How Essential Kinesin-5 Becomes Non-Essential in Fission Yeast: Force Balance and Microtubule Dynamics Matter
Abstract
:1. Introduction
1.1. Bipolar Mitotic Spindles and Kinesin Motor Proteins
1.2. Kinesin-5 Plays an Essential Role in Bipolar Spindle Assembly and Cell Survival
2. How Essential Kinesin-5 Becomes Non-Essential
3. Conditions Under Which Cells Do Not Need Kinesin-5 for Survival
3.1. Suppression by Mutations in Kinesin-14s or Their Cofactors
3.2. Suppression by Compromised Microtubule Nucleation, Polymerisation and Stability
3.3. Suppression by Microtubule-Destabilising Drugs
3.4. Suppression through Downregulation of the cAMP/PKA Pathway
4. Outward Force Generators in the Absence of Kinesin-5
4.1. Outward Forces Exerted by Kinesin-6
4.2. Outward Forces Exerted by the Microtubule Crosslinker and Stabiliser
4.3. Outward Forces Exerted by Microtubule Polymerases
4.4. Outward Forces Exerted by the Kinetochore and Sister Chromatid Cohesion
4.5. Outward Force Generation by Kinesin-12 in Human Cells
5. Force Generation in Human Prophase Cells
6. Force Generation in the Acentrosomal Cells
7. Towards Cancer Therapeutics
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
γ-TuC | γ-tubulin complex |
MBC | methyl 2-benzimidazolecarbamate |
MAPs | microtubule-associated proteins |
SPB | spindle pole body |
TBZ | thiabendazole |
ts | temperature-sensitive |
References
- Mitchison, T.J.; Salmon, E.D. Mitosis: A history of division. Nat. Cell Biol. 2001, 3, E17–E21. [Google Scholar] [CrossRef] [PubMed]
- Woodruff, J.B.; Wueseke, O.; Hyman, A.A. Pericentriolar material structure and dynamics. Philos. Trans. R. Soc. Lond B Biol. Sci. 2014, 369, 20130459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vale, R.D.; Reese, T.S.; Sheetz, M.P. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 1985, 42, 39–50. [Google Scholar] [CrossRef] [Green Version]
- Hirokawa, N.; Noda, Y.; Tanaka, Y.; Niwa, S. Kinesin superfamily motor proteins and intracellular transport. Nat. Rev. Mol. Cell Biol. 2009, 10, 682–696. [Google Scholar] [CrossRef]
- Wickstead, B.; Gull, K.; Richards, T.A. Patterns of kinesin evolution reveal a complex ancestral eukaryote with a multifunctional cytoskeleton. BMC Evol. Biol. 2010, 10, 110. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, C.J.; Dawe, R.K.; Christie, K.R.; Cleveland, D.W.; Dawson, S.C.; Endow, S.A.; Goldstein, L.S.; Goodson, H.V.; Hirokawa, N.; Howard, J.; et al. A standardized kinesin nomenclature. J. Cell Biol. 2004, 167, 19–22. [Google Scholar] [CrossRef] [Green Version]
- Yount, A.L.; Zong, H.; Walczak, C.E. Regulatory mechanisms that control mitotic kinesins. Exp. Cell Res. 2015, 334, 70–77. [Google Scholar] [CrossRef] [Green Version]
- Enos, A.P.; Morris, N.R. Mutation of a gene that encodes a kinesin-like protein blocks nuclear division in A. nidulans. Cell 1990, 60, 1019–1027. [Google Scholar] [CrossRef]
- Kashina, A.S.; Baskin, R.J.; Cole, D.G.; Wedaman, K.P.; Saxton, W.M.; Scholey, J.M. A bipolar kinesin. Nature 1996, 379, 270–272. [Google Scholar] [CrossRef]
- Kapitein, L.C.; Peterman, E.J.; Kwok, B.H.; Kim, J.H.; Kapoor, T.M.; Schmidt, C.F. The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature 2005, 435, 114–118. [Google Scholar] [CrossRef]
- Hagan, I.; Yanagida, M. Kinesin-related cut7 protein associates with mitotic and meiotic spindles in fission yeast. Nature 1992, 356, 74–76. [Google Scholar] [CrossRef] [PubMed]
- Sawin, K.E.; LeGuellec, K.; Philippe, M.; Mitchison, T.J. Mitotic spindle organization by a plus-end-directed microtubule motor. Nature 1992, 359, 540–543. [Google Scholar] [CrossRef] [PubMed]
- Blangy, A.; Lane, H.A.; d’Herin, P.; Harper, M.; Kress, M.; Nigg, E.A. Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 1995, 83, 1159–1169. [Google Scholar] [CrossRef] [Green Version]
- Hagan, I.; Yanagida, M. Novel potential mitotic motor protein encoded by the fission yeast cut7+ gene. Nature 1990, 347, 563–566. [Google Scholar] [CrossRef]
- Heck, M.M.; Pereira, A.; Pesavento, P.; Yannoni, Y.; Spradling, A.C.; Goldstein, L.S. The kinesin-like protein KLP61F is essential for mitosis in Drosophila. J. Cell Biol. 1993, 123, 665–679. [Google Scholar] [CrossRef] [Green Version]
- Le Guellec, R.; Paris, J.; Couturier, A.; Roghi, C.; Philippe, M. Cloning by differential screening of a Xenopus cDNA that encodes a kinesin-related protein. Mol. Cell Biol. 1991, 11, 3395–3398. [Google Scholar] [CrossRef] [Green Version]
- Kapoor, T.M.; Mayer, T.U.; Coughlin, M.L.; Mitchison, T.J. Probing spindle assembly mechanisms with monastrol, a small molecule inhibitor of the mitotic kinesin, Eg5. J. Cell Biol. 2000, 150, 975–988. [Google Scholar] [CrossRef]
- Nahaboo, W.; Zouak, M.; Askjaer, P.; Delattre, M. Chromatids segregate without centrosomes during Caenorhabditis elegans mitosis in a Ran- and CLASP-dependent manner. Mol. Biol. Cell 2015, 26, 2020–2029. [Google Scholar] [CrossRef] [Green Version]
- Mann, B.J.; Wadsworth, P. Kinesin-5 regulation and function in mitosis. Trends Cell Biol. 2019, 29, 66–79. [Google Scholar] [CrossRef]
- O’Connell, M.J.; Meluh, P.B.; Rose, M.D.; Morris, N.R. Suppression of the bimC4 mitotic spindle defect by deletion of klpA, a gene encoding a KAR3-related kinesin-like protein in Aspergillus nidulans. J. Cell Biol. 1993, 120, 153–162. [Google Scholar] [CrossRef]
- Saunders, W.S.; Hoyt, M.A. Kinesin-related proteins required for structural integrity of the mitotic spindle. Cell 1992, 70, 451–458. [Google Scholar] [CrossRef]
- Hoyt, M.A.; He, L.; Totis, L.; Saunders, W.S. Loss of function of Saccharomyces cerevisiae kinesin-related CIN8 and KIP1 is suppressed by KAR3 motor domain mutations. Genetics 1993, 135, 35–44. [Google Scholar] [PubMed]
- Wang, B.; Li, K.; Jin, M.; Qiu, R.; Liu, B.; Oakley, B.R.; Xiang, X. The Aspergillus nidulans bimC4 mutation provides an excellent tool for identification of kinesin-14 inhibitors. Fungal Genet. Biol. 2015, 82, 51–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- She, Z.Y.; Yang, W.X. Molecular mechanisms of kinesin-14 motors in spindle assembly and chromosome segregation. J. Cell Sci. 2017, 130, 2097–2110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yukawa, M.; Yamada, Y.; Toda, T. Suppressor analysis uncovers that MAPs and microtubule dynamics balance with the Cut7/Kinesin-5 motor for mitotic spindle assembly in Schizosaccharomyces pombe. G3 (Bethesda) 2019, 9, 269–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braun, M.; Drummond, D.R.; Cross, R.A.; McAinsh, A.D. The kinesin-14 Klp2 organizes microtubules into parallel bundles by an ATP-dependent sorting mechanism. Nat. Cell Biol. 2009, 11, 724–730. [Google Scholar] [CrossRef] [PubMed]
- Pidoux, A.L.; LeDizet, M.; Cande, W.Z. Fission yeast pkl1 is a kinesin-related protein involved in mitotic spindle function. Mol. Biol. Cell 1996, 7, 1639–1655. [Google Scholar] [CrossRef] [Green Version]
- Furuta, K.; Edamatsu, M.; Maeda, Y.; Toyoshima, Y.Y. Diffusion and directed movement: In vitro motile properties of fission yeast kinesin-14 Pkl1. J. Biol. Chem. 2008, 283, 36465–36473. [Google Scholar] [CrossRef] [Green Version]
- Troxell, C.L.; Sweezy, M.A.; West, R.R.; Reed, K.D.; Carson, B.D.; Pidoux, A.L.; Cande, W.Z.; McIntosh, J.R. pkl1+ and klp2+: Two kinesins of the Kar3 subfamily in fission yeast perform different functions in both mitosis and meiosis. Mol. Biol. Cell 2001, 12, 3476–3488. [Google Scholar] [CrossRef] [Green Version]
- Ikebe, C.; Konishi, M.; Hirata, D.; Matsusaka, T.; Toda, T. Systematic localization study on novel proteins encoded by meiotically up-regulated ORFs in fission yeast. Biosci. Biotechnol. Biochem. 2011, 75, 2364–2370. [Google Scholar] [CrossRef]
- Toya, M.; Sato, M.; Haselmann, U.; Asakawa, K.; Brunner, D.; Antony, C.; Toda, T. γ-Tubulin complex-mediated anchoring of spindle microtubules to spindle-pole bodies requires Msd1 in fission yeast. Nat. Cell Biol. 2007, 9, 646–653. [Google Scholar] [CrossRef] [PubMed]
- Yukawa, M.; Ikebe, C.; Toda, T. The Msd1-Wdr8-Pkl1 complex anchors microtubule minus ends to fission yeast spindle pole bodies. J. Cell Biol. 2015, 209, 549–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yukawa, M.; Yamada, Y.; Yamauchi, T.; Toda, T. Two spatially distinct kinesin-14 proteins, Pkl1 and Klp2, generate collaborative inward forces against kinesin-5 Cut7 in S. pombe. J. Cell Sci. 2018, 131, jcs.210740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mana-Capelli, S.; McLean, J.R.; Chen, C.T.; Gould, K.L.; McCollum, D. The kinesin-14 Klp2 is negatively regulated by the SIN for proper spindle elongation and telophase nuclear positioning. Mol. Biol. Cell 2012, 23, 4592–4600. [Google Scholar] [CrossRef]
- Rodriguez, A.S.; Batac, J.; Killilea, A.N.; Filopei, J.; Simeonov, D.R.; Lin, I.; Paluh, J.L. Protein complexes at the microtubule organizing center regulate bipolar spindle assembly. Cell Cycle 2008, 7, 1246–1253. [Google Scholar] [CrossRef] [Green Version]
- Syrovatkina, V.; Tran, P.T. Loss of kinesin-14 results in aneuploidy via kinesin-5-dependent microtubule protrusions leading to chromosome cut. Nat. Commun. 2015, 6, 7322. [Google Scholar] [CrossRef] [Green Version]
- Olmsted, Z.T.; Colliver, A.G.; Riehlman, T.D.; Paluh, J.L. Kinesin-14 and kinesin-5 antagonistically regulate microtubule nucleation by γ-TuRC in yeast and human cells. Nat. Commun. 2014, 5, 5339. [Google Scholar] [CrossRef] [Green Version]
- Takeda, A.; Saitoh, S.; Ohkura, H.; Sawin, K.E.; Goshima, G. Identification of 15 new bypassable essential genes of fission yeast. Cell Struct. Funct. 2019, 44, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Winters, L.; Ban, I.; Prelogovic, M.; Kalinina, I.; Pavin, N.; Tolic, I.M. Pivoting of microtubules driven by minus-end-directed motors leads to spindle assembly. BMC Biol. 2019, 17, 42. [Google Scholar] [CrossRef]
- Akera, T.; Goto, Y.; Sato, M.; Yamamoto, M.; Watanabe, Y. Mad1 promotes chromosome congression by anchoring a kinesin motor to the kinetochore. Nat. Cell Biol. 2015, 17, 1124–1133. [Google Scholar] [CrossRef]
- Toda, T.; Adachi, Y.; Hiraoka, Y.; Yanagida, M. Identification of the pleiotropic cell division cycle gene NDA2 as one of two different α-tubulin genes in Schizosaccharomyces pombe. Cell 1984, 37, 233–242. [Google Scholar] [CrossRef]
- Hiraoka, Y.; Toda, T.; Yanagida, M. The NDA3 gene of fission yeast encodes β-tubulin: A cold-sensitive nda3 mutation reversibly blocks spindle formation and chromosome movement in mitosis. Cell 1984, 39, 349–358. [Google Scholar] [CrossRef]
- Carvalho, P.; Tirnauer, J.S.; Pellman, D. Surfing on microtubule ends. Trends Cell Biol. 2003, 13, 229–237. [Google Scholar] [CrossRef]
- Beinhauer, J.D.; Hagan, I.M.; Hegemann, J.H.; Fleig, U. Mal3, the fission yeast homologue of the human APC-interacting protein EB-1 is required for microtubule integrity and the maintenance of cell form. J. Cell Biol. 1997, 139, 717–728. [Google Scholar] [CrossRef] [PubMed]
- Asakawa, K.; Toya, M.; Sato, M.; Kanai, M.; Kume, K.; Goshima, T.; Garcia, M.A.; Hirata, D.; Toda, T. Mal3, the fission yeast EB1 homologue, cooperates with Bub1 spindle checkpoint to prevent monopolar attachment. EMBO Rep. 2005, 6, 1194–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujita, A.; Vardy, L.; Garcia, M.A.; Toda, T. A fourth component of the fission yeast γ-tubulin complex, Alp16, is required for cytoplasmic microtubule integrity and becomes indispensable when γ-tubulin function is compromised. Mol. Biol. Cell 2002, 13, 2360–2373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anders, A.; Lourenco, P.C.; Sawin, K.E. Noncore components of the fission yeast γ-tubulin complex. Mol. Biol. Cell 2006, 17, 5075–5093. [Google Scholar] [CrossRef] [Green Version]
- Masuda, H.; Toda, T. Synergistic role of fission yeast Alp16GCP6 and Mzt1MOZART1 in γ-tubulin complex recruitment to mitotic spindle pole bodies and spindle assembly. Mol. Biol. Cell 2016, 27, 1753–1763. [Google Scholar] [CrossRef]
- Sato, M.; Vardy, L.; Angel Garcia, M.; Koonrugsa, N.; Toda, T. Interdependency of fission yeast Alp14/TOG and coiled coil protein Alp7 in microtubule localization and bipolar spindle formation. Mol. Biol. Cell 2004, 15, 1609–1622. [Google Scholar] [CrossRef]
- Peset, I.; Vernos, I. The TACC proteins: TACC-ling microtubule dynamics and centrosome function. Trends Cell Biol. 2008, 18, 379–388. [Google Scholar] [CrossRef]
- Nabeshima, K.; Kurooka, H.; Takeuchi, M.; Kinoshita, K.; Nakaseko, Y.; Yanagida, M. p93dis1, which is required for sister chromatid separation, is a novel microtubule and spindle pole body-associating protein phosphorylated at the Cdc2 target sites. Genes Dev. 1995, 9, 1572–1585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, M.A.; Vardy, L.; Koonrugsa, N.; Toda, T. Fission yeast ch-TOG/XMAP215 homologue Alp14 connects mitotic spindles with the kinetochore and is a component of the Mad2-dependent spindle checkpoint. EMBO J. 2001, 20, 3389–3401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuo, Y.; Maurer, S.P.; Yukawa, M.; Zakian, S.; Singleton, M.R.; Surrey, T.; Toda, T. An unconventional interaction between Dis1/TOG and Mal3/EB1 in fission yeast promotes the fidelity of chromosome segregation. J. Cell Sci. 2016, 129, 4592–4606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Bassam, J.; Kim, H.; Flor-Parra, I.; Lal, N.; Velji, H.; Chang, F. Fission yeast Alp14 is a dose dependent plus end tracking microtubule polymerase. Mol. Biol. Cell 2012, 23, 2878–2890. [Google Scholar] [CrossRef] [PubMed]
- Hussmann, F.; Drummond, D.R.; Peet, D.R.; Martin, D.S.; Cross, R.A. Alp7/TACC-Alp14/TOG generates long-lived, fast-growing MTs by an unconventional mechanism. Sci. Rep. 2016, 6, 20653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winey, M.; Bloom, K. Mitotic spindle form and function. Genetics 2012, 190, 1197–1224. [Google Scholar] [CrossRef] [Green Version]
- Sato, M.; Toda, T. Alp7/TACC is a crucial target in Ran-GTPase-dependent spindle formation in fission yeast. Nature 2007, 447, 334–337. [Google Scholar] [CrossRef]
- Flor-Parra, I.; Iglesias-Romero, A.B.; Chang, F. The XMAP215 ortholog Alp14 promotes microtubule nucleation in fission yeast. Curr. Biol. 2018, 28, 1681–1691. [Google Scholar] [CrossRef] [Green Version]
- Florian, S.; Mayer, T.U. Modulated microtubule dynamics enable Hklp2/Kif15 to assemble bipolar spindles. Cell Cycle 2011, 10, 3533–3544. [Google Scholar] [CrossRef]
- Kollu, S.; Bakhoum, S.F.; Compton, D.A. Interplay of microtubule dynamics and sliding during bipolar spindle formation in mammalian cells. Curr. Biol. 2009, 19, 2108–2113. [Google Scholar] [CrossRef] [Green Version]
- Gupta, D.R.; Paul, S.K.; Oowatari, Y.; Matsuo, Y.; Kawamukai, M. Multistep regulation of protein kinase A in its localization, phosphorylation and binding with a regulatory subunit in fission yeast. Curr. Genet. 2011, 57, 353–365. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, C.S. Glucose sensing via the protein kinase A pathway in Schizosaccharomyces pombe. Biochem. Soc. Trans. 2005, 33, 257–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanyu, Y.; Imai, K.K.; Kawasaki, Y.; Nakamura, T.; Nakaseko, Y.; Nagao, K.; Kokubu, A.; Ebe, M.; Fujisawa, A.; Hayashi, T.; et al. Schizosaccharomyces pombe cell division cycle under limited glucose requires Ssp1 kinase, the putative CaMKK, and Sds23, a PP2A-related phosphatase inhibitor. Genes Cells 2009, 14, 539–554. [Google Scholar] [CrossRef] [PubMed]
- Rincon, S.A.; Lamson, A.; Blackwell, R.; Syrovatkina, V.; Fraisier, V.; Paoletti, A.; Betterton, M.D.; Tran, P.T. Kinesin-5-independent mitotic spindle assembly requires the antiparallel microtubule crosslinker Ase1 in fission yeast. Nat. Commun. 2017, 8, 15286. [Google Scholar] [CrossRef] [Green Version]
- Grallert, A.; Beuter, C.; Craven, R.A.; Bagley, S.; Wilks, D.; Fleig, U.; Hagan, I.M. S. pombe CLASP needs dynein, not EB1 or CLIP170, to induce microtubule instability and slows polymerization rates at cell tips in a dynein-dependent manner. Genes Dev. 2006, 20, 2421–2436. [Google Scholar] [CrossRef] [Green Version]
- Bratman, S.V.; Chang, F. Stabilization of overlapping microtubules by fission yeast CLASP. Dev. Cell 2007, 13, 812–827. [Google Scholar] [CrossRef] [Green Version]
- Kelkar, M.; Martin, S.G. PKA antagonizes CLASP-dependent microtubule stabilization to re-localize Pom1 and buffer cell size upon glucose limitation. Nat. Commun. 2015, 6, 8445. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.; You, L.; Pasqualone, D.; Kopski, K.M.; Huffaker, T.C. Stu1p is physically associated with beta-tubulin and is required for structural integrity of the mitotic spindle. Mol. Biol. Cell 2002, 13, 1881–1892. [Google Scholar] [CrossRef]
- Pasqualone, D.; Huffaker, T.C. STU1, a suppressor of a β-tubulin mutation, encodes a novel and essential component of the yeast mitotic spindle. J. Cell Biol. 1994, 127, 1973–1984. [Google Scholar] [CrossRef] [Green Version]
- Ebina, H.; Ji, L.; Sato, M. CLASP promotes microtubule bundling in metaphase spindle independently of Ase1/PRC1 in fission yeast. Biol. Open 2019, 8, bio045716. [Google Scholar] [CrossRef] [Green Version]
- Fu, C.; Ward, J.J.; Loiodice, I.; Velve-Casquillas, G.; Nedelec, F.J.; Tran, P.T. Phospho-regulated interaction between kinesin-6 Klp9p and microtubule bundler Ase1p promotes spindle elongation. Dev. Cell 2009, 17, 257–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yukawa, M.; Okazaki, M.; Teratani, Y.; Furuta, K.; Toda, T. Kinesin-6 Klp9 plays motor-dependent and -independent roles in collaboration with Kinesin-5 Cut7 and the microtubule crosslinker Ase1 in fission yeast. Sci. Rep. 2019, 9, 7336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, S.H.; McCollum, D. A role for metaphase spindle elongation forces in correction of merotelic kinetochore attachments. Curr. Biol. 2012, 22, 225–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meadows, J.C.; Lancaster, T.C.; Buttrick, G.J.; Sochaj, A.M.; Messin, L.J.; Del Mar Mora-Santos, M.; Hardwick, K.G.; Millar, J.B. Identification of a Sgo2-dependent but Mad2-independent pathway controlling anaphase onset in fission yeast. Cell Rep. 2017, 18, 1422–1433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruger, L.K.; Sanchez, J.L.; Paoletti, A.; Tran, P.T. Kinesin-6 regulates cell-size-dependent spindle elongation velocity to keep mitosis duration constant in fission yeast. eLife 2019, 8, e42182. [Google Scholar] [CrossRef] [PubMed]
- Yanagida, M. Fission yeast cut mutations revisited: Control of anaphase. Trends Cell Biol. 1998, 8, 144–149. [Google Scholar] [CrossRef]
- Loiodice, I.; Staub, J.; Setty, T.G.; Nguyen, N.P.; Paoletti, A.; Tran, P.T. Ase1p organizes antiparallel microtubule arrays during interphase and mitosis in fission yeast. Mol. Biol. Cell 2005, 16, 1756–1768. [Google Scholar] [CrossRef]
- Yamashita, A.; Sato, M.; Fujita, A.; Yamamoto, M.; Toda, T. The roles of fission yeast ase1 in mitotic cell division, meiotic nuclear oscillation, and cytokinesis checkpoint signaling. Mol. Biol. Cell 2005, 16, 1378–1395. [Google Scholar] [CrossRef]
- Pellman, D.; Bagget, M.; Tu, Y.H.; Fink, G.R.; Tu, H. Two microtubule-associated proteins required for anaphase spindle movement in Saccharomyces cerevisiae. J. Cell Biol. 1995, 130, 1373–1385. [Google Scholar] [CrossRef] [Green Version]
- Schuyler, S.C.; Liu, J.Y.; Pellman, D. The molecular function of Ase1p: Evidence for a MAP-dependent midzone-specific spindle matrix. J. Cell Biol. 2003, 160, 517–528. [Google Scholar] [CrossRef] [Green Version]
- Blackwell, R.; Edelmaier, C.; Sweezy-Schindler, O.; Lamson, A.; Gergely, Z.R.; O’Toole, E.; Crapo, A.; Hough, L.E.; McIntosh, J.R.; Glaser, M.A.; et al. Physical determinants of bipolar mitotic spindle assembly and stability in fission yeast. Sci. Adv. 2017, 3, e1601603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edelmaier, C.; Lamson, A.R.; Gergely, Z.R.; Ansari, S.; Blackwell, R.; McIntosh, J.R.; Glaser, M.A.; Betterton, M.D. Mechanisms of chromosome biorientation and bipolar spindle assembly analyzed by computational modeling. eLife 2020, 9, e48787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bishop, J.D.; Han, Z.; Schumacher, J.M. The Caenorhabditis elegans Aurora B kinase AIR-2 phosphorylates and is required for the localization of a BimC kinesin to meiotic and mitotic spindles. Mol. Biol. Cell 2005, 16, 742–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saunders, A.M.; Powers, J.; Strome, S.; Saxton, W.M. Kinesin-5 acts as a brake in anaphase spindle elongation. Curr. Biol. 2007, 17, R453–R454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yukawa, M.; Kawakami, T.; Pinder, C.; Toda, T. Two XMAP215/TOG microtubule polymerases, Alp14 and Dis1, play non-exchangeable, distinct roles in microtubule organisation in fission yeast. Int. J. Mol. Sci. 2019, 20, 5108. [Google Scholar] [CrossRef] [Green Version]
- Al-Bassam, J.; Chang, F. Regulation of microtubule dynamics by TOG-domain proteins XMAP215/Dis1 and CLASP. Trends Cell Biol. 2011, 21, 604–614. [Google Scholar] [CrossRef] [Green Version]
- Zheng, F.; Li, T.; Jin, D.Y.; Syrovatkina, V.; Scheffler, K.; Tran, P.T.; Fu, C. Csi1p recruits alp7p/TACC to the spindle pole bodies for bipolar spindle formation. Mol. Biol. Cell 2014, 25, 2750–2760. [Google Scholar] [CrossRef] [Green Version]
- Costa, J.; Fu, C.; Khare, V.M.; Tran, P.T. csi2p modulates microtubule dynamics and organizes the bipolar spindle for chromosome segregation. Mol. Biol. Cell 2014, 25, 3900–3908. [Google Scholar] [CrossRef] [Green Version]
- Hou, H.; Zhou, Z.; Wang, Y.; Wang, J.; Kallgren, S.P.; Kurchuk, T.; Miller, E.A.; Chang, F.; Jia, S. Csi1 links centromeres to the nuclear envelope for centromere clustering. J. Cell Biol. 2012, 199, 735–744. [Google Scholar] [CrossRef] [Green Version]
- Yukawa, M.; Kawakami, T.; Okazaki, M.; Kume, K.; Tang, N.H.; Toda, T. A microtubule polymerase cooperates with the kinesin-6 motor and a microtubule cross-linker to promote bipolar spindle assembly in the absence of kinesin-5 and kinesin-14 in fission yeast. Mol. Biol. Cell 2017, 28, 3647–3659. [Google Scholar] [CrossRef]
- Tran, P.T.; Marsh, L.; Doye, V.; Inoue, S.; Chang, F. A mechanism for nuclear positioning in fission yeast based on microtubule pushing. J. Cell Biol. 2001, 153, 397–412. [Google Scholar] [CrossRef] [PubMed]
- Daga, R.R.; Yonetani, A.; Chang, F. Asymmetric microtubule pushing forces in nuclear centering. Curr. Biol. 2006, 16, 1544–1550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, X.X.; Spanos, C.; Kojidani, T.; Lynch, E.M.; Rappsilber, J.; Hiraoka, Y.; Haraguchi, T.; Sawin, K.E. Exportin Crm1 is repurposed as a docking protein to generate microtubule organizing centers at the nuclear pore. eLife 2018, 7, e33465. [Google Scholar] [CrossRef]
- Liu, W.; Zheng, F.; Wang, Y.; Fu, C. Alp7-Mto1 and Alp14 synergize to promote interphase microtubule regrowth from the nuclear envelope. J. Mol. Cell Biol. 2019, 11, 944–955. [Google Scholar] [CrossRef]
- Wu, H.Y.; Nazockdast, E.; Shelley, M.J.; Needleman, D.J. Forces positioning the mitotic spindle: Theories, and now experiments. Bioessays 2017, 39, 1600212. [Google Scholar] [CrossRef] [PubMed]
- Garzon-Coral, C.; Fantana, H.A.; Howard, J. A force-generating machinery maintains the spindle at the cell center during mitosis. Science 2016, 352, 1124–1127. [Google Scholar] [CrossRef] [PubMed]
- Shirasugi, Y.; Sato, M. Kinetochore-mediated outward force promotes spindle pole separation in fission yeast. Mol. Biol. Cell 2019, 30, 2802–2813. [Google Scholar] [CrossRef]
- Hara, M.; Fukagawa, T. Dynamics of kinetochore structure and its regulations during mitotic progression. Cell Mol. Life Sci. 2020, 77, s00018-020-03472-4. [Google Scholar] [CrossRef]
- Nabetani, A.; Koujin, T.; Tsutsumi, C.; Haraguchi, T.; Hiraoka, Y. A conserved protein, Nuf2, is implicated in connecting the centromere to the spindle during chromosome segregation: A link between the kinetochore function and the spindle checkpoint. Chromosoma 2001, 110, 322–334. [Google Scholar] [CrossRef]
- Bernard, P.; Maure, J.F.; Partridge, J.F.; Genier, S.; Javerzat, J.P.; Allshire, R.C. Requirement of heterochromatin for cohesion at centromeres. Science 2001, 294, 2539–2542. [Google Scholar] [CrossRef]
- Nonaka, N.; Kitajima, T.; Yokobayashi, S.; Xiao, G.; Yamamoto, M.; Grewal, S.I.; Watanabe, Y. Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast. Nat. Cell Biol. 2002, 4, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Michaelis, C.; Ciosk, R.; Nasmyth, K. Cohesins: Chromosomal proteins that prevent premature separation of sister chromatids. Cell 1997, 91, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Tatebayashi, K.; Kato, J.; Ikeda, H. Isolation of a Schizosaccharomyces pombe rad21ts mutant that is aberrant in chromosome segregation, microtubule function, DNA repair and sensitive to hydroxyurea: Possible involvement of Rad21 in ubiquitin-mediated proteolysis. Genetics 1998, 148, 49–57. [Google Scholar] [PubMed]
- Toso, A.; Winter, J.R.; Garrod, A.J.; Amaro, A.C.; Meraldi, P.; McAinsh, A.D. Kinetochore-generated pushing forces separate centrosomes during bipolar spindle assembly. J. Cell Biol. 2009, 184, 365–372. [Google Scholar] [CrossRef] [Green Version]
- Gayek, A.S.; Ohi, R. Kinetochore-microtubule stability governs the metaphase requirement for Eg5. Mol. Biol. Cell 2014, 25, 2051–2060. [Google Scholar] [CrossRef] [Green Version]
- Tanenbaum, M.E.; Macurek, L.; Janssen, A.; Geers, E.F.; Alvarez-Fernandez, M.; Medema, R.H. Kif15 cooperates with eg5 to promote bipolar spindle assembly. Curr. Biol. 2009, 19, 1703–1711. [Google Scholar] [CrossRef] [Green Version]
- Vanneste, D.; Takagi, M.; Imamoto, N.; Vernos, I. The role of Hklp2 in the stabilization and maintenance of spindle bipolarity. Curr. Biol. 2009, 19, 1712–1717. [Google Scholar] [CrossRef] [Green Version]
- Sturgill, E.G.; Norris, S.R.; Guo, Y.; Ohi, R. Kinesin-5 inhibitor resistance is driven by kinesin-12. J. Cell Biol. 2016, 213, 213–227. [Google Scholar] [CrossRef] [Green Version]
- Kaseda, K.; McAinsh, A.D.; Cross, R.A. Dual pathway spindle assembly increases both the speed and the fidelity of mitosis. Biol. Open 2012, 1, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Hata, S.; Pastor Peidro, A.; Panic, M.; Liu, P.; Atorino, E.; Funaya, C.; Jakle, U.; Pereira, G.; Schiebel, E. The balance between KIFC3 and EG5 tetrameric kinesins controls the onset of mitotic spindle assembly. Nat. Cell Biol. 2019, 21, 1138–1151. [Google Scholar] [CrossRef]
- Tanenbaum, M.E.; Medema, R.H. Mechanisms of centrosome separation and bipolar spindle assembly. Dev. Cell 2010, 19, 797–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashimoto, T. A ring for all: γ-tubulin-containing nucleation complexes in acentrosomal plant microtubule arrays. Curr. Opin. Plant. Biol. 2013, 16, 698–703. [Google Scholar] [CrossRef] [PubMed]
- Meunier, S.; Vernos, I. Acentrosomal microtubule assembly in mitosis: The where, when, and now. Trends Cell Biol. 2016, 26, 80–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeda, Y.; Kuroki, K.; Chinen, T.; Kitagawa, D. Centrosomal and non-centrosomal functions emerged through eliminating centrosomes. Cell Struct Funct 2020, 45, csf.20007. [Google Scholar] [CrossRef] [Green Version]
- Gruss, O.J. Animal female meiosis: The challenges of eliminating centrosomes. Cells 2018, 7, 73. [Google Scholar] [CrossRef] [Green Version]
- Karsenti, E.; Vernos, I. The mitotic spindle: A self-made machine. Science 2001, 294, 543–547. [Google Scholar] [CrossRef]
- Khodjakov, A.; Cole, R.W.; Oakley, B.R.; Rieder, C.L. Centrosome-independent mitotic spindle formation in vertebrates. Curr. Biol. 2000, 10, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Chinen, T.; Yamamoto, S.; Takeda, Y.; Watanabe, K.; Kuroki, K.; Hashimoto, K.; Takao, D.; Kitagawa, D. NuMA assemblies organize microtubule asters to establish spindle bipolarity in acentrosomal human cells. EMBO J. 2020, 39, e102378. [Google Scholar] [CrossRef]
- Basto, R.; Lau, J.; Vinogradova, T.; Gardiol, A.; Woods, C.G.; Khodjakov, A.; Raff, J.W. Flies without centrioles. Cell 2006, 125, 1375–1386. [Google Scholar] [CrossRef] [Green Version]
- Walczak, C.E.; Vernos, I.; Mitchison, T.J.; Karsenti, E.; Heald, R. A model for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity. Curr. Biol. 1998, 8, 903–913. [Google Scholar] [CrossRef] [Green Version]
- Shu, S.; Iimori, M.; Wakasa, T.; Ando, K.; Saeki, H.; Oda, Y.; Oki, E.; Maehara, Y. The balance of forces generated by kinesins controls spindle polarity and chromosomal heterogeneity in tetraploid cells. J. Cell Sci. 2019, 132, jcs.231530. [Google Scholar] [CrossRef] [PubMed]
- El-Nassan, H.B. Advances in the discovery of kinesin spindle protein (Eg5) inhibitors as antitumor agents. Eur. J. Med. Chem. 2013, 62, 614–631. [Google Scholar] [CrossRef] [PubMed]
- Wacker, S.A.; Houghtaling, B.R.; Elemento, O.; Kapoor, T.M. Using transcriptome sequencing to identify mechanisms of drug action and resistance. Nat. Chem. Biol. 2012, 8, 235–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, H.T.; Erdal, S.; Huang, S.; Poon, R.Y. Synergism between inhibitors of Aurora A and KIF11 overcomes KIF15-dependent drug resistance. Mol. Oncol. 2014, 8, 1404–1418. [Google Scholar] [CrossRef] [PubMed]
- Dumas, M.E.; Sturgill, E.G.; Ohi, R. Resistance is not futile: Surviving Eg5 inhibition. Cell Cycle 2016, 15, 2845–2847. [Google Scholar] [CrossRef] [Green Version]
- Pena, A.; Sweeney, A.; Cook, A.D.; Topf, M.; Moores, C.A. Structure of microtubule-trapped human kinesin-5 and its mechanism of inhibition revealed using cryoelectron microscopy. Structure 2020, 28, 1–8. [Google Scholar] [CrossRef]
- Huszar, D.; Theoclitou, M.E.; Skolnik, J.; Herbst, R. Kinesin motor proteins as targets for cancer therapy. Cancer Metastasis Rev. 2009, 28, 197–208. [Google Scholar] [CrossRef]
- Mitchison, T.J. The proliferation rate paradox in antimitotic chemotherapy. Mol. Biol. Cell 2012, 23, 1–6. [Google Scholar] [CrossRef]
- Mitchison, T.J.; Pineda, J.; Shi, J.; Florian, S. Is inflammatory micronucleation the key to a successful anti-mitotic cancer drug? Open Biol. 2017, 7, 170182. [Google Scholar] [CrossRef] [Green Version]
Gene | Synonym | Protein | Homologue | Function |
---|---|---|---|---|
pkl11 | skf1 | Kinesin-14 | HSET/KIFC1 | Minus end-directed motor |
wdr8 | skf2 | WD40 repeats | WDRB/WRAP73 | A component of the MWP complex |
msd11 | skf3 | Coiled coil | hMsd1/SSX2IP | A component of the MWP complex |
klp2 | Kinesin-14 | HSET/KIFC1 | Minus end-directed motor | |
nda3 | skf4 | β-tubulin | β-tubulin | Microtubule subunit |
atb2 | skf5 | α2-tubulin | α-tubulin | Microtubule subunit |
mal3 | skf6 | MAP | EB1 | A microtubule plus-end tracking protein |
alp16 | GRIP repeats | GCP6 | A component of the γ-TuC | |
alp7 | mia1 | MAP | TACC | Complex formation with Alp14 |
alp14 | mtc1 | MAP | XMAP215/Stu2/TOG | Microtubule polymerase |
dis1 | MAP | XMAP215/Stu2/TOG | Microtubule polymerase | |
pka1 | Protein kinase | PKA | cAMP-dependent protein kinase |
Gene | Synonym | Protein | Homologue | Function |
---|---|---|---|---|
klp9 | Kinesin-6 | MKLP1, MKLP2 | Plus end-directed motor | |
ase1 | MAP | PRC1 | Microtubule crosslinker | |
cls1 | peg1 | MAP | CLASP | Microtubule stabiliser/crosslinker |
alp7 | mia1 | MAP | TACC | Complex formation with Alp14 |
alp14 | mtc1 | MAP | XMAP215/Stu2/TOG | Microtubule polymerase |
dis1 | MAP | XMAP215/Stu2/TOG | Microtubule polymerase | |
csi1 | Coiled coil | Targeting Alp7 to the mitotic SPB | ||
csi2 | SPB localising | Targeting Csi1 to the mitotic SPB | ||
swi6 | Chromodomain | HP1 | Heterochromatin | |
rad21 | Kleisin | hRad21/Scc1/Mcd1 | Cohesin | |
nuf2 | Coiled coil | Nuf2 | Kinetochore |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yukawa, M.; Teratani, Y.; Toda, T. How Essential Kinesin-5 Becomes Non-Essential in Fission Yeast: Force Balance and Microtubule Dynamics Matter. Cells 2020, 9, 1154. https://doi.org/10.3390/cells9051154
Yukawa M, Teratani Y, Toda T. How Essential Kinesin-5 Becomes Non-Essential in Fission Yeast: Force Balance and Microtubule Dynamics Matter. Cells. 2020; 9(5):1154. https://doi.org/10.3390/cells9051154
Chicago/Turabian StyleYukawa, Masashi, Yasuhiro Teratani, and Takashi Toda. 2020. "How Essential Kinesin-5 Becomes Non-Essential in Fission Yeast: Force Balance and Microtubule Dynamics Matter" Cells 9, no. 5: 1154. https://doi.org/10.3390/cells9051154