosa-Morais, N.; Caldeira, S.; Thorne, N.P.; Grech, G.; Von Lindern, M.; Carmo-Fonseca, M. Tissue-specific splicing factor gene expression signatures. Nucleic Acids Res. 2008, 36, 4823–4832. [Google Scholar] [CrossRef]
- Bachtrog, D.; Mank, J.E.; Peichel, C.L.; Kirkpatrick, M.; Otto, S.P.; Ashman, T.-L.; Hahn, M.W.; Kitano, J.; Mayrose, I.; Ming, R.; et al. Sex determination: Why so many ways of doing it? PLoS Boil. 2014, 12, e1001899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Soboleva, T.A.; Tremethick, D.J. Short Histone H2A Variants: Small in Stature but not in Function. Cells 2020, 9, 867. https://doi.org/10.3390/cells9040867
Jiang X, Soboleva TA, Tremethick DJ. Short Histone H2A Variants: Small in Stature but not in Function. Cells. 2020; 9(4):867. https://doi.org/10.3390/cells9040867
Chicago/Turabian StyleJiang, Xuanzhao, Tatiana A. Soboleva, and David J. Tremethick. 2020. "Short Histone H2A Variants: Small in Stature but not in Function" Cells 9, no. 4: 867. https://doi.org/10.3390/cells9040867
APA StyleJiang, X., Soboleva, T. A., & Tremethick, D. J. (2020). Short Histone H2A Variants: Small in Stature but not in Function. Cells, 9(4), 867. https://doi.org/10.3390/cells9040867