Genetical Genomics of Tonic Immobility in the Chicken
Abstract
:1. Introduction
2. Methods
2.1. Primary Genetical Genomics Mapping Study
2.1.1. Chicken Study Population and Cross Design
2.1.2. Choice of Hypothalamus Tissue
2.1.3. F8 Phenotyping
2.1.4. Genotyping, QTL and eQTL Mapping
2.1.5. Significance Thresholds
2.1.6. Analysis of Candidate Genes in the F8 Generation (eQTL Genes Falling within QTL Intervals)
- CAUSAL: Genotype modifies gene expression which in turn modifies behaviour (genotype -> expression trait -> behaviour).
- REACTIVE: Genotype modifies behaviour which in turn modifies the expression trait (genotype -> behaviour -> expression trait)
- CONFOUNDED: Genotype modifies both the expression trait and the behaviour separately (expression trait <- genotype -> behaviour)
- COLLIDER B (behaviour is the collider): Genotype and the expression trait both independently modify behaviour (genotype -> behaviour <- expression trait)
- COLLIDER E: (expression is the collider): Genotype and behaviour both independently modify the expression trait (genotype -> expression trait <- behaviour).
2.2. Verification Cohort and the Relationship between Tonic Immobility, Inverted Restraint and pH
2.2.1. Tonic Immobility
2.2.2. Inverted Restraint Test
2.2.3. pH Measurements
2.2.4. Statistical Analysis
2.3. Data Availability
2.4. Ethics Statement
3. Results
3.1. Genetic Architecture of Tonic Immobility
3.2. eQTL Overlap and Candidate Gene Detection
3.3. Relationship between Tonic Immobility, Inverted Restraint and Breast Muscle pH
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gilman, T.T.; Marcuse, F.L. Animal hypnosis. Psychol. Bull. 1949, 46, 151–165. [Google Scholar] [CrossRef]
- Humphreys, R.K.; Ruxton, G.D. A review of thanatosis (death feigning) as an anti-predator behaviour. Behav. Ecol. Sociobiol. 2018, 72, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratner, S. Comparative aspects of hypnosis. In Handbook of Clinical and Experimental Hypnosis; Gordon, J., Ed.; Macmillan: New York, NY, USA, 1967; pp. 550–587. [Google Scholar]
- Sargeant, A.B.; Eberhardt, L.E. Death feigning by ducks in response to predation by red foxes (Vulpes fulva). Am. Midl. Nat. 1975, 94, 108–119. [Google Scholar] [CrossRef]
- O’Brien, T.J.; Dunlap, W.P. Tonic immobility in the blue crab (Callinectes sapidus, Rathbun): Its relation to threat of predation. J. Comp. Physiol. Psychol. 1975, 89, 86–94. [Google Scholar] [CrossRef]
- Vegger, J.B.; Brüel, A.; Dahlgaard, A.F.; Thomsen, J.S. Alterations in gene expression precede sarcopenia and osteopenia in botulinum toxin immobilized mice. J. Musculoskelet. Neuronal Interact. 2016, 16, 355–368. [Google Scholar]
- Gilman, T.T.; Marcuse, F.L.; Moore, A.U. Animal hypnosis: A study in the induction of tonic immobility in chickens. J. Comp. Physiol. Psychol. 1950, 43, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Henningsen, A.D. Tonic immobility in 12 elasmobranchs: Use as an aid in captive husbandry. Zoo Biol. 1994, 13, 325–332. [Google Scholar] [CrossRef]
- Gallup, G.G.; Rosen, T.S.; Brown, C.W. Effect of conditioned fear on tonic immobility in domestic chickens. J. Comp. Physiol. Psychol. 1972, 78, 22–25. [Google Scholar] [CrossRef] [PubMed]
- 1Schütz, K.E.; Kerje, S.; Jacobsson, L.; Forkman, B.; Carlborg, Ö.; Andersson, L.; Jensen, P. Major Growth QTLs in Fowl are related to fearful behavior: possible genetic links between fear responses and production traits in a red junglefowl × white leghorn intercross. Behav. Genet. 2004, 34, 121–130. [Google Scholar] [CrossRef]
- Wright, D.; Rubin, C.J.; Martinez Barrio, A.; Schütz, K.; Kerje, S.; Brändström, H.; Kindmark, A.; Jensen, P.; Andersson, L. The genetic architecture of domestication in the chicken: Effects of pleiotropy and linkage. Mol. Ecol. 2010, 19, 5140–5156. [Google Scholar] [CrossRef] [PubMed]
- Gagliardi, G.J.; Gallup, G.G.; Boren, J.L. Effect of different pupil to eye size ratios on tonic immobility in chickens. Bull. Psychon. Soc. 1976, 8, 58–60. [Google Scholar] [CrossRef] [Green Version]
- Campo, J.L.; Dávila, S.G.; Gil, M.G. Comparison of the tonic immobility duration, heterophil to lymphocyte ratio, and fluctuating asymmetry of chicks reared with or without a broody hen, and of broody and non-broody hens. Appl. Anim. Behav. Sci. 2014, 151, 61–66. [Google Scholar] [CrossRef]
- Gallup, G.G. Genetic influence on tonic immobility in chickens. Anim. Learn. Behav. 1974, 2, 145–147. [Google Scholar] [CrossRef] [Green Version]
- Benoff, F.H.; Siegel, P.B. Genetic analysis of tonic immobility in young Japanese quail (Coturnix cotunix japonica). Anim. Learn. Behav. 1976, 4, 160–162. [Google Scholar] [CrossRef] [Green Version]
- Riska, B.; Prout, T.; Turelli, M. Laboratory estimates of heritabilities and genetic correlations in nature. Genetics 1989, 123, 865–871. [Google Scholar]
- Minvielle, F.; Kayang, B.B.; Inoue-Murayama, M.; Miwa, M.; Vignal, A.; Gourichon, D.; Neau, A.; Monvoisin, J.-L.; Ito, S. Microsatellite mapping of QTL affecting growth, feed consumption, egg production, tonic immobility and body temperature of Japanese quail. BMC Genom. 2005, 6, 87. [Google Scholar] [CrossRef]
- Bedanova, I.; Voslarova, E.; Chloupek, P.; Pistekova, V.; Suchy, P.; Blahova, J.; Dobsikova, R.; Vecerek, V. Stress in Broilers Resulting from Shackling. Poult. Sci. 2007, 86, 1065–1069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kannan, G.; Heath, J.L.; Wabeck, C.J.; Mench, J.A. Shackling of broilers: Effects on stress responses and breast meat quality. Br. Poult. Sci. 1997, 38, 323–332. [Google Scholar] [CrossRef]
- Berri, C.; Debut, M.; Santé-Lhoutellier, V.; Arnould, C.; Boutten, B.; Sellier, N.; Baéza, E.; Jehl, N.; Jégo, Y.; Duclos, M.J.; et al. Variations in chicken breast meat quality: Implications of struggle and muscle glycogen content at death. Br. Poult. Sci. 2005, 46, 572–579. [Google Scholar] [CrossRef]
- Barbut, S. Problem of pale soft exudative meat in broiler chickens. Br. Poult. Sci. 1997, 38, 355–358. [Google Scholar] [CrossRef]
- Woelfel, R.L.; Owens, C.M.; Hirschler, E.M.; Martinez-Dawson, R.; Sams, A.R. The characterization and incidence of pale, soft, and exudative broiler meat in a commercial processing plant. Poult. Sci. 2002, 81, 579–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbut, S. Estimating the magnitude of the PSE problem in poultry. J. Muscle Foods 1998, 9, 35–49. [Google Scholar] [CrossRef]
- Nadaf, J.; Gilbert, H.; Pitel, F.; Berri, C.M.; Feve, K.; Beaumont, C.; Duclos, M.J.; Vignal, A.; Porter, T.E.; Simon, J.; et al. Identification of QTL controlling meat quality traits in an F2 cross between two chicken lines selected for either low or high growth rate. BMC Genom. 2007, 8, 155. [Google Scholar] [CrossRef]
- Nadaf, J.; Berri, C.; Dunn, I.; Godet, E.; Le Bihan-Duval, E.; De Koning, D.J. An expression QTL of closely linked candidate genes affects pH of meat in chickens. Genetics 2014, 196, 867–874. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, X.; Nadaf, J.; Le Bihan-Duval, E.; Berri, C.; Dunn, I.; Talbot, R.; De Koning, D.-J. Using targeted resequencing for identification of candidate genes and SNPs for a QTL Affecting the pH value of chicken meat. Genes 2015, 5, 2085–2089. [Google Scholar] [CrossRef] [PubMed]
- Frésard, L.; Leroux, S.; Dehais, P.; Servin, B.; Gilbert, H.; Bouchez, O.; Klopp, C.; Cabau, C.; Vignoles, F.; Feve, K.; et al. Fine mapping of complex traits in non-model species: Using next generation sequencing and advanced intercross lines in Japanese quail. BMC Genom. 2012, 13, 551. [Google Scholar] [CrossRef]
- Johnsson, M.; Gustafson, I.; Rubin, C.-J.; Sahlqvist, A.-S.; Jonsson, K.B.; Kerje, S.; Ekwall, O.; Kämpe, O.; Andersson, L.; Jensen, P.; et al. A sexual ornament in chickens is affected by pleiotropic alleles at HAO1 and BMP2, selected during domestication. PLoS Genet. 2012, 8, e1002914. [Google Scholar] [CrossRef]
- Johnsson, M.; Jonsson, K.B.; Andersson, L.; Jensen, P.; Wright, D. Genetic regulation of bone metabolism in the chicken: Similarities and differences to mammalian systems. PLoS Genet. 2015, 11, e1005250. [Google Scholar] [CrossRef]
- Johnsson, M.; Henriksen, R.; Fogelholm, J.; Höglund, A.; Jensen, P.; Wright, D. Genetics and genomics of social behavior in a chicken model. Genetics 2018, 209, 209–221. [Google Scholar] [CrossRef]
- Johnsson, M.; Henriksen, R.; Höglund, A.; Fogelholm, J.; Jensen, P.; Wright, D. Genetical genomics of growth in a chicken model. BMC Genom. 2018, 19, 72. [Google Scholar] [CrossRef]
- International Chicken Genome Sequencing Consortium Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 2004, 432, 695–716. [CrossRef] [PubMed]
- Darvasi, A. Experimental strategies for the genetic dissection of complex traits in animal models. Nat. Genet. 1998, 18, 19–24. [Google Scholar] [CrossRef]
- Schütz, K.; Kerje, S.; Carlborg, O.; Jacobsson, L.; Andersson, L.; Jensen, P. QTL analysis of a red junglefowl x White Leghorn intercross reveals trade-off in resource allocation between behavior and production traits. Behav. Genet. 2002, 32, 423–433. [Google Scholar] [CrossRef]
- Kerje, S.; Carlborg, O.; Jacobsson, L.; Schütz, K.; Hartmann, C.; Jensen, P.; Andersson, L. The twofold difference in adult size between the red junglefowl and White Leghorn chickens is largely explained by a limited number of QTLs. Anim. Genet. 2003, 34, 264–274. [Google Scholar] [CrossRef]
- Wright, D.; Kerje, S.; Brändström, H.; Schütz, K.; Kindmark, A.; Andersson, L.; Jensen, P.; Pizzari, T. The genetic architecture of a female sexual ornament. Evolution 2008, 62, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Wright, D.; Rubin, C.; Schutz, K.; Kerje, S.; Kindmark, A.; Brandström, H.; Andersson, L.; Pizzari, T.; Jensen, P. Onset of sexual maturity in female chickens is genetically linked to loci associated with fecundity and a sexual ornament. Reprod. Domest. Anim. 2012, 47, 31–36. [Google Scholar] [CrossRef]
- Johnsson, M.; Rubin, C.-J.; Höglund, A.; Sahlqvist, A.-S.; Jonsson, K.B.; Kerje, S.; Ekwall, O.; Kämpe, O.; Andersson, L.; Jensen, P.; et al. The role of pleiotropy and linkage in genes affecting a sexual ornament and bone allocation in the chicken. Mol. Ecol. 2014, 23, 2275–2286. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, R.; Johnsson, M.; Andersson, L.; Jensen, P.; Wright, D. The domesticated brain: Genetics of brain mass and brain structure in an avian species. Sci. Rep. 2016, 6, 34031. [Google Scholar] [CrossRef] [PubMed]
- Fallahsharoudi, A.; de Kock, N.; Johnsson, M.; Bektic, L.; Ubhayasekera, S.J.K.A.; Bergquist, J.; Wright, D.; Jensen, P. Genetic and targeted eQTL mapping reveals strong candidate genes modulating the stress response during chicken domestication. G3 Genes Genomes Genet. 2017, 7, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Fallahsharoudi, A.; de Kock, N.; Johnsson, M.; Bektic, L.; Ubhayasekera, S.J.K.A.; Bergquist, J.; Wright, D.; Jensen, P. QTL mapping of stress related gene expression in a cross between domesticated chickens and ancestral red junglefowl. Mol. Cell. Endocrinol. 2017, 446, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Johnsson, M.; Williams, M.J.; Jensen, P.; Wright, D. Genetical genomics of behavior: A novel chicken genomic model for anxiety behavior. Genetics 2016, 202, 327–340. [Google Scholar] [CrossRef] [PubMed]
- File, S.E.; Kenny, P.J.; Cheeta, S. The role of the dorsal hippocampal serotonergic and cholinergic systems in the modulation of anxiety. Pharmacol. Biochem. Behav. 2000, 66, 65–72. [Google Scholar] [CrossRef]
- McNaughton, N.; Corr, P.J. A two-dimensional neuropsychology of defense: Fear/anxiety and defensive distance. Neurosci. Biobehav. Rev. 2004, 28, 285–305. [Google Scholar] [CrossRef] [PubMed]
- Kallen, V.L.; Tulen, J.H.M.; Utens, E.M.W.J.; Treffers, P.D.A.; De Jong, F.H.; Ferdinand, R.F. Associations between HPA axis functioning and level of anxiety in children and adolescents with an anxiety disorder. Depress. Anxiety 2008, 25, 131–141. [Google Scholar] [CrossRef]
- De Oliveira, L.; Hoffmann, A.; Menescal-de-Oliveira, L. The lateral hypothalamus in the modulation of tonic immobility in guinea pigs. Neuroreport 1997, 8, 3489–3493. [Google Scholar] [CrossRef]
- Leite-Panissi, C.R.A.; Menescal-de-Oliveira, L. Central nucleus of the amygdala and the control of tonic immobility in guinea pigs. Brain Res. Bull. 2002, 58, 13–19. [Google Scholar] [CrossRef]
- Broman, K.W.; Wu, H.; Sen, S.; Churchill, G.A. R/qtl: QTL mapping in experimental crosses. Bioinformatics 2003, 19, 889–890. [Google Scholar] [CrossRef] [Green Version]
- Broman, K.W.; Sen, Ś. A Guide to QTL Mapping with R/qtl; Springer: Berlin, Germany, 2009; ISBN 9781461417088. [Google Scholar]
- Churchill, G.A.; Doerge, R.W. Empirical threshold values for quantitative trait mapping. Genetics 1994, 138, 963–971. [Google Scholar]
- Doerge, R.W.; Churchill, G.A. Permutation tests for multiple loci affecting a quantitative character. Genetics 1996, 142, 285–294. [Google Scholar]
- Lander, E.; Kruglyak, L. Genetic dissection of complex traits: Guidelines for interpreting and reporting linkage results. Nat. Genet. 1995, 11, 241–247. [Google Scholar] [CrossRef]
- Manichaikul, A.; Dupuis, J.; Sen, S.; Broman, K.W. Poor performance of bootstrap confidence intervals for the location of a quantitative trait locus. Genetics 2006, 174, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Aten, J.E.; Fuller, T.F.; Lusis, A.J.; Horvath, S. Using genetic markers to orient the edges in quantitative trait networks: The NEO software. BMC Syst. Biol. 2008, 2, 34. [Google Scholar] [CrossRef] [PubMed]
- Farber, C.R.; Aten, J.E.; Farber, E.A.; de Vera, V.; Gularte, R.; Islas-Trejo, A.; Wen, P.; Horvath, S.; Lucero, M.; Lusis, A.J.; et al. Genetic dissection of a major mouse obesity QTL (Carfhg2): Integration of gene expression and causality modeling. Physiol. Genom. 2009, 37, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Plaisier, C.L.; Horvath, S.; Huertas-Vazquez, A.; Cruz-Bautista, I.; Herrera, M.F.; Tusie-Luna, T.; Aguilar-Salinas, C.; Pajukanta, P. A Systems genetics approach implicates USF1, FADS3, and other causal candidate genes for familial combined hyperlipidemia. PLoS Genet. 2009, 5, e1000642. [Google Scholar] [CrossRef]
- Kim, S. Ppcor: An R package for a fast calculation to semi-partial correlation coefficients. Commun. Stat. Appl. Methods 2015, 22, 665–674. [Google Scholar] [CrossRef]
- Poletto, R.; Siegford, J.M.; Steibel, J.P.; Coussens, P.M.; Zanella, A.J. Investigation of changes in global gene expression in the frontal cortex of early-weaned and socially isolated piglets using microarray and quantitative real-time RT-PCR. Brain Res. 2006, 1068, 7–15. [Google Scholar] [CrossRef]
- Kirkby, B.; Roman, N.; Kobe, B.; Kellie, S.; Forwood, J.K. Functional and structural properties of mammalian acyl-coenzyme A thioesterases. Prog. Lipid Res. 2010, 49, 366–377. [Google Scholar] [CrossRef]
- Tillander, V.; Arvidsson Nordström, E.; Reilly, J.; Strozyk, M.; Van Veldhoven, P.P.; Hunt, M.C.; Alexson, S.E.H. Acyl-CoA thioesterase 9 (ACOT9) in mouse may provide a novel link between fatty acid and amino acid metabolism in mitochondria. Cell. Mol. Life Sci. 2014, 71, 933–948. [Google Scholar] [CrossRef]
- Mills, A.D.; Faure, J.-M. Divergent selection for duration of tonic immobility and social reinstatement behavior in Japanese quail (Coturnix coturnix japonica) chicks. J. Comp. Psychol. 1991, 105, 25–38. [Google Scholar] [CrossRef]
- Stacey, D.; Ciobanu, L.G.; Baune, B.T. A systematic review on the association between inflammatory genes and cognitive decline in non-demented elderly individuals. Eur. Neuropsychopharmacol. 2017, 27, 568–588. [Google Scholar] [CrossRef]
- De Jager, P.L.; Shulman, J.M.; Chibnik, L.B.; Keenan, B.T.; Raj, T.; Wilson, R.S.; Yu, L.; Leurgans, S.E.; Tran, D.; Aubin, C.; et al. A genome-wide scan for common variants affecting the rate of age-related cognitive decline. Neurobiol. Aging 2012, 33, 1017.e1–1017.e15. [Google Scholar] [CrossRef] [PubMed]
- Safavi, M.; Baeeri, M.; Abdollahi, M. New methods for the discovery and synthesis of PDE7 inhibitors as new drugs for neurological and inflammatory disorders. Expert Opin. Drug Discov. 2013, 8, 733–751. [Google Scholar] [CrossRef] [PubMed]
- Stojkov, N.J.; Janjic, M.M.; Bjelic, M.M.; Mihajlovic, A.I.; Kostic, T.S.; Andric, S.A. Repeated immobilization stress disturbed steroidogenic machinery and stimulated the expression of cAMP signaling elements and adrenergic receptors in Leydig cells. Am. J. Physiol. Metab. 2012, 302, E1239–E1251. [Google Scholar] [CrossRef] [PubMed]
- Shimobayashi, E.; Wagner, W.; Kapfhammer, J.P. Carbonic anhydrase 8 expression in purkinje cells is controlled by PKCγ activity and regulates purkinje cell dendritic growth. Mol. Neurobiol. 2016, 53, 5149–5160. [Google Scholar] [CrossRef]
- Wlaź, P.; Socała, K.; Nieoczym, D.; Żarnowski, T.; Żarnowska, I.; Czuczwar, S.J.; Gasior, M. Acute anticonvulsant effects of capric acid in seizure tests in mice. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2015, 57, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Yan, J.; Zhao, Y.; Donahue, L.R.; Beamer, W.G.; Li, X.; Roe, B.A.; Ledoux, M.S.; Gu, W. Carbonic anhydrase-related protein VIII deficiency is associated with a distinctive lifelong gait disorder in waddles mice. Genetics 2005, 171, 1239–1246. [Google Scholar] [CrossRef] [PubMed]
- Kaya, N.; Aldhalaan, H.; Al-Younes, B.; Colak, D.; Shuaib, T.; Al-Mohaileb, F.; Al-Sugair, A.; Nester, M.; Al-Yamani, S.; Al-Bakheet, A.; et al. Phenotypical spectrum of cerebellar ataxia associated with a novel mutation in the CA8 gene, encoding carbonic anhydrase (CA) VIII. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2011, 156, 826–834. [Google Scholar] [CrossRef] [PubMed]
- Türkmen, S.; Guo, G.; Garshasbi, M.; Hoffmann, K.; Alshalah, A.J.; Mischung, C.; Kuss, A.; Humphrey, N.; Mundlos, S.; Robinson, P.N. CA8 mutations cause a novel syndrome characterized by ataxia and mild mental retardation with predisposition to quadrupedal gait. PLoS Genet. 2009, 5, e1000487. [Google Scholar] [CrossRef]
- Lin, T.-B.; Lai, C.-Y.; Hsieh, M.-C.; Wang, H.-H.; Cheng, J.-K.; Chau, Y.-P.; Chen, G.-D.; Peng, H.-Y. VPS26A-SNX27 interaction-dependent Mglur5 recycling in dorsal horn neurons mediates neuropathic pain in rats. J. Neurosci. 2015, 35, 14943–14955. [Google Scholar] [CrossRef]
- Shabana; Ullah Shahid, S.; Wah Li, K.; Acharya, J.; Cooper, J.A.; Hasnain, S.; Humphries, S.E. Effect of six type II diabetes susceptibility loci and an FTO variant on obesity in Pakistani subjects. Eur. J. Hum. Genet. 2016, 24, 903–910. [Google Scholar] [CrossRef]
- Bugarcic, A.; Vetter, I.; Chalmers, S.; Kinna, G.; Collins, B.M.; Teasdale, R.D. Vps26B-retromer negatively regulates plasma membrane resensitization of PAR-2. Cell Biol. Int. 2015, 39, 1299–1306. [Google Scholar] [CrossRef] [PubMed]
Trait | Chr | Position | LOD | Add ± S.E. | Dom ±S.E. | Lower CI | Upper CI | Lower Marker | Position (Chr:bp) | Upper Marker | Position (Chr:bp) | Covariates | Interaction | R2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TI maximum d. | 1 | 2014 | 5.8 | −19.9 ± 21.6 | −25.7± 42.1 | 1991 | 2038 | 1_190334672 | 1:190334672 | 1_195271649 | 1:195271649 | sex, batch, PC2,3,10 | [email protected]:[email protected] | 3.7 |
TI duration 2 | 1 | 1750 | 7.3 | −30.8 ± 11.7 | −2.0 ± 15.4 | 1735 | 1756 | Gg_rs10728648 | 1:144081810 | snp-23-342-18608-S-2 | 1:151495059 | sex, batch, PC2,6 | [email protected]:[email protected] | 5 |
TI average d. | 2 | 774 | 6.5 | −10.8 ± 9.2 | −28.7± 14 | 764 | 795 | RBL1120 | 2:116617839 | Gg_rs15146557 | 2:117659953 | sex, batch, PC2,6 | [email protected]:[email protected] | 4.6 |
TI maximum d. | 2 | 485 | 7.3 | 27.9 ± 13.1 | −3.3 ± 17 | 474 | 495 | Gg_rs14190959 | 2:60361704 | Gg_rs15110213 | 2:65012153 | sex, batch, PC2,3,10 | [email protected]:[email protected] | 4.7 |
TI maximum d. | 2 | 775 | 7.3 | −9.9 ± 12.8 | −18.1± 19.3 | 767 | 798 | RBL1120 | 2:116617839 | Gg_rs15146557 | 2:117659953 | sex, batch, PC2,3,10 | [email protected]:[email protected] | 4.7 |
TI duration 2 | 2 | 181 | 7.9 | −63.0 ± 14.9 | −35.7± 18.3 | 170 | 195 | Gg_rs15070042 | 2:19473457 | 2_23979784 | 2:23979784 | sex, batch, PC2,6 | [email protected]:[email protected] | 5.2 |
TI duration 1 | 4 | 283 | 9.7 | 33.4 ± 10.5 | 11.4 ± 16.2 | 272 | 292 | Gg_rs14446625 | 4:31963411 | 4_37860292 | 4:37860292 | sex, batch, PC1,4 | [email protected]:[email protected] | 7.8 |
TI duration 1 | 6 | 259 | 6.9 | 5.6 ± 9.1 | 10.7 ± 12.2 | 247 | 270 | 6_25762392 | 6:25762392 | Gg_rs14592224 | 6:30433595 | sex, batch, PC1,4 | [email protected]:[email protected] | 5.5 |
TI duration 2 | 7 | 4 | 11.5 | 11.2 ± 13.5 | 48.5 ± 17.7 | 0 | 8 | Gg_rs15826188 | 7:1654910 | Gg_rs15828492 | 7:2444843 | sex, batch, PC2,6 | [email protected]:[email protected], [email protected]:[email protected] | 7.8 |
TI average d. | 10 | 99 | 5.9 | −15.1 ± 7.7 | 14.9 ± 10.1 | 86 | 109 | Gg_rs14941656 | 10:2678686 | Gg_rs14003134 | 10:5805005 | sex, batch, PC2,6 | [email protected]:[email protected] | 4.1 |
TI maximum d. | 10 | 139 | 8.4 | −24 ± 11.4 | −35.5 ± 15.1 | 133 | 144 | 10_9525779 | 10:9525779 | Gg_rs14947769 | 10:11621480 | sex, batch, PC2,3,10 | [email protected]:[email protected] | 5.4 |
TI duration 1 | 10 | 185 | 8.5 | 2.4 ± 9.5 | −34.6± 12.2 | 176 | 198 | Gg_rs14008254 | 10:12705455 | GG_rs14951592 | 10:15605204 | sex, batch, PC1,4 | [email protected]:[email protected] | 6.8 |
TI maximum d. | 12 | 85 | 7.2 | −24.2 ± 11.5 | 8.7 ± 14.7 | 77 | 190 | Gg_rs13609494 | 12:5140626 | 12_14051161 | 12:14051161 | sex, batch, PC2,3,10 | [email protected]:[email protected] | 4.7 |
TI duration 1 | 15 | 188 | 7.9 | −18.0 ± 9.6 | −19.5± 12.3 | 177 | 189 | Gg_rs14095161 | 15:10467522 | Gg_rs14095923 | 15:11490734 | sex, batch, PC1,4 | [email protected]:[email protected] | 6.3 |
TI average d. | 20 | 247.7 | 6.4 | −9.4 ± 7.1 | 24 ± 10.1 | 237 | 252 | Gg_rs15177950 | 20:10931547 | Gg_rs14280872 | 20:13367853 | sex, batch, PC2,6 | [email protected]:[email protected] | 4.8 |
TI average d. | 24 | 60.7 | 7 | −20.9 ± 8.5 | −21.0± 11 | 53 | 67 | GG_rs16194400 | 24:1782119 | Gg_rs14294768 | 24:3003659 | sex, batch, PC2,6 | [email protected]:[email protected] | 4.9 |
TI maximum d. | 24 | 61 | 8.7 | −26.6 ± 11.9 | −25.0 ± 15.4 | 54 | 66 | GG_rs16194400 | 24:1782119 | Gg_rs14294768 | 24:3003659 | sex, batch, PC2,3,10 | [email protected]:[email protected] | 5.6 |
TI duration 2 | 24 | 61 | 16.5 | 21.5 ± 15.3 | −40.9 ± 18.7 | 54 | 65 | GG_rs16194400 | 24:1782119 | Gg_rs14294768 | 24:3003659 | sex, batch, PC2,6 | [email protected]:[email protected], [email protected]:[email protected] | 11.5 |
Gene | Probe Name | eQTL Chr | eQTL Position | eQTL LOD | Behaviour Trait | Behavioural Trait Correlation | Behavioural Trait t-Value | Behaviour QTL LOD | Behaviour QTL chr | Behaviour QTL Position | LEO.NB.OCA | LEO.NB.CPA | NEO Model p-Value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ACOT9 probe 1 | ENSGALT00000026377_Q5F3B4_CHICK | 10 | 138 | 8.6*** | TI maximum d. | 0.004 | 2.9 | 0.8/5.9*** | 10 | 139 | - | 0.50 | 0.88 |
ACOT9 probe 1 | ENSGALT00000026377_Q5F3B4_CHICK | 10 | 138 | 8.6*** | TI maximum d. | 0.004 | 2.9 | 1.5*/6.6*** | 12 | 85 | 0.12 | 0.50 | 0.99 |
ACOT9 probe 2 | ENSGALT00000036634_Q5F3B4_CHICK | 10 | 128 | 7.1*** | TI maximum d. | 0.02 | 2.3 | 0.8/5.9*** | 10 | 139 | - | 0.55 | 0.98 |
ACOT9 probe 2 | ENSGALT00000036634_Q5F3B4_CHICK | 10 | 128 | 7.1*** | TI maximum d. | 0.02 | 2.3 | 1.5*/6.6*** | 12 | 85 | 0.15 | 0.55 | 0.94 |
CA8 probe 1 | 603865613F1 | 2 | 778 | 6.7*** | TI average d. | 0.017 | −2.4 | 1.4* | 2 | 774 | - | 0.49 | 0.38 |
CA8probe 1 | 603865613F1 | 2 | 778 | 6.7*** | TI maximum d. | 0.02 | −2.4 | 2.2** | 2 | 775 | - | 0.31 | 0.20 |
CA8 probe 2 | 603863179F1 | 2 | 784 | 6.1*** | TI average d. | 0.03 | −2.1 | 1.4* | 2 | 774 | 0.05 | 0.03 | <0.001 |
CA8 probe 2 | 603863179F1 | 2 | 784 | 6.1*** | TI maximum d. | 0.03 | −2.1 | 2.2** | 2 | 775 | - | −0.30 | <0.001 |
PDE7A | ENSGALT00000025015_LOC771318 | 2 | 784 | 6.6*** | TI average d. | 0.03 | 2.1 | 1.4* | 2 | 774 | 0.04 | 0.31 | <0.001 |
PDE7A | ENSGALT00000025015_LOC771318 | 2 | 784 | 6.6*** | TI maximum d. | 0.03 | 2.1 | 2.2** | 2 | 775 | - | −0.38 | <0.001 |
PRDX4 | ENSGALT00000026387_PRDX4 | 10 | 138.7 | 8.5*** | TI maximum d. | 0.0002 | 3.9 | 0.8/5.9*** | 10 | 139 | - | 0.38 | 0.66 |
PRDX4 | ENSGALT00000026387_PRDX4 | 10 | 138.7 | 8.5*** | TI maximum d. | 0.0002 | 3.9 | 1.5*/6.6*** | 12 | 85 | 0.11 | 0.38 | 0.96 |
VPS26 | 603867427F1 | 24 | 67 | 6.6*** | TI duration 2 | 0.004 | −3.0 | 1.0 N.S. | 24 | 61 | - | - | - |
Combined Data (Male and Female) | Initial Restraint Test | Pre-Slaughter Restraint | Tonic Immobility | pH | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Duration | No. Flaps | Duration | No. Flaps | Duration 1 | Duration 2 | Average d. | Maximum d. | Initial | >5h pH | ||
Initial restraint test | duration | - | <0.001*** | 0.33 | 0.53 | 0.38 | 0.58 | 0.82 | 0.74 | 0.39 | 0.40 |
no. flaps | 0.98 | - | 0.43 | 0.70 | 0.27 | 0.74 | 0.66 | 0.59 | 0.43 | 0.46 | |
Pre-slaughter restraint | duration | 0.15 | 0.12 | - | <0.001*** | 0.60 | 0.85 | 0.84 | 0.77 | 0.87 | 0.21 |
no. flaps | 0.10 | 0.06 | 0.94 | - | 0.96 | 0.95 | 0.78 | 0.45 | 0.98 | 0.43 | |
Tonic immobility | duration 1 | 0.14 | 0.17 | 0.08 | 0.01 | - | <0.005** | <0.001*** | <0.001*** | 0.96 | 0.68 |
duration 2 | −0.09 | −0.05 | 0.03 | −0.01 | 0.43 | - | <0.001*** | <0.001*** | 0.56 | 0.72 | |
average d. | 0.04 | 0.07 | 0.03 | −0.04 | 0.83 | 0.83 | - | <0.001*** | 0.77 | 0.68 | |
maximum d. | 0.05 | 0.09 | −0.05 | −0.12 | 0.81 | 0.74 | 0.95 | - | 0.70 | 0.87 | |
pH | initial | 0.13 | 0.12 | 0.03 | 0.00 | −0.01 | 0.09 | 0.05 | 0.06 | - | <0.005** |
>5h pH | 0.13 | 0.11 | 0.19 | 0.12 | 0.06 | 0.06 | 0.06 | 0.03 | 0.42 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fogelholm, J.; Inkabi, S.; Höglund, A.; Abbey-Lee, R.; Johnsson, M.; Jensen, P.; Henriksen, R.; Wright, D. Genetical Genomics of Tonic Immobility in the Chicken. Genes 2019, 10, 341. https://doi.org/10.3390/genes10050341
Fogelholm J, Inkabi S, Höglund A, Abbey-Lee R, Johnsson M, Jensen P, Henriksen R, Wright D. Genetical Genomics of Tonic Immobility in the Chicken. Genes. 2019; 10(5):341. https://doi.org/10.3390/genes10050341
Chicago/Turabian StyleFogelholm, Jesper, Samuel Inkabi, Andrey Höglund, Robin Abbey-Lee, Martin Johnsson, Per Jensen, Rie Henriksen, and Dominic Wright. 2019. "Genetical Genomics of Tonic Immobility in the Chicken" Genes 10, no. 5: 341. https://doi.org/10.3390/genes10050341
APA StyleFogelholm, J., Inkabi, S., Höglund, A., Abbey-Lee, R., Johnsson, M., Jensen, P., Henriksen, R., & Wright, D. (2019). Genetical Genomics of Tonic Immobility in the Chicken. Genes, 10(5), 341. https://doi.org/10.3390/genes10050341